1
|
Alsulami AF. Comprehensive annotation of mutations in hallmark genes insights into structural and functional implications. Comput Biol Med 2025; 185:109588. [PMID: 39700856 DOI: 10.1016/j.compbiomed.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Understanding the multifaceted role of hallmark gene mutations in cancer progression is critical for developing targeted therapies. This study comprehensively analyses 344 hallmark gene mutations by mapping them to their three-dimensional protein structures using PDB data and AlphaFold models. Mutations were classified based on their locations, such as protein interfaces, ligand-binding sites, dimer interfaces, protein-DNA interfaces, and core regions. The results reveal that highly frequent mutations are located on the ligand-binding site and protein interface, highlighting their significant impact on protein function and interactions. This holistic approach bridges gaps in existing research, offering insights into the structural impacts of genetic alterations in hallmark genes, thereby informing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ali F Alsulami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Czyzyk D, Yan W, Messing S, Gillette W, Tsuji T, Yamaguchi M, Furuzono S, Turner DM, Esposito D, Nissley DV, McCormick F, Simanshu DK. Structural insights into isoform-specific RAS-PI3Kα interactions and the role of RAS in PI3Kα activation. Nat Commun 2025; 16:525. [PMID: 39788953 PMCID: PMC11718114 DOI: 10.1038/s41467-024-55766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear. Here, we present structures of KRAS, RRAS2, and MRAS bound to the catalytic subunit (p110α) of PI3Kα, elucidating the interaction interfaces and local conformational changes upon complex formation. Structural and mutational analyses highlighted key residues in RAS and PI3Kα impacting binding affinity and revealed isoform-specific differences at the interaction interface in RAS and PI3K isoforms, providing a rationale for their differential affinities. Notably, in the RAS-p110α complex structures, RAS interaction with p110α is limited to the RAS-binding domain and does not involve the kinase domain. This study underscores the pivotal role of the RAS-PI3Kα interaction in PI3Kα activation and provides a blueprint for designing PI3Kα isoform-specific inhibitors to disrupt this interaction.
Collapse
Affiliation(s)
- Daniel Czyzyk
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wupeng Yan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Takashi Tsuji
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Mitsuhiro Yamaguchi
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Shinji Furuzono
- Cardiovascular Metabolic Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - David M Turner
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, CA, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
3
|
Beckmann CCA, Ramamoorthy S, Trompouki E, Driever W, Schwarz-Furlan S, Strahm B, Yoshimi A, Niemeyer CM, Erlacher M, Kapp FG. Assessment of a novel NRAS in-frame tandem duplication causing a myelodysplastic/myeloproliferative neoplasm. Exp Hematol 2024; 133:104207. [PMID: 38522505 DOI: 10.1016/j.exphem.2024.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Myelodysplastic/myeloproliferative diseases of childhood cause a relevant disease burden, and many of these diseases may have a fatal course. The use of next-generation sequencing (NGS) has led to the identification of novel genetic variants in patients with these diseases, advancing our understanding of the underlying pathophysiology. However, novel mutations can often only be interpreted as variants of unknown significance (VUS), hindering adequate diagnosis and the use of a targeted therapy. To improve variant interpretation and test targeted therapies in a preclinical setting, we are using a rapid zebrafish embryo model that allows functional evaluation of the novel variant and possible therapeutic approaches within days. Thereby, we accelerate the translation from genetic findings to treatment options. Here, we establish this workflow on a novel in-frame tandem duplication in NRAS (c.192_227dup; p.G75_E76insDS65_G75) identified by Sanger sequencing in a 2.5-year-old patient with an unclassifiable myelodysplastic/myeloproliferative neoplasm (MDS/MPN-U). We show that this variant results in a myeloproliferative phenotype in zebrafish embryos with expansion of immature myeloid cells in the caudal hematopoietic tissue, which can be reversed by MEK inhibition. Thus, we could reclassify the variant from likely pathogenic to pathogenic using the American College of Medical Genetics (ACMG) criteria.
Collapse
Affiliation(s)
- Cora C A Beckmann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Institute for Research on Cancer and Aging, Institut National de la Santé et de la Recherche Médicale Unité 1081, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7284, Université Côte d'Azur, Nice, France
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute of Biology 1, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedrich G Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Bao H, Wang W, Sun H, Chen J. The switch states of the GDP-bound HRAS affected by point mutations: a study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. J Biomol Struct Dyn 2024; 42:3363-3381. [PMID: 37216340 DOI: 10.1080/07391102.2023.2213355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Point mutations play a vital role in the conformational transformation of HRAS. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by constructions of free energy landscapes (FELs) were adopted to explore the effect of mutations D33K, A59T and L120A on conformation states of the GDP-bound HRAS. The results from the post-processing analyses on GaMD trajectories suggest that mutations alter the flexibility and motion modes of the switch domains from HRAS. The analyses from FELs show that mutations induce more disordered states of the switch domains and affect interactions of GDP with HRAS, implying that mutations yield a vital effect on the binding of HRAS to effectors. The GDP-residue interaction network revealed by our current work indicates that salt bridges and hydrogen bonding interactions (HBIs) play key roles in the binding of GDP to HRAS. Furthermore, instability in the interactions of magnesium ions and GDP with the switch SI leads to the extreme disorder of the switch domains. This study is expected to provide the energetic basis and molecular mechanism for further understanding the function of HRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
5
|
Riancho JA, Hernández JL, González-Vela C, López-Sundh AE, González-Lopez MA, Gomez de la Fuente F, Quirce R, Diamond EL. Erdheim-Chester Disease Due to a Novel Internal Duplication of NRAS: Response to Targeted Therapy with Cobimetinib. Int J Mol Sci 2023; 24:15467. [PMID: 37895147 PMCID: PMC10606995 DOI: 10.3390/ijms242015467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Histiocytoses encompass a group of exceptionally rare disorders characterized by the abnormal infiltration of tissues by histocytes. Among these, Erdheim-Chester disease (ECD) stands out as a multisystem histiocytosis that typically affects bones and various other tissues. Historically, the treatment of ECD has been challenging. However, recent breakthroughs in our understanding, particularly the discovery of somatic mutations in the RAS-MAPK pathway, have opened new opportunities for targeted therapy in a significant subset of patients with ECD and other histiocytoses. In this report, we present the case of a patient with ECD harboring a previously unidentified microduplication in the NRAS gene in a small fraction of skin cells. This discovery played a pivotal role in tailoring an effective therapeutic approach involving kinase inhibitors downstream of NRAS. This case underscores the crucial role of deep sequencing of tissue samples in ECD, enabling the delivery of personalized targeted therapy to patients.
Collapse
Affiliation(s)
- José A. Riancho
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, CIBERER, 39008 Santander, Spain;
| | - José L. Hernández
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, CIBERER, 39008 Santander, Spain;
| | - Carmen González-Vela
- Servicio de Anatomía Patológica, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, 39008 Santander, Spain
| | - Ana E. López-Sundh
- Servicio de Dermatología, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, 39008 Santander, Spain; (A.E.L.-S.); (M.A.G.-L.)
| | - Marcos A. González-Lopez
- Servicio de Dermatología, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, 39008 Santander, Spain; (A.E.L.-S.); (M.A.G.-L.)
| | - Francisco Gomez de la Fuente
- Servicio de Medicina Nuclear, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, 39008 Santander, Spain; (F.G.d.l.F.); (R.Q.)
| | - Remedios Quirce
- Servicio de Medicina Nuclear, Hospital U.M. Valdecilla, Universidad de Cantabria, IDIVAL, 39008 Santander, Spain; (F.G.d.l.F.); (R.Q.)
| | - Eli L. Diamond
- Departments of Neurology and Medicine, Memorial Sloan Kettering Center, New York, NY 10065, USA;
| |
Collapse
|
6
|
Ahmad M, Movileanu L. Multiplexed imaging for probing RAS-RAF interactions in living cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184173. [PMID: 37211322 PMCID: PMC10330472 DOI: 10.1016/j.bbamem.2023.184173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
GTP-bound RAS interacts with its protein effectors in response to extracellular stimuli, leading to chemical inputs for downstream pathways. Significant progress has been made in measuring these reversible protein-protein interactions (PPIs) in various cell-free environments. Yet, acquiring high sensitivity in heterogeneous solutions remains challenging. Here, using an intermolecular fluorescence resonance energy transfer (FRET) biosensing approach, we develop a method to visualize and localize HRAS-CRAF interactions in living cells. We demonstrate that the EGFR activation and the HRAS-CRAF complex formation can be concurrently probed in a single cell. This biosensing strategy discriminates EGF-stimulated HRAS-CRAF interactions at the cell and organelle membranes. In addition, we provide quantitative FRET measurements for assessing these transient PPIs in a cell-free environment. Finally, we prove the utility of this approach by showing that an EGFR-binding compound is a potent inhibitor of HRAS-CRAF interactions. The outcomes of this work form a fundamental basis for further explorations of the spatiotemporal dynamics of various signaling networks.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
7
|
Bao HY, Wang W, Sun HB, Chen JZ. Binding modes of GDP, GTP and GNP to NRAS deciphered by using Gaussian accelerated molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:65-89. [PMID: 36762439 DOI: 10.1080/1062936x.2023.2165542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Probing binding modes of GDP, GTP and GNP to NRAS are of significance for understanding the regulation mechanism on the activity of RAS proteins. Four separate Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the apo, GDP-, GTP- and GNP-bound NRAS. Dynamics analyses suggest that binding of three ligands highly affects conformational states of the switch domains from NRAS, which disturbs binding of NRAS to its effectors. The analyses of free energy landscapes (FELs) indicate that binding of GDP, GTP and GNP induces more energetic states of NRAS compared to the apo NRAS but the presence of GNP makes the switch domains more ordered than binding of GDP and GNP. The information of interaction networks of ligands with NRAS reveals that the π-π interaction of residue F28 and the salt bridge interactions of K16 and D119 with ligands stabilize binding of GDP, GTP and GNP to NRAS. Meanwhile magnesium ion plays a bridge role in interactions of ligands with NRAS, which is favourable for associations of GDP, GTP and GNP with NRAS. This work is expected to provide useful information for deeply understanding the function and activity of NRAS.
Collapse
Affiliation(s)
- H Y Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Z Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
8
|
Tunneling Nanotubes between Cells Migrating in ECM Mimicking Fibrous Environments. Cancers (Basel) 2022; 14:cancers14081989. [PMID: 35454893 PMCID: PMC9030013 DOI: 10.3390/cancers14081989] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Tumor cells grow, spread, and invade in a three-dimensional manner, but most experimental approaches in cancer cell biology focus on the behavior of cells in two-dimensional spaces. Patterns of cell invasion and spread in 2D may not accurately depict cell behavior in 3D tumors. We cultivated and investigated malignant mesothelioma cells on a 3D scaffold composed of nanofibers positioned in parallel and crosshatched network configurations to overcome this barrier. We focused on studying long extensions called tunneling nanotubes (TNTs) protruding from cells and connecting with other cells, which have been shown to transmit signals from cell to cell and extend into the tumor microenvironments in a 3D manner. This manuscript describes the biophysics of the formation and function of cancer cell TNTs. These findings will impact the research community by accurately assessing how TNTs affect cancer cell invasion and migration in their natural 3D microenvironment using a novel bioengineered platform. Abstract Tunneling nanotubes (TNTs) comprise a unique class of actin-rich nanoscale membranous protrusions. They enable long-distance intercellular communication and may play an integral role in tumor formation, progression, and drug resistance. TNTs are three-dimensional, but nearly all studies have investigated them using two-dimensional cell culture models. Here, we applied a unique 3D culture platform consisting of crosshatched and aligned fibers to fabricate synthetic suspended scaffolds that mimic the native fibrillar architecture of tumoral extracellular matrix (ECM) to characterize TNT formation and function in its native state. TNTs are upregulated in malignant mesothelioma; we used this model to analyze the biophysical properties of TNTs in this 3D setting, including cell migration in relation to TNT dynamics, rate of TNT-mediated intercellular transport of cargo, and conformation of TNT-forming cells. We found that highly migratory elongated cells on aligned fibers formed significantly longer but fewer TNTs than uniformly spread cells on crossing fibers. We developed new quantitative metrics for the classification of TNT morphologies based on shape and cytoskeletal content using confocal microscopy. In sum, our strategy for culturing cells in ECM-mimicking bioengineered scaffolds provides a new approach for accurate biophysical and biologic assessment of TNT formation and structure in native fibrous microenvironments.
Collapse
|
9
|
Chen J, Zeng Q, Wang W, Hu Q, Bao H. Q61 mutant-mediated dynamics changes of the GTP-KRAS complex probed by Gaussian accelerated molecular dynamics and free energy landscapes. RSC Adv 2022; 12:1742-1757. [PMID: 35425180 PMCID: PMC8978876 DOI: 10.1039/d1ra07936k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular mechanism of the GTP-KRAS binding is significant for improving the target roles of KRAS in cancer treatment. In this work, multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations were applied to decode the effect of Q61A, Q61H and Q61L on the activity of KRAS. Dynamics analyses based on MR-GaMD trajectory reveal that motion modes and dynamics behavior of the switch domain in KRAS are heavily affected by the three Q61 mutants. Information of free energy landscapes (FELs) shows that Q61A, Q61H and Q61L induce structural disorder of the switch domain and disturb the activity of KRAS. Analysis of the interaction network uncovers that the decrease in the stability of hydrogen bonding interactions (HBIs) of GTP with residues V29 and D30 induced by Q61A, Q61H and Q61L is responsible for the structural disorder of the switch-I and that in the occupancy of the hydrogen bond between GTP and residue G60 leads to the structural disorder of the switch-II. Thus, the high disorder of the switch domain caused by three current Q61 mutants produces a significant effect on binding of KRAS to its effectors. This work is expected to provide useful information for further understanding function and target roles of KRAS in anti-cancer drug development.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Qingkai Zeng
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Wei Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Qingquan Hu
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
10
|
Friedman R. The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1877:188666. [PMID: 34896257 DOI: 10.1016/j.bbcan.2021.188666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is an aggressive cancer, which, in spite of increasingly better understanding of its genetic background remains difficult to treat. Mutations in the FLT3 gene are observed in ≈30% of the patients. Most of these mutations are internal tandem duplications (ITDs) of a sequence within the protein coding region, an activation mechanism that is almost non-existent with other genes and cancers. As patients each carry their own unique set of mutations, it is challenging to understand how ITDs activate the protein, and ascertain the risk for each individual patient. Available treatment options are limited due to development of drug resistance. Here, recent studies are reviewed that help to better understand the molecular mechanism behind activation of the FLT3 protein due to mutations. It is argued that difference in mutation sequences and especially location might be coupled to prognosis. When it comes to FLT3 inhibitors, key differences between them can be attributed to the mode of inhibition (type-1 and type-2 inhibitors), effective inhibitory coefficient in the blood plasma and off-target binding. Accounting for the position and length of insertions may in the future be used to predict prognosis and rationalise treatment. Development of new inhibitors must take into account the potential for resistance mutations. Inhibitors aimed at multiple specific targets are currently being developed. These, and as well as combination therapies will hopefully lead to longer periods during which targeted FLT3 therapy will remain effective.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnæus University, 391 82 Kalmar, Sweden.
| |
Collapse
|