1
|
Kahali S, Das SK, Kumar R, Gupta K, Kundu R, Bhattacharya B, Nath A, Venkatramani R, Datta A. A water-soluble, cell-permeable Mn(ii) sensor enables visualization of manganese dynamics in live mammalian cells. Chem Sci 2024; 15:10753-10769. [PMID: 39027293 PMCID: PMC11253179 DOI: 10.1039/d4sc00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Central roles of Mn2+ ions in immunity, brain function, and photosynthesis necessitate probes for tracking this essential metal ion in living systems. However, developing a cell-permeable, fluorescent sensor for selective imaging of Mn2+ ions in the aqueous cellular milieu has remained a challenge. This is because Mn2+ is a weak binder to ligand-scaffolds and Mn2+ ions quench fluorescent dyes leading to turn-off sensors that are not applicable for in vivo imaging. Sensors with a unique combination of Mn2+ selectivity, μM sensitivity, and response in aqueous media are necessary for not only visualizing labile cellular Mn2+ ions live, but also for measuring Mn2+ concentrations in living cells. No sensor has achieved this combination thus far. Here we report a novel, completely water-soluble, reversible, fluorescent turn-on, Mn2+ selective sensor, M4, with a K d of 1.4 μM for Mn2+ ions. M4 entered cells within 15 min of direct incubation and was applied to image Mn2+ ions in living mammalian cells in both confocal fluorescence intensity and lifetime-based set-ups. The probe was able to visualize Mn2+ dynamics in live cells revealing differential Mn2+ localization and uptake dynamics under pathophysiological versus physiological conditions. In a key experiment, we generated an in-cell Mn2+ response curve for the sensor which allowed the measurement of the endogenous labile Mn2+ concentration in HeLa cells as 1.14 ± 0.15 μM. Thus, our computationally designed, selective, sensitive, and cell-permeable sensor with a 620 nM limit of detection for Mn2+ in water provides the first estimate of endogenous labile Mn2+ levels in mammalian cells.
Collapse
Affiliation(s)
- Smitaroopa Kahali
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Sujit Kumar Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Ravinder Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Rajasree Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Baivabi Bhattacharya
- Department of Developmental Biology and Genetics, Indian Institute of Science Bangalore 560012 India
| | - Arnab Nath
- Department of Developmental Biology and Genetics, Indian Institute of Science Bangalore 560012 India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| |
Collapse
|
2
|
Wang M, Li B, Meng W, Chen Y, Liu H, Zhang Z, Li L. System Xc - exacerbates metabolic stress under glucose depletion in oral squamous cell carcinoma. Oral Dis 2024; 30:2952-2964. [PMID: 37856618 DOI: 10.1111/odi.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Emerging evidence suggests that glucose depletion (GD)-induced cell death depends on system Xc-, a glutamate/cystine antiporter extensively studied in ferroptosis. However, the underlying mechanism remains debated. Our study confirmed the correlation between system Xc- and GD-induced cell death and provided a strategic treatment for oral squamous cell carcinoma (OSCC). METHODS qPCR and Western blotting were performed to detect changes in xCT and CD98 expression after glucose withdrawal. Then, the cell viability of OSCCs under the indicated conditions was measured. To identify the GD-responsible transcriptional factors of SLC7A11, we performed a luciferase reporter assay and a ChIP assay. Further, metabolomics was conducted to identify changes in metabolites. Finally, mitochondrial function and ATP production were evaluated using the seahorse assay, and NADP+/NADPH dynamics were measured using a NADP+/NADPH kit. RESULTS In OSCCs, system Xc- promoted GD-induced cell death by increasing glutamate consumption, which promoted NADPH exhaustion and TCA blockade. Moreover, GD-induced xCT upregulation was governed by the p-eIF2α/ATF4 axis. CONCLUSIONS System Xc- overexpression compromised the metabolic flexibility of OSCC under GD conditions, and thus, glucose starvation therapy is effective for killing OSCC cells.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bo Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yafei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
McLeod MJ, Holyoak T. Biochemical, structural, and kinetic characterization of PP i -dependent phosphoenolpyruvate carboxykinase from Propionibacterium freudenreichii. Proteins 2023; 91:1261-1275. [PMID: 37226637 DOI: 10.1002/prot.26513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.
Collapse
Affiliation(s)
- Matthew J McLeod
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Abate E, Mehdi M, Addisu S, Degef M, Tebeje S, Kelemu T. Emerging roles of cytosolic phosphoenolpyruvate kinase 1 (PCK1) in cancer. Biochem Biophys Rep 2023; 35:101528. [PMID: 37637941 PMCID: PMC10457690 DOI: 10.1016/j.bbrep.2023.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Although it was traditionally believed that gluconeogenesis enzymes were absent from cancers that did not originate in gluconeogenic organs, numerous investigations have shown that they are functionally expressed in a variety of tumors as mediators of shortened forms of Gluconeogenesis. One of the isomers of PEPCK, the first-rate limiting enzyme in gluconeogenesis, is PCK 1, which catalyzes the conversion of oxaloacetate (OAA) and GTP into PEP, CO2, and GDP. It is also known as PEPCK-C or PCK1, and it is cytosolic. Despite being paradoxical, it has been demonstrated that, in addition to its enzymatic role in normal metabolism, this enzyme also plays a role in tumors that arise in gluconeogenic and non-gluconeogenic organs. According to newly available research, it has metabolic and non-metabolic roles in tumor progression and development. Thus, this review will give insight into PCK1 relationship, function, and mechanism in or with different types of cancer using contemporary findings.
Collapse
Affiliation(s)
- Ebsitu Abate
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Addisu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Maria Degef
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
6
|
Yin X, Qiu L, Long D, Lv Z, Liu Q, Wang S, Zhang W, Zhang K, Xie M. The ancient CgPEPCK-1, not CgPECK-2, evolved into a multifunctional molecule as an intracellular enzyme and extracellular PRR. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104722. [PMID: 37116769 DOI: 10.1016/j.dci.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a well-known lyase involved in gluconeogenesis, while their evolution and function differentiation have not been fully understood. In this study, by constructing a phylogenetic tree to examine PEPCKs throughout the evolution from poriferans to vertebrates, Mollusk was highlighted as the only phylum to exhibit two distinct lineages, Mollusca_PEPCK-1 and Mollusca_PEPCK-2. Further study of two representative members from Crassostrea gigas (CgPEPCK-1 and CgPEPCK-2) showed that they both shared conserved sequences and structural characteristics of the catalytic enzyme, while CgPEPCK-2 displayed a higher expression level than CgPEPCK-1 in all tested tissues, and CgPEPCK-1 was specifically implicated in the immune defense against LPS stimulation and Vibrio splendidus infection. Functional analysis revealed that CgPEPCK-2 had stronger enzymatic activity than CgPEPCK-1, while CgPEPCK-1 exhibited stronger binding activity with various PAMPs, and only the protein of CgPEPCK-1 increased significantly in hemolymph during immune stimulation. All results supported that distinct sequence and function differentiations of the PEPCK gene family should have occurred since Mollusk. The more advanced evolutionary branch Mollusca_PEPCK-2 should preserve its essential function as a catalytic enzyme to be more specialized and efficient, while the ancient branch Mollusca_PEPCK-1 probably contained some members, such as CgPEPCK-1, that should be integrated into the immune system as an extracellular immune recognition receptor.
Collapse
Affiliation(s)
- Xiaoting Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Dandan Long
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zhao Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Qing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Senyu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiqian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengxi Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
7
|
Torresi F, Rodriguez FM, Gomez-Casati DF, Martín M. Two phosphoenolpyruvate carboxykinases with differing biochemical properties in Chlamydomonas reinhardtii. FEBS Lett 2023; 597:585-597. [PMID: 36708098 DOI: 10.1002/1873-3468.14590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/29/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) catalyses the reversible reaction of decarboxylation and phosphorylation of oxaloacetate (OAA) to generate phosphoenolpyruvate (PEP) and CO2 playing mainly a gluconeogenic role in green algae. We found two PEPCK isoforms in Chlamydomonas reinhardtii and we cloned, purified and characterised both enzymes. ChlrePEPCK1 is more active as decarboxylase than ChlrePEPCK2. ChlrePEPCK1 is hexameric and its activity is affected by citrate, phenylalanine and malate, while ChlrePEPCK2 is monomeric and it is regulated by citrate, phenylalanine and glutamine. We postulate that the two PEPCK isoforms found originate from alternative splicing of the gene or regulated proteolysis of the enzyme. The presence of these two isoforms would be part of a mechanism to finely regulate the biological activity of PEPCKs.
Collapse
Affiliation(s)
- Florencia Torresi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Fernanda M Rodriguez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina.,Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| |
Collapse
|
8
|
Barwell S, Duman R, Wagner A, Holyoak T. Directional regulation of cytosolic PEPCK catalysis is mediated by competitive binding of anions. Biochem Biophys Res Commun 2022; 637:218-223. [DOI: 10.1016/j.bbrc.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
9
|
Walker RP, Chen ZH, Famiani F. Gluconeogenesis in Plants: A Key Interface between Organic Acid/Amino Acid/Lipid and Sugar Metabolism. Molecules 2021; 26:molecules26175129. [PMID: 34500562 PMCID: PMC8434439 DOI: 10.3390/molecules26175129] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022] Open
Abstract
Gluconeogenesis is a key interface between organic acid/amino acid/lipid and sugar metabolism. The aims of this article are four-fold. First, to provide a concise overview of plant gluconeogenesis. Second, to emphasise the widespread occurrence of gluconeogenesis and its utilisation in diverse processes. Third, to stress the importance of the vacuolar storage and release of Krebs cycle acids/nitrogenous compounds, and of the role of gluconeogenesis and malic enzyme in this process. Fourth, to outline the contribution of fine control of enzyme activity to the coordinate-regulation of gluconeogenesis and malate metabolism, and the importance of cytosolic pH in this.
Collapse
Affiliation(s)
- Robert P. Walker
- Independent Researcher, Lancashire, Bolton BL2 3BG, UK
- Correspondence: (R.P.W.); (Z.-H.C.); (F.F.)
| | - Zhi-Hui Chen
- School of Life Science, University of Dundee, Dundee DD1 5EH, UK
- Correspondence: (R.P.W.); (Z.-H.C.); (F.F.)
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06123 Perugia, Italy
- Correspondence: (R.P.W.); (Z.-H.C.); (F.F.)
| |
Collapse
|
10
|
Tashiro R, Sato T, Atomi H, Miki K, Fujihashi M. Altering the Phosphorylation Position of Pyrophosphate-Dependent myo-Inositol-1-Kinase Based on Its Crystal Structure. ACS Chem Biol 2021; 16:794-799. [PMID: 33877806 DOI: 10.1021/acschembio.0c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most kinases utilize ATP as a phosphate donor and phosphorylate a wide range of phosphate acceptors. An alternative phosphate donor is inorganic pyrophosphate (PPi), which costs only 1/1000 of ATP. To develop a method to engineer PPi-dependent kinases, we herein aimed to alter the product of PPi-dependent myo-inositol kinase from d-myo-inositol 1-phosphate to d-myo-inositol 3-phosphate. For this purpose, we introduced the myo-inositol recognition residues of the ATP-dependent myo-inositol-3-kinase into the PPi-dependent myo-inositol-1-kinase. This replacement was expected to change the 3D arrangements of myo-inositol in the active site and bring the hydroxyl group at the 3C position close to the catalytic residue. LC-MS and NMR analyses proved that the engineered enzyme successfully produced myo-inositol 3-phosphate from PPi and myo-inositol.
Collapse
Affiliation(s)
- Ryo Tashiro
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Fujihashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|