1
|
Li P, Liang M, Zhu J, Chen J, Xia L, Jin Z, Zhang X, Zhang S, Wang Q, Liu Z, Ping Y, Wang Z, Wong CC, Zhang Y, Yang H, Ye Z, Ma Y. Elevated activity of plasma dipeptidyl peptidase 4 upon stress can be targeted to reverse tumor immunosuppression. Pharmacol Res 2025; 215:107696. [PMID: 40295089 DOI: 10.1016/j.phrs.2025.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025]
Abstract
The interplay between stress-induced metabolic reprogramming and perturbations in the cancer-immune dialogue is a challenging research topic with huge knowledge gaps to fill. In a repeated social defeat model, we discovered that circulating corticosterone, blood glucose, and plasma DPP4 activity were increased in stressed mice. Consistently, three independent cohort studies showed that plasma DPP4 activity was positively correlated with the severity of psychological distress of newly diagnosed cancer patients. Stress-induced surge of glucocorticoid can boost DPP4 activity via glucocorticoid receptor signaling without influencing Dpp4 transcription or the abundance of soluble DPP4. Albeit catalytic inhibition of DPP4 upon stress can't normalize the behavioral pattern and glucocorticoid secretion, it managed to reverse the expansion of circulating neutrophils and monocytes, restored the efficacy of prophylactic tumor vaccine, and augmented the priming of tumor-antigen specific T cells. DPP4 blockade in the context of stress largely enhanced the intratumoral accumulation of CD8+T cells and DCs, cytokine production by CD8+T and NK cells in situ, and tumor antigen presentation in vitro. Proteome profiling of mouse plasma revealed stress-related DPP4-sensitive changes that can be linked to immunological alterations and disturbed protease network. Altogether, elevated DPP4 activity may be targeted in cancer patients with psychiatric comorbidities to boost anti-tumor immunity.
Collapse
Affiliation(s)
- Peipei Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Menghe Liang
- Collaborative Innovation Center for Cancer Personalized Medicine & Gusu School, Nanjing Medical University, Nanjing, China
| | - Junlin Zhu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Jian Chen
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Lin Xia
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Ziqi Jin
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Xiao Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shuqing Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Qi Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhen Liu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxin Wang
- Department of Oncology, Affiliated Hospital of Suzhou University, Shizi Street 188, Gusu District, Suzhou, China
| | - Catherine Cl Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zilu Ye
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China; Collaborative Innovation Center for Cancer Personalized Medicine & Gusu School, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Wang Y, Zhang N, Shang W, Peng H, Hu Z, Yang Y, Tan L, Zhang L, He F, Rao X. Dexamethasone Inhibits the Growth of B-Lymphoma Cells by Downregulating DOT1L. Cancer Rep (Hoboken) 2024; 7:e2150. [PMID: 39307938 PMCID: PMC11417011 DOI: 10.1002/cnr2.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Dexamethasone (Dex), a synthetic glucocorticoid that acts by binding to the glucocorticoid receptor (GR), has been widely applied to treat leukemia and lymphoma; however, the precise mechanism underlying Dex action is still not well elucidated. DOT1L, a histone H3-lysine79 (H3K79) methyltransferase, has been linked to multiple cancer types, particularly mixed lineage leukemia (MLL) gene rearranged leukemia, but its contribution to lymphoma is yet to be delineated. Analysis from the TCGA database displayed that DOT1L was highly expressed in lymphoma and leukemia. RESULTS We initially demonstrated that DOT1L served as a new target gene controlled by GR, and the downregulation of DOT1L was critical for the killing of B-lymphoma cells by Dex. Further study revealed that Dex had no impact on the transcriptional activity of the DOT1L promoter, rather it reduced the mRNA level of DOT1L at the posttranscriptional level. In addition, knockdown of DOT1L remarkably inhibited the B-lymphoma cell growth. CONCLUSIONS Overall, our findings indicated that DOT1L may serve as a potential drug target and a promising biomarker of Dex sensitivity when it comes to treating B lymphoma.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Nan Zhang
- Department of HematologyPeople's Liberation Army the General Hospital of Western Theater CommandChengduChina
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Li Zhang
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Fengtian He
- Department of Biochemistry and Molecular BiologyCollege of Basic Medical Sciences, Army Medical UniversityChongqingChina
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| |
Collapse
|
3
|
Xu W, Ye J, Cao Z, Zhao Y, Zhu Y, Li L. Glucocorticoids in lung cancer: Navigating the balance between immunosuppression and therapeutic efficacy. Heliyon 2024; 10:e32357. [PMID: 39022002 PMCID: PMC11252876 DOI: 10.1016/j.heliyon.2024.e32357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.
Collapse
Affiliation(s)
| | | | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yupei Zhao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yimin Zhu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| |
Collapse
|
4
|
Legroux TM, Schymik HS, Gasparoni G, Mohammadi S, Walter J, Libert C, Diesel B, Hoppstädter J, Kiemer AK. Immunomodulation by glucocorticoid-induced leucine zipper in macrophages: enhanced phagocytosis, protection from pyroptosis, and altered mitochondrial function. Front Immunol 2024; 15:1396827. [PMID: 38855102 PMCID: PMC11157436 DOI: 10.3389/fimmu.2024.1396827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.
Collapse
Affiliation(s)
- Thierry M. Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Hanna S. Schymik
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Claude Libert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Britta Diesel
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Luo Y, Yang Z, Zhao X, Li D, Li Q, Wei Y, Wan L, Tian M, Kang P. Immune regulation enhances osteogenesis and angiogenesis using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA) delivery for osteonecrosis. Mater Today Bio 2024; 25:100976. [PMID: 38322659 PMCID: PMC10846409 DOI: 10.1016/j.mtbio.2024.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Osteonecrosis is a devastating orthopedic disease in clinic that generally occurs in the femoral head associating with corticosteroid use up to 49 % in patients. In particular, glucocorticoids induced osteonecrosis of the femoral head is closely related to the local immune response that characterized by abnormal macrophage activation and inflammatory cell infiltration at the necrotic site, forming a pro-inflammatory microenvironment dominated by M1 macrophages, and thus leads to failure of bone repair and regeneration. Here, we report a bone regeneration strategy that constructs an immune regulatory biomaterial platform using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA@Gel) delivery for osteonecrosis treatment. Li-nHA@Gel achieved a sustain and longterm release of Li ions, which might enhance M2 macrophage polarization through the activation of the JAK1/STAT6/STAT3 signaling pathway, and the following induced pro-repair immune microenvironment mediated the enhancement of the osteogenic and angiogenic differentiation. Moreover, both in vitro and in vivo studies indicated that Li-nHA@Gel enhanced M2 macrophage polarization, osteogenesis, and angiogenesis, and thus promoted the bone and blood vessel formation. Taken together, this novel bone immunomodulatory biomaterial platform that promotes bone regeneration by enhancing M2 macrophage polarization, osteogenesis, and angiogenesis could be a promising strategy for osteonecrosis treatment.
Collapse
Affiliation(s)
- Yue Luo
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 1 the South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Zhouyuan Yang
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xin Zhao
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Donghai Li
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianhao Li
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yang Wei
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Luyao Wan
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Pengde Kang
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
6
|
Zhang Y, Du C, Wang W, Qiao W, Li Y, Zhang Y, Sheng S, Zhou X, Zhang L, Fan H, Yu Y, Chen Y, Liao Y, Chen S, Chang Y. Glucocorticoids increase adiposity by stimulating Krüppel-like factor 9 expression in macrophages. Nat Commun 2024; 15:1190. [PMID: 38331933 PMCID: PMC10853261 DOI: 10.1038/s41467-024-45477-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Yinliang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Chunyuan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Wei Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yuhui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Sufang Sheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Xuenan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Lei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yong Chen
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China.
| | - Yongsheng Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Cheng Y, Chen H, Duan P, Zhang H, Yu Y, Yu J, Yu Z, Zheng L, Ye X, Pan Z. Early depletion of M1 macrophages retards the progression of glucocorticoid-associated osteonecrosis of the femoral head. Int Immunopharmacol 2023; 122:110639. [PMID: 37481850 DOI: 10.1016/j.intimp.2023.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Inflammation stands as a pivotal factor in the pathogenesis of glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). However, the vital role played by M1 macrophages, the principal constituents of the inflammatory process, remains largely underexplored. In this study, we employed reverse transcription-quantitative polymerase chain Reaction (RT-PCR), western blot, and flow cytometry to assess the impact of M1-conditioned medium on cultures of mouse bone marrow-derived mesenchymal stem cells (BMSCs) and Murine Long bone Osteocyte-Y4 (MLO-Y4) in vitro. Moreover, we quantified the levels of inflammatory cytokines in the M1-conditioned medium through the employment of an enzyme-linked immunosorbent assay (ELISA). For in vivo analysis, we examined M1 macrophages and investigated the NF-kB signaling pathway in specimens obtained from the femoral heads of animals and humans. We found that the number of M1 macrophages in the femoral head of GA-ONFH patients grew significantly, and in the mice remarkably increase, maintaining high levels in the intramedullary. In vitro, the M1 macrophage-conditioned medium elicited apoptosis in BMSCs and MLO-Y4 cells, shedding light on the intricate interplay between macrophages and these cell types. The presence of TNF-α within the M1-conditioned medium activated the NF-κB pathway, providing mechanistic insight into the apoptotic induction. Moreover, employing a robust rat macrophage clearance model and GA-ONFH model, we demonstrated a remarkable attenuation in TNF-α expression and NF-kB signaling subsequent to macrophage clearance. This pronounced reduction engenders diminished cellular apoptosis and engenders a decelerated trajectory of GA-ONFH progression. In conclusion, our study reveals the crucial involvement of M1 macrophages in the pathogenesis of GA-ONFH, highlighting their indispensable role in disease progression. Furthermore, early clearance emerges as a promising strategy for impeding the development of GA-ONFH.
Collapse
Affiliation(s)
- Yannan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hui Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yongle Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Jiadong Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zirui Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Lin Zheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Xin Ye
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
8
|
Kleeman SO, Thakir TM, Demestichas B, Mourikis N, Loiero D, Ferrer M, Bankier S, Riazat-Kesh YJ, Lee H, Chantzichristos D, Regan C, Preall J, Sinha S, Rosin N, Yipp B, de Almeida LG, Biernaskie J, Dufour A, Tober-Lau P, Ruusalepp A, Bjorkegren JL, Ralser M, Kurth F, Demichev V, Heywood T, Gao Q, Johannsson G, Koelzer VH, Walker BR, Meyer HV, Janowitz T. Cystatin C is glucocorticoid responsive, directs recruitment of Trem2+ macrophages, and predicts failure of cancer immunotherapy. CELL GENOMICS 2023; 3:100347. [PMID: 37601967 PMCID: PMC10435381 DOI: 10.1016/j.xgen.2023.100347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/23/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023]
Abstract
Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links GCs with CyC's systemic regulation by utilizing genome-wide association and structural equation modeling to determine CyC production genetics in the UK Biobank. Both CyC production and a polygenic score (PGS) capturing predisposition to CyC production were associated with increased all-cause and cancer-specific mortality. We found that the GC receptor directly targets CyC, leading to GC-responsive CyC secretion in macrophages and cancer cells. CyC-knockout tumors displayed significantly reduced growth and diminished recruitment of TREM2+ macrophages, which have been connected to cancer immunotherapy failure. Furthermore, the CyC-production PGS predicted checkpoint immunotherapy failure in 685 patients with metastatic cancer from combined clinical trial cohorts. In conclusion, CyC may act as a GC effector pathway via TREM2+ macrophage recruitment and may be a potential target for combination cancer immunotherapy.
Collapse
Affiliation(s)
- Sam O. Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Dominik Loiero
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sean Bankier
- BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | | | - Hassal Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dimitrios Chantzichristos
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology Diabetes and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Claire Regan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan Yipp
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G.N. de Almeida
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | - Johan L.M. Bjorkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Todd Heywood
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Qing Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gudmundur Johannsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology Diabetes and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Viktor H. Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Oncology and Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Brian R. Walker
- BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cancer Institute, Northwell Health, New Hyde Park, NY, USA
| |
Collapse
|
9
|
Trzaskalski NA, Vulesevic B, Nguyen MA, Jeraj N, Fadzeyeva E, Morrow NM, Locatelli CA, Travis N, Hanson AA, Nunes JR, O’Dwyer C, van der Veen JN, Lorenzen-Schmidt I, Seymour R, Pulente SM, Clément AC, Crawley AM, Jacobs RL, Doyle MA, Cooper CL, Kim KH, Fullerton MD, Mulvihill EE. Hepatocyte-derived DPP4 regulates portal GLP-1 bioactivity, modulates glucose production, and when absent influences NAFLD progression. JCI Insight 2023; 8:154314. [PMID: 36472923 PMCID: PMC9977314 DOI: 10.1172/jci.insight.154314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Elevated circulating dipeptidyl peptidase-4 (DPP4) is a biomarker for liver disease, but its involvement in gluconeogenesis and metabolic associated fatty liver disease progression remains unclear. Here, we identified that DPP4 in hepatocytes but not TEK receptor tyrosine kinase-positive endothelial cells regulates the local bioactivity of incretin hormones and gluconeogenesis. However, the complete absence of DPP4 (Dpp4-/-) in aged mice with metabolic syndrome accelerates liver fibrosis without altering dyslipidemia and steatosis. Analysis of transcripts from the livers of Dpp4-/- mice displayed enrichment for inflammasome, p53, and senescence programs compared with littermate controls. High-fat, high-cholesterol feeding decreased Dpp4 expression in F4/80+ cells, with only minor changes in immune signaling. Moreover, in a lean mouse model of severe nonalcoholic fatty liver disease, phosphatidylethanolamine N-methyltransferase mice, we observed a 4-fold increase in circulating DPP4, in contrast with previous findings connecting DPP4 release and obesity. Last, we evaluated DPP4 levels in patients with hepatitis C infection with dysglycemia (Homeostatic Model Assessment of Insulin Resistance > 2) who underwent direct antiviral treatment (with/without ribavirin). DPP4 protein levels decreased with viral clearance; DPP4 activity levels were reduced at long-term follow-up in ribavirin-treated patients; but metabolic factors did not improve. These data suggest elevations in DPP4 during hepatitis C infection are not primarily regulated by metabolic disturbances.
Collapse
Affiliation(s)
- Natasha A. Trzaskalski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Branka Vulesevic
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Natasha Jeraj
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Evgenia Fadzeyeva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Nadya M. Morrow
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Cassandra A.A. Locatelli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Nicole Travis
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Antonio A. Hanson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Julia R.C. Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Conor O’Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Jelske N. van der Veen
- Li Ka Shing (LKS) Centre for Health Research Innovation, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - Rick Seymour
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Serena M. Pulente
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Andrew C. Clément
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - René L. Jacobs
- Li Ka Shing (LKS) Centre for Health Research Innovation, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Mary-Anne Doyle
- Division of Endocrinology & Metabolism, Department of Medicine
| | - Curtis L. Cooper
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Infectious Diseases, Department of Medicine, and
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Montréal Diabetes Research Group, Montréal, Québec, Canada
| |
Collapse
|
10
|
Komatsu T, Abe S, Nakashima S, Sasaki K, Higaki Y, Saku K, Miura SI, Uehara Y. Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Phosphate Accelerates Cellular Cholesterol Efflux in THP-1 Cells. Biomolecules 2023; 13:228. [PMID: 36830597 PMCID: PMC9953524 DOI: 10.3390/biom13020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cholesterol efflux is a major atheroprotective function of high-density lipoproteins (HDLs) which removes cholesterol from the foam cells of lipid-rich plaques in Type 2 diabetes. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin phosphate increases plasma glucagon-like peptide-1 (GLP-1) concentrations and is used to treat Type 2 diabetes. GLP-1 plays an important role in regulating insulin secretion and expression via the GLP-1 receptor (GLP-1R), which is expressed in pancreatic islets as well as freshly isolated human monocytes and THP-1 cells. Here, we identified a direct role of GLP-1 and DPP-4 inhibition in HDL function. Cholesterol efflux was measured in cultivated phorbol 12-myristate 13-acetate-treated THP-1 cells radiolabeled with 3H-cholesterol and stimulated with liver X receptor/retinoid X receptor agonists. Contrary to vildagliptin, sitagliptin phosphate together with GLP-1 significantly (p < 0.01) elevated apolipoprotein (apo)A1-mediated cholesterol efflux in a dose-dependent manner. The sitagliptin-induced increase in cholesterol efflux did not occur in the absence of GLP-1. In contrast, adenosine triphosphate-binding cassette transporter A1 (ABCA1) mRNA and protein expressions in the whole cell fraction were not changed by sitagliptin in the presence of GLP-1, although sitagliptin treatment significantly increased ABCA1 protein expression in the membrane fraction. Furthermore, the sitagliptin-induced, elevated efflux in the presence of GLP-1 was significantly decreased by a GLP-1R antagonist, an effect that was not observed with a protein kinase A inhibitor. To our knowledge, the present study reports for the first time that sitagliptin elevates cholesterol efflux in cultivated macrophages and may exert anti-atherosclerotic actions that are independent of improvements in glucose metabolism. Our results suggest that sitagliptin enhances HDL function by inducing a de novo HDL synthesis via cholesterol efflux.
Collapse
Affiliation(s)
- Tomohiro Komatsu
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Satomi Abe
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Shihoko Nakashima
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Kei Sasaki
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Yasuki Higaki
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Shin-ichiro Miura
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Yoshinari Uehara
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
11
|
Tao Y, Jiang Q, Wang Q. Adipose tissue macrophages in remote modulation of hepatic glucose production. Front Immunol 2022; 13:998947. [PMID: 36091076 PMCID: PMC9449693 DOI: 10.3389/fimmu.2022.998947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic glucose production (HGP) is fine-regulated via glycogenolysis or gluconeogenesis to maintain physiological concentration of blood glucose during fasting-feeding cycle. Aberrant HGP leads to hyperglycemia in obesity-associated diabetes. Adipose tissue cooperates with the liver to regulate glycolipid metabolism. During these processes, adipose tissue macrophages (ATMs) change their profiles with various physio-pathological settings, producing diverse effects on HGP. Here, we briefly review the distinct phenotypes of ATMs under different nutrition states including feeding, fasting or overnutrition, and detail their effects on HGP. We discuss several pathways by which ATMs regulate hepatic gluconeogenesis or glycogenolysis, leading to favorable or unfavorable metabolic consequences. Furthermore, we summarize emerging therapeutic targets to correct metabolic disorders in morbid obesity or diabetes based on ATM-HGP axis. This review puts forward the importance and flexibility of ATMs in regulating HGP, proposing ATM-based HGP modulation as a potential therapeutic approach for obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
| | | | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines 2022; 10:biomedicines10082026. [PMID: 36009573 PMCID: PMC9406088 DOI: 10.3390/biomedicines10082026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
DPP4/CD26 is a single-pass transmembrane protein with multiple functions on glycemic control, cell migration and proliferation, and the immune system, among others. It has recently acquired an especial relevance due to the possibility to act as a receptor or co-receptor for SARS-CoV-2, as it has been already demonstrated for other coronaviruses. In this review, we analyze the evidence for the role of DPP4 on COVID-19 risk and clinical outcome, and its contribution to COVID-19 physiopathology. Due to the pathogenetic links between COVID-19 and diabetes mellitus and the hyperinflammatory response, with the hallmark cytokine storm developed very often during the disease, we dive deep into the functions of DPP4 on carbohydrate metabolism and immune system regulation. We show that the broad spectrum of functions regulated by DPP4 is performed both as a protease enzyme, as well as an interacting partner of other molecules on the cell surface. In addition, we provide an update of the DPP4 inhibitors approved by the EMA and/or the FDA, together with the newfangled approval of generic drugs (in 2021 and 2022). This review will also cover the effects of DPP4 inhibitors (i.e., gliptins) on the progression of SARS-CoV-2 infection, showing the role of DPP4 in this disturbing disease.
Collapse
|
13
|
Morrow NM, Mulvihill EE. Open Chromatin State of Dpp4 With Glucocorticoid Treatment-Setting up Shop for Metasteroid Diabetes? Endocrinology 2022; 163:6409791. [PMID: 34694370 PMCID: PMC8577567 DOI: 10.1210/endocr/bqab220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 12/03/2022]
Affiliation(s)
- Nadya M Morrow
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, K1H 8M5, Canada
- The University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Erin E Mulvihill
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, K1H 8M5, Canada
- The University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada
- Montreal Diabetes Research Group, Montreal, Quebec H2X 0A9, Canada
- Correspondence: Erin E. Mulvihill, PhD, University of Ottawa Heart Institute, 40 Ruskin St, H-3229A, Ottawa, Ontario, K1Y 4W7, Canada.
| |
Collapse
|
14
|
Uto A, Miyashita K, Endo S, Sato M, Ryuzaki M, Kinouchi K, Mitsuishi M, Meguro S, Itoh H. Transient Dexamethasone Loading Induces Prolonged Hyperglycemia in Male Mice With Histone Acetylation in Dpp-4 Promoter. Endocrinology 2021; 162:6364113. [PMID: 34480538 PMCID: PMC8475716 DOI: 10.1210/endocr/bqab193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Glucocorticoid causes hyperglycemia, which is common in patients with or without diabetes. Prolonged hyperglycemia can be experienced even after the discontinuation of glucocorticoid use. In the present study, we examined the time course of blood glucose level in hospital patients who received transient glucocorticoid treatment. In addition, the mechanism of prolonged hyperglycemia was investigated by using dexamethasone (Dexa)-treated mice and cultured cells. The blood glucose level in glucose tolerance tests, level of insulin and glucagon-like peptide 1 (GLP-1), and the activity of dipeptidyl peptidase 4 (DPP-4) were examined during and after Dexa loading in mice, with histone acetylation level of the promoter region. Mice showed prolonged hyperglycemia during and after transient Dexa loading accompanied by persistently lower blood GLP-1 level and higher activity of DPP-4. The expression level of Dpp-4 was increased in the mononuclear cells and the promoter region of Dpp-4 was hyperacetylated during and after the transient Dexa treatment. In vitro experiments also indicated development of histone hyperacetylation in the Dpp-4 promoter region during and after Dexa treatment. The upregulation of Dpp-4 in cultured cells was significantly inhibited by a histone acetyltransferase inhibitor. Moreover, the histone hyperacetylation induced by Dexa was reversible by treatment with a sirtuin histone deacetylase activator, nicotinamide mononucleotide. We identified persistent reduction in blood GLP-1 level with hyperglycemia during and after Dexa treatment in mice, associated with histone hyperacetylation of promoter region of Dpp-4. The results unveil a novel mechanism of glucocorticoid-induced hyperglycemia, and suggest therapeutic intervention through epigenetic modification of Dpp-4.
Collapse
Affiliation(s)
- Asuka Uto
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Kazutoshi Miyashita
- Correspondence: Kazutoshi Miyashita, MD, Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Sho Endo
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Masaaki Sato
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Masaki Ryuzaki
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Kenichiro Kinouchi
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Masanori Mitsuishi
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Shu Meguro
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Keio University, School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
15
|
Guo Y, Su A, Tian H, Ding M, Wang Y, Tian Y, Li K, Sun G, Jiang R, Han R, Kang X, Yan F. TMT-based quantitative proteomic analysis reveals the spleen regulatory network of dexamethasone-induced immune suppression in chicks. J Proteomics 2021; 248:104353. [PMID: 34418580 DOI: 10.1016/j.jprot.2021.104353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Stress-induced immunosuppression is one of the most widespread problems in the poultry industry. Understanding the molecular regulatory mechanism of immunosuppression induced by stress in the chicken spleen would provide a scientific foundation for the prevention of stress reactions and antistress molecular breeding in poultry. To assess the protein expression profile of spleen tissue in a stress-included immunosuppression model, we performed a TMT-based proteomic analysis of chicken spleen tissue in a Dex-induced immunosuppression model (group C) and a control group (group A). We identified 590 differentially abundant proteins (DAPs) in chicken spleen tissue. These DAPs were significantly enriched in the following functional categories: ECM-receptor interaction, DNA replication, p53 signaling pathway, PI3K-Akt signaling pathway and NF-kappa B signaling pathway. Integrative analysis of the proteome and our previous transcriptome data revealed 62 DAPs showing correlations with the expression of their encoding mRNAs. Complementary proteome- and transcriptome-level analyses revealed a complex molecular network of stress-included immunosuppression. DPP4 and ALDH1A3 were the most significantly upregulated DAPs. GBP and OASL were identified as important nodes in the network related to stress-induced immunosuppression. The candidate genes identified in this study may be useful for the marker-based breeding of new chicken varieties with reduced stress levels. SIGNIFICANCE: This study provides a large amount of new information about the spleen proteome of the Dex-induced immunosuppression in chicks, as well as the correlation of transcriptome and proteome. Analysis of this resource has enabled us to examine mechanism of protein and transcript diversification, which expands the understanding of the complexity of the mechanism of stress-induced immunosuppression.
Collapse
Affiliation(s)
- Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Aru Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Mengxia Ding
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanbin Wang
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China.
| | - Fengbin Yan
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou 450046, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
16
|
Glucocorticoid circadian rhythms in immune function. Semin Immunopathol 2021; 44:153-163. [PMID: 34580744 DOI: 10.1007/s00281-021-00889-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/15/2023]
Abstract
Adrenal glucocorticoid (GC) hormones are important regulators of energy metabolism, brain functions, and the immune system. Their release follows robust diurnal rhythms and GCs themselves serve as entrainment signals for circadian clocks in various tissues. In the clinics, synthetic GC analogues are widely used as immunosuppressive drugs. GC inhibitory effects on the immune system are well documented and include suppression of cytokines and increased immune cell death. However, the circadian dynamics of GC action are often neglected. Synthetic GC medications fail to mimic complex GC natural rhythms. Several recent publications have shown that endogenous GCs and their daily concentration rhythms prepare the immune system to face anticipated environmental threats. That includes migration patterns that direct specific cell population to organs and tissues best exemplified by the rhythmic expression of chemoattractants and their receptors. On the other hand, chronotherapeutic approaches may benefit the treatment of immunological diseases such as asthma. In this review, we summarise our current knowledge on the circadian regulation of GCs, their role in innate and adaptive immune functions and the implications for the clinics.
Collapse
|
17
|
Christakoudi S, Tsilidis KK, Evangelou E, Riboli E. A Body Shape Index (ABSI), hip index, and risk of cancer in the UK Biobank cohort. Cancer Med 2021; 10:5614-5628. [PMID: 34196490 PMCID: PMC8366087 DOI: 10.1002/cam4.4097] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Abdominal size is associated positively with the risk of some cancers but the influence of body mass index (BMI) and gluteofemoral size is unclear because waist and hip circumference are strongly correlated with BMI. We examined associations of 33 cancers with A Body Shape Index (ABSI) and hip index (HI), which are independent of BMI by design, and compared these with waist and hip circumference, using multivariable Cox proportional hazards models in UK Biobank. During a mean follow-up of 7 years, 14,682 incident cancers were ascertained in 200,289 men and 12,965 cancers in 230,326 women. In men, ABSI was associated positively with cancers of the head and neck (hazard ratio HR = 1.14; 95% confidence interval 1.03-1.26 per one standard deviation increment), esophagus (adenocarcinoma, HR = 1.27; 1.12-1.44), gastric cardia (HR = 1.31; 1.07-1.61), colon (HR = 1.18; 1.10-1.26), rectum (HR = 1.13; 1.04-1.22), lung (adenocarcinoma, HR = 1.16; 1.03-1.30; squamous cell carcinoma [SCC], HR = 1.33; 1.17-1.52), and bladder (HR = 1.15; 1.04-1.27), while HI was associated inversely with cancers of the esophagus (adenocarcinoma, HR = 0.89; 0.79-1.00), gastric cardia (HR = 0.79; 0.65-0.96), colon (HR = 0.92; 0.86-0.98), liver (HR = 0.86; 0.75-0.98), and multiple myeloma (HR = 0.86; 0.75-1.00). In women, ABSI was associated positively with cancers of the head and neck (HR = 1.27; 1.10-1.48), esophagus (SCC, HR = 1.37; 1.07-1.76), colon (HR = 1.08; 1.01-1.16), lung (adenocarcinoma, HR = 1.17; 1.06-1.29; SCC, HR = 1.40; 1.20-1.63; small cell, HR = 1.39; 1.14-1.69), kidney (clear-cell, HR = 1.25; 1.03-1.50), and post-menopausal endometrium (HR = 1.11; 1.02-1.20), while HI was associated inversely with skin SCC (HR = 0.91; 0.83-0.99), post-menopausal kidney cancer (HR = 0.77; 0.67-0.88), and post-menopausal melanoma (HR = 0.90; 0.83-0.98). Unusually, ABSI was associated inversely with melanoma in men (HR = 0.89; 0.82-0.96) and pre-menopausal women (HR = 0.77; 0.65-0.91). Waist and hip circumference reflected associations with BMI, when examined individually, and provided biased risk estimates, when combined with BMI. In conclusion, preferential positive associations of ABSI or inverse of HI with several major cancers indicate an important role of factors determining body shape in cancer development.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonNorfolk Place, LondonUK
- MRC Centre for TransplantationKing’s College LondonLondonUK
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonNorfolk Place, LondonUK
- Department of Hygiene and EpidemiologyUniversity of Ioannina School of MedicineIoanninaGreece
| | - Evangelos Evangelou
- Department of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonNorfolk Place, LondonUK
- Department of Hygiene and EpidemiologyUniversity of Ioannina School of MedicineIoanninaGreece
| | - Elio Riboli
- Department of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonNorfolk Place, LondonUK
| |
Collapse
|
18
|
Wang S, Zhang X, Leng S, Zhang Y, Li J, Peng J, Zhou Z, Feng Q, Hu X. SIRT1 single-nucleotide polymorphisms are associated with corticosteroid sensitivity in primary immune thrombocytopenia patients. Ann Hematol 2021; 100:2453-2462. [PMID: 34269838 DOI: 10.1007/s00277-021-04583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by decreased platelet count. While corticosteroids are a useful first-line therapy for ITP patients, their long-term effectiveness is limited, and the determinants of corticosteroid sensitivity in ITP patients remain largely unknown. Sirtuin 1 (SIRT1), a member of the mammalian sirtuin family, is related to the anti-inflammatory effects of corticosteroids. Here, we investigate the contribution of the SIRT1 single-nucleotide polymorphisms (SNPs) rs12778366 and rs4746720 to ITP susceptibility. METHODS We recruited 330 ITP patients and 309 healthy controls from Han population, and performed genotyping of SIRT1 rs12778366 and rs4746720 using a MassARRAY system. The results were validated in another 55 ITP patients from ethnic minorities. RESULTS Using clinical data of patients and controls from Han polulation, including corticosteroid sensitivity, susceptibility, refractoriness, and severity, our results revealed that the CC/TC genotypes of SIRT1 rs12778366 were associated with a 2.034-fold increased risk of corticosteroid resistance compared to the homozygous major TT genotype (dominant, CC/TC vs. TT, OR = 2.034, 95% CI = 1.039-3.984, p = 0.038). In contrast, the CC/CT genotype of SIRT1 rs4746720 showed a 0.560-fold decreased risk of corticosteroid resistance (dominant, 95% CI = 0.321-0.976, OR = 0.560, p = 0.041). The C allele substitute in SIRT1 rs12778366 was significantly associated with the corticosteroid sensitivity of ITP patients (p = 0.021). The similar results were obtained in minority ITP patients. CONCLUSION This study indicates that SIRT1 rs12778366 and rs4746720 may be genetic factors related to corticosteroid sensitivity in ITP patients.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanqi Zhang
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ju Li
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zeping Zhou
- Department of Hematology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiang Hu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
19
|
Diaz-Jimenez D, Kolb JP, Cidlowski JA. Glucocorticoids as Regulators of Macrophage-Mediated Tissue Homeostasis. Front Immunol 2021; 12:669891. [PMID: 34079551 PMCID: PMC8165320 DOI: 10.3389/fimmu.2021.669891] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Our immune system has evolved as a complex network of cells and tissues tasked with maintaining host homeostasis. This is evident during the inflammatory responses elicited during a microbial infection or traumatic tissue damage. These responses seek to eliminate foreign material or restore tissue integrity. Even during periods without explicit disturbances, the immune system plays prominent roles in tissue homeostasis. Perhaps one of the most studied cells in this regard is the macrophage. Tissue-resident macrophages are a heterogenous group of sensory cells that respond to a variety of environmental cues and are essential for organ function. Endogenously produced glucocorticoid hormones connect external environmental stress signals with the function of many cell types, producing profound changes in immune cells, including macrophages. Here, we review the current literature which demonstrates specific effects of glucocorticoids in several organ systems. We propose that tissue-resident macrophages, through glucocorticoid signaling, may play an underappreciated role as regulators of organ homeostasis.
Collapse
Affiliation(s)
- David Diaz-Jimenez
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Joseph P Kolb
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
20
|
Buttgereit F. Glucocorticoids: surprising new findings on their mechanisms of actions. Ann Rheum Dis 2021; 80:137-139. [PMID: 33162396 DOI: 10.1136/annrheumdis-2020-218798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Frank Buttgereit
- Charité University Medicine, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| |
Collapse
|
21
|
Mao X, Yang X, Chen X, Yu S, Yu S, Zhang B, Ji Y, Chen Y, Ouyang Y, Luo W. Single-cell transcriptome analysis revealed the heterogeneity and microenvironment of gastrointestinal stromal tumors. Cancer Sci 2021; 112:1262-1274. [PMID: 33393143 PMCID: PMC7935798 DOI: 10.1111/cas.14795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract. In this study, we performed single-cell RNA sequencing (RNA-seq) on intra- and peri-tumor tissues from GIST patients with the aim of discovering the heterogeneity of tumor cells in GIST and their interactions with other cells. We found four predominating cell types in GIST tumor tissue, including T cells, macrophages, tumor cells, and NK cells. Tumor cells could be clustered into two groups: one was highly proliferating and associated with high risk of metastasis, the other seemed "resting" and associated with low risk. Their clinical relevance and prognostic values were confirmed by RNA-seq of 65 GIST samples. T cells were the largest cell type in our single-cell data. Two groups of CD8+ effector memory (EM) cells were in the highest clonal expansion and performed the highest cytotoxicity but were also the most exhausted among all T cells. A group of macrophages were found polarized to possess both M1 and M2 signatures, and increased along with tumor progression. Cell-to-cell interaction analysis revealed that adipose endothelial cells had high interactions with tumor cells to facilitate their progression. Macrophages were at the center of the tumor microenvironment, recruiting immune cells to the tumor site and having most interactions with both tumor and nontumor cells. In conclusion, we obtained an overview of the GIST microenvironment and revealed the heterogeneity of each cell type and their relevance to risk classifications, which provided a novel theoretical basis for learning and curing GISTs.
Collapse
Affiliation(s)
- Xiaofan Mao
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Xuezhu Yang
- Gastroenterology, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Xiangping Chen
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Sifei Yu
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Si Yu
- Gastroenterology, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Beiying Zhang
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Yong Ji
- Gastroenterology, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Yihao Chen
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Ying Ouyang
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| |
Collapse
|
22
|
Cao F, Wu K, Zhu YZ, Bao ZW. Roles and Mechanisms of Dipeptidyl Peptidase 4 Inhibitors in Vascular Aging. Front Endocrinol (Lausanne) 2021; 12:731273. [PMID: 34489872 PMCID: PMC8416540 DOI: 10.3389/fendo.2021.731273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular aging is characterized by alterations in the constitutive properties and biological functions of the blood vessel wall. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are indispensability elements in the inner layer and the medial layer of the blood vessel wall, respectively. Dipeptidyl peptidase-4 (DPP4) inhibitors, as a hypoglycemic agent, play a protective role in reversing vascular aging regardless of their effects in meliorating glycemic control in humans and animal models of type 2 diabetes mellitus (T2DM) through complex cellular mechanisms, including improving EC dysfunction, promoting EC proliferation and migration, alleviating EC senescence, obstructing EC apoptosis, suppressing the proliferation and migration of VSMCs, increasing circulating endothelial progenitor cell (EPC) levels, and preventing the infiltration of mononuclear macrophages. All of these showed that DPP4 inhibitors may exert a positive effect against vascular aging, thereby preventing vascular aging-related diseases. In the current review, we will summarize the cellular mechanism of DPP4 inhibitors regulating vascular aging; moreover, we also intend to compile the roles and the promising therapeutic application of DPP4 inhibitors in vascular aging-related diseases.
Collapse
Affiliation(s)
- Fen Cao
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
| | - Kun Wu
- Department of Neurology, Huaihua First People’s Hospital, Huaihua, China
| | - Yong-Zhi Zhu
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
| | - Zhong-Wu Bao
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
- *Correspondence: Zhong-Wu Bao,
| |
Collapse
|
23
|
Cheng G, Gao J, Wang L, Ding Y, Wu Q, Wang Q, Xiao J, Wang S. The TGF-β1/COX-2-dependant pathway serves a key role in the generation of OKC-induced M2-polarized macrophage-like cells and angiogenesis. Oncol Lett 2020; 20:39. [PMID: 32788934 PMCID: PMC7416411 DOI: 10.3892/ol.2020.11900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022] Open
Abstract
An odontogenic keratocyst (OKC) is a common oral cyst arising from the odontogenic epithelium, which has the characteristics of a tumor. Previous studies have demonstrated that M2-polarized macrophages and angiogenesis have important roles in the progression of OKCs. As transforming growth factor (TGF)-β1 is important in growth and developmental processes, and early studies have indicated that TGF-β1 is upregulated in OKCs, the present study aimed to investigate the expression levels of TGF-β1 as a first step. Flow cytometric analysis suggested that TGF-β1 induced M2-polarization of macrophages in a dose-dependent manner. Expression levels of cyclooxygenase (COX)-1 and −2 were measured after treatment of M2 macrophages with TGF-β1 and OKC homogenate supernatant. COX-2 expression was influenced by TGF-β1 in a concentration-dependent manner and in OKC induction. In addition, inhibition of COX-2 resulted in the induction of M2-polarization of macrophages via TGF-β1 and OKC disruption. Because the extracellular matrix (ECM) is altered in individuals with chronic diseases, the present study analyzed the expression of matrix metalloproteinase (MMP)-9, which is able to degrade the ECM. The present study observed a decrease in MMP-9 activity following treatment with TGF-β1 and OKC homogenate supernatant. Additionally, the present study analyzed tube formation caused by OKC with or without a COX-2 inhibitor. The results of the present study suggested that angiogenesis increased following treatment with OKC homogenate supernatant but decreased after treatment with a COX-2 inhibitor. These findings indicated that the TGF-β1/COX-2 pathway may have an important role in the progression of OKC.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jinxing Gao
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Lianfei Wang
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Department of Stomatology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yude Ding
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qian Wu
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Quanbing Wang
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jialing Xiao
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
24
|
Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin Epigenetics 2020; 12:118. [PMID: 32758273 PMCID: PMC7404079 DOI: 10.1186/s13148-020-00912-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are highly diverse single-stranded RNA viruses owing to their susceptibility to numerous genomic mutations and recombination. Such viruses involve human and animal pathogens including the etiologic agents of acute respiratory tract illnesses: severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the highly morbific SARS-CoV-2. Coronavirus disease 2019 (COVID-19), an emerging disease with a quick rise in infected cases and deaths, was recently identified causing a worldwide pandemic. COVID-19 disease outcomes were found to increase in elderly and patients with a compromised immune system. Evidences indicated that the main culprit behind COVID-19 deaths is the cytokine storm, which is illustrated by an uncontrolled over-production of soluble markers of inflammation. The regulation process of coronavirus pathogenesis through molecular mechanism comprise virus-host interactions linked to viral entry, replication and transcription, escape, and immune system control. Recognizing coronavirus infections and COVID-19 through epigenetics lens will lead to potential alteration in gene expression thus limiting coronavirus infections. Focusing on epigenetic therapies reaching clinical trials, clinically approved epigenetic-targeted agents, and combination therapy of antivirals and epigenetic drugs is currently considered an effective and valuable approach for viral replication and inflammatory overdrive control.
Collapse
|
25
|
Cain DW, Bortner CD, Diaz-Jimenez D, Petrillo MG, Gruver-Yates A, Cidlowski JA. Murine Glucocorticoid Receptors Orchestrate B Cell Migration Selectively between Bone Marrow and Blood. THE JOURNAL OF IMMUNOLOGY 2020; 205:619-629. [PMID: 32571841 DOI: 10.4049/jimmunol.1901135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
Glucocorticoids promote CXCR4 expression by T cells, monocytes, macrophages, and eosinophils, but it is not known if glucocorticoids regulate CXCR4 in B cells. Considering the important contributions of CXCR4 to B cell development and function, we investigated the glucocorticoid/CXCR4 axis in mice. We demonstrate that glucocorticoids upregulate CXCR4 mRNA and protein in mouse B cells. Using a novel strain of mice lacking glucocorticoid receptors (GRs) specifically in B cells, we show that reduced CXCR4 expression associated with GR deficiency results in impaired homing of mature B cells to bone marrow, whereas migration to other lymphoid tissues is independent of B cell GRs. The exchange of mature B cells between blood and bone marrow is sensitive to small, physiologic changes in glucocorticoid activity, as evidenced by the lack of circadian rhythmicity in GR-deficient B cell counts normally associated with diurnal patterns of glucocorticoid secretion. B cellGRKO mice mounted normal humoral responses to immunizations with T-dependent and T-independent (Type 1) Ags, but Ab responses to a multivalent T-independent (Type 2) Ag were impaired, a surprise finding considering the immunosuppressive properties commonly attributed to glucocorticoids. We propose that endogenous glucocorticoids regulate a dynamic mode of B cell migration specialized for rapid exchange between bone marrow and blood, perhaps as a means to optimize humoral immunity during diurnal periods of activity.
Collapse
Affiliation(s)
- Derek W Cain
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - David Diaz-Jimenez
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Maria G Petrillo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Amanda Gruver-Yates
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709
| |
Collapse
|
26
|
Trzaskalski NA, Fadzeyeva E, Mulvihill EE. Dipeptidyl Peptidase-4 at the Interface Between Inflammation and Metabolism. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551420912972. [PMID: 32231442 PMCID: PMC7088130 DOI: 10.1177/1179551420912972] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a serine protease that rapidly inactivates the incretin peptides, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptide to modulate postprandial islet hormone secretion and glycemia. Dipeptidyl peptidase-4 also has nonglycemic effects by controlling the progression of inflammation, which may be mediated more through direct protein-protein interactions than catalytic activity in the context of nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes (T2D). Failure to resolve inflammation resulting in chronic subclinical activation of the immune system may influence the development of metabolic dysregulation. Thus, through both its cleavage and regulation of the bioactivity of peptide hormones and its influence on inflammation, DPP4 exhibits a diverse array of effects that can influence the progression of metabolic disease. Here, we highlight our current understanding of the complex biology of DPP4 at the intersection of inflammation, obesity, T2D, and NAFLD. We compare and review new mechanisms identified in basic laboratory and clinical studies, which may have therapeutic application and relevance to the pathogenesis of obesity and T2D.
Collapse
Affiliation(s)
- Natasha A Trzaskalski
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Evgenia Fadzeyeva
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Perna-Barrull D, Gieras A, Rodriguez-Fernandez S, Tolosa E, Vives-Pi M. Immune System Remodelling by Prenatal Betamethasone: Effects on β-Cells and Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:540. [PMID: 32849311 PMCID: PMC7431597 DOI: 10.3389/fendo.2020.00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 01/11/2023] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial disease of unknown aetiology. Studies focusing on environment-related prenatal changes, which might have an influence on the development of T1D, are still missing. Drugs, such as betamethasone, are used during this critical period without exploring possible effects later in life. Betamethasone can interact with the development and function of the two main players in T1D, the immune system and the pancreatic β-cells. Short-term or persistent changes in any of these two players may influence the initiation of the autoimmune reaction against β-cells. In this review, we focus on the ability of betamethasone to induce alterations in the immune system, impairing the recognition of autoantigens. At the same time, betamethasone affects β-cell gene expression and apoptosis rate, reducing the danger signals that will attract unwanted attention from the immune system. These effects may synergise to hinder the autoimmune attack. In this review, we compile scattered evidence to provide a better understanding of the basic relationship between betamethasone and T1D, laying the foundation for future studies on human cohorts that will help to fully grasp the role of betamethasone in the development of T1D.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
- *Correspondence: Marta Vives-Pi
| |
Collapse
|