1
|
Earnshaw R, Zhang YT, Heymann G, Fujisawa K, Hui S, Kapadia M, Kalia LV, Kalia SK. Disease-associated mutations in C-terminus of HSP70 interacting protein (CHIP) impair its ability to negatively regulate mitophagy. Neurobiol Dis 2024; 200:106625. [PMID: 39117117 DOI: 10.1016/j.nbd.2024.106625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
C-terminus of HSP70 interacting protein (CHIP) is an E3 ubiquitin ligase and HSP70 cochaperone. Mutations in the CHIP encoding gene are the cause of two neurodegenerative conditions: spinocerebellar ataxia autosomal dominant type 48 (SCA48) and autosomal recessive type 16 (SCAR16). The mechanisms underlying CHIP-associated diseases are currently unknown. Mitochondrial dysfunction, specifically dysfunction in mitochondrial autophagy (mitophagy), is increasingly implicated in neurodegenerative diseases and loss of CHIP has been demonstrated to result in mitochondrial dysfunction in multiple animal models, although how CHIP is involved in mitophagy regulation has been previously unknown. Here, we demonstrate that CHIP acts as a negative regulator of the PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy pathway, promoting the degradation of PINK1, impairing Parkin translocation to the mitochondria, and suppressing mitophagy in response to mitochondrial stress. We also show that loss of CHIP enhances neuronal mitophagy in a PINK1 and Parkin dependent manner in Caenorhabditis elegans. Furthermore, we find that multiple disease-associated mutations in CHIP dysregulate mitophagy both in vitro and in vivo in C. elegans neurons, a finding which could implicate mitophagy dysregulation in CHIP-associated diseases.
Collapse
Affiliation(s)
- Rebecca Earnshaw
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yu Tong Zhang
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Gregory Heymann
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Kazuko Fujisawa
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Sarah Hui
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Neurology, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada; CRANIA, University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; CRANIA, University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, 399 Bathurst Street, Toronto M5T 2S8, ON, Canada.
| |
Collapse
|
2
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. mBio 2024; 15:e0345123. [PMID: 38651896 PMCID: PMC11237767 DOI: 10.1128/mbio.03451-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
Affiliation(s)
- Matthew A Greenwald
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Suzanne L Meinig
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lucas M Plott
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew G Higgs
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas P Vitko
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kaitlyn R Rouillard
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jerome Carpenter
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572620. [PMID: 38187602 PMCID: PMC10769284 DOI: 10.1101/2023.12.20.572620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa , which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic recalcitrance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro . We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa . Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. Importance Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro , is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
|
4
|
Umano A, Fang K, Qu Z, Scaglione JB, Altinok S, Treadway CJ, Wick ET, Paulakonis E, Karunanayake C, Chou S, Bardakjian TM, Gonzalez-Alegre P, Page RC, Schisler JC, Brown NG, Yan D, Scaglione KM. The molecular basis of spinocerebellar ataxia type 48 caused by a de novo mutation in the ubiquitin ligase CHIP. J Biol Chem 2022; 298:101899. [PMID: 35398354 PMCID: PMC9097460 DOI: 10.1016/j.jbc.2022.101899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a class of incurable diseases characterized by degeneration of the cerebellum that results in movement disorder. Recently, a new heritable form of SCA, spinocerebellar ataxia type 48 (SCA48), was attributed to dominant mutations in STIP1 homology and U box-containing 1 (STUB1); however, little is known about how these mutations cause SCA48. STUB1 encodes for the protein C terminus of Hsc70 interacting protein (CHIP), an E3 ubiquitin ligase. CHIP is known to regulate proteostasis by recruiting chaperones via a N-terminal tetratricopeptide repeat domain and recruiting E2 ubiquitin-conjugating enzymes via a C-terminal U-box domain. These interactions allow CHIP to mediate the ubiquitination of chaperone-bound, misfolded proteins to promote their degradation via the proteasome. Here we have identified a novel, de novo mutation in STUB1 in a patient with SCA48 encoding for an A52G point mutation in the tetratricopeptide repeat domain of CHIP. Utilizing an array of biophysical, biochemical, and cellular assays, we demonstrate that the CHIPA52G point mutant retains E3-ligase activity but has decreased affinity for chaperones. We further show that this mutant decreases cellular fitness in response to certain cellular stressors and induces neurodegeneration in a transgenic Caenorhabditis elegans model of SCA48. Together, our data identify the A52G mutant as a cause of SCA48 and provide molecular insight into how mutations in STUB1 cause SCA48.
Collapse
Affiliation(s)
- A Umano
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - K Fang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Z Qu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - J B Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - S Altinok
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - C J Treadway
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - E T Wick
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - E Paulakonis
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - C Karunanayake
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - S Chou
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - T M Bardakjian
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - P Gonzalez-Alegre
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - R C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - J C Schisler
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - N G Brown
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - D Yan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - K M Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA; Department of Neurology, Duke University, Durham, North Carolina, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
5
|
Reis MC, Patrun J, Ackl N, Winter P, Scheifele M, Danek A, Nolte D. A Severe Dementia Syndrome Caused by Intron Retention and Cryptic Splice Site Activation in STUB1 and Exacerbated by TBP Repeat Expansions. Front Mol Neurosci 2022; 15:878236. [PMID: 35493319 PMCID: PMC9048483 DOI: 10.3389/fnmol.2022.878236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Heterozygous pathogenic variants in the STIP1 homologous and U-box containing protein 1 (STUB1) gene have been identified as causes of autosomal dominant inherited spinocerebellar ataxia type 48 (SCA48). SCA48 is characterized by an ataxic movement disorder that is often, but not always, accompanied by a cognitive affective syndrome. We report a severe early onset dementia syndrome that mimics frontotemporal dementia and is caused by the intronic splice donor variant c.524+1G>A in STUB1. Impaired splicing was demonstrated by RNA analysis and in minigene assays of mutated and wild-type constructs of STUB1. The most striking consequence of this splicing impairment was retention of intron 3 in STUB1, which led to an in-frame insertion of 63 amino acids (aa) (p.Arg175_Glu176ins63) into the highly conserved coiled-coil domain of its encoded protein, C-terminus of HSP70-interacting protein (CHIP). To a lesser extent, activation of two cryptic splice sites in intron 3 was observed. The almost exclusively used one, c.524+86, was not predicted by in silico programs. Variant c.524+86 caused a frameshift (p.Arg175fs*93) that resulted in a truncated protein and presumably impairs the C-terminal U-box of CHIP, which normally functions as an E3 ubiquitin ligase. The cryptic splice site c.524+99 was rarely used and led to an in-frame insertion of 33 aa (p.Arg175_Glu176ins33) that resulted in disruption of the coiled-coil domain, as has been previously postulated for complete intron 3 retention. We additionally detected repeat expansions in the range of reduced penetrance in the TATA box-binding protein (TBP) gene by excluding other genes associated with dementia syndromes. The repeat expansion was heterozygous in one patient but compound heterozygous in the more severely affected patient. Therefore, we concluded that the observed severe dementia syndrome has a digenic background, making STUB1 and TBP important candidate genes responsible for early onset dementia syndromes.
Collapse
Affiliation(s)
- Marlen Colleen Reis
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Julia Patrun
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Nibal Ackl
- Psychiatrische Dienste Thurgau, Münsterlingen, Switzerland
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Pia Winter
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | - Adrian Danek
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Dagmar Nolte
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
- *Correspondence: Dagmar Nolte,
| |
Collapse
|
6
|
Kanack AJ, Olp MD, Newsom OJ, Scaglione JB, Gooden DM, McMahon K, Smith BC, Scaglione KM. Chemical Regulation of the Protein Quality Control E3 Ubiquitin Ligase C-Terminus of Hsc70 Interacting Protein (CHIP). Chembiochem 2022; 23:e202100633. [PMID: 35061295 PMCID: PMC9016715 DOI: 10.1002/cbic.202100633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Indexed: 11/09/2022]
Abstract
The ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) is an important regulator of proteostasis. Despite playing an important role in maintaining proteostasis, little progress has been made in developing small molecules that regulate ubiquitin transfer by CHIP. Here we used differential scanning fluorimetry to identify compounds that bound CHIP. Compounds that bound CHIP were then analyzed by quantitative ubiquitination assays to identify those that altered CHIP function. One compound, MS.001, inhibited both the chaperone binding and ubiquitin ligase activity of CHIP at low micromolar concentrations. Interestingly, we found that MS.001 did not have activity against isolated U-box or tetratricopeptide (TPR) domains, but instead only inhibited full-length CHIP. Using in silico docking we identified a potential MS.001 binding site on the linker domain of CHIP and mutation of this site rendered CHIP resistant to MS.001. Together our data identify an inhibitor of the E3 ligase CHIP and provides insight into the development of compounds that regulate CHIP activity.
Collapse
Affiliation(s)
- Adam J Kanack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oliver J Newsom
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jamie B Scaglione
- Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - David M Gooden
- Department of Chemistry, SMSF Lab, Duke University, Durham, NC 27710, USA
| | - Kevin McMahon
- Department of Computational and Physical Sciences, Carroll University, Waukesha, WI 53186, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
7
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
8
|
Pakdaman Y, Denker E, Austad E, Norton WHJ, Rolfsnes HO, Bindoff LA, Tzoulis C, Aukrust I, Knappskog PM, Johansson S, Ellingsen S. Chip Protein U-Box Domain Truncation Affects Purkinje Neuron Morphology and Leads to Behavioral Changes in Zebrafish. Front Mol Neurosci 2021; 14:723912. [PMID: 34630034 PMCID: PMC8497888 DOI: 10.3389/fnmol.2021.723912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin ligase CHIP (C-terminus of Hsc70-interacting protein) is encoded by STUB1 and promotes ubiquitination of misfolded and damaged proteins. CHIP deficiency has been linked to several diseases, and mutations in the human STUB1 gene are associated with recessive and dominant forms of spinocerebellar ataxias (SCAR16/SCA48). Here, we examine the effects of impaired CHIP ubiquitin ligase activity in zebrafish (Danio rerio). We characterized the zebrafish stub1 gene and Chip protein, and generated and characterized a zebrafish mutant causing truncation of the Chip functional U-box domain. Zebrafish stub1 has a high degree of conservation with mammalian orthologs and was detected in a wide range of tissues in adult stages, with highest expression in brain, eggs, and testes. In the brain, stub1 mRNA was predominantly detected in the cerebellum, including the Purkinje cell layer and granular layer. Recombinant wild-type zebrafish Chip showed ubiquitin ligase activity highly comparable to human CHIP, while the mutant Chip protein showed impaired ubiquitination of the Hsc70 substrate and Chip itself. In contrast to SCAR16/SCA48 patients, no gross cerebellar atrophy was evident in mutant fish, however, these fish displayed reduced numbers and sizes of Purkinje cell bodies and abnormal organization of Purkinje cell dendrites. Mutant fish also had decreased total 26S proteasome activity in the brain and showed behavioral changes. In conclusion, truncation of the Chip U-box domain leads to impaired ubiquitin ligase activity and behavioral and anatomical changes in zebrafish, illustrating the potential of zebrafish to study STUB1-mediated diseases.
Collapse
Affiliation(s)
- Yasaman Pakdaman
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Elsa Denker
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eirik Austad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - William H J Norton
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, United Kingdom
| | - Hans O Rolfsnes
- Department of Biomedicine, Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ståle Ellingsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Chen HY, Hsu CL, Lin HY, Lin YF, Tsai SF, Ho YJ, Li YR, Tsai JW, Teng SC, Lin CH. Clinical and functional characterization of a novel STUB1 frameshift mutation in autosomal dominant spinocerebellar ataxia type 48 (SCA48). J Biomed Sci 2021; 28:65. [PMID: 34565360 PMCID: PMC8466936 DOI: 10.1186/s12929-021-00763-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterozygous pathogenic variants in STUB1 are implicated in autosomal dominant spinocerebellar ataxia type 48 (SCA48), which is a rare familial ataxia disorder. We investigated the clinical, genetic and functional characteristics of STUB1 mutations identified from a Taiwanese ataxia cohort. METHODS We performed whole genome sequencing in a genetically undiagnosed family with an autosomal dominant ataxia syndrome. Further Sanger sequencing of all exons and intron-exon boundary junctions of STUB1 in 249 unrelated patients with cerebellar ataxia was performed. The pathogenicity of the identified novel STUB1 variant was investigated. RESULTS We identified a novel heterozygous frameshift variant, c.832del (p.Glu278fs), in STUB1 in two patients from the same family. This rare mutation is located in the U-box of the carboxyl terminus of the Hsc70-interacting protein (CHIP) protein, which is encoded by STUB1. Further in vitro experiments demonstrated that this novel heterozygous STUB1 frameshift variant impairs the CHIP protein's activity and its interaction with the E2 ubiquitin ligase, UbE2D1, leading to neuronal accumulation of tau and α-synuclein, caspase-3 activation, and promoting cellular apoptosis through a dominant-negative pathogenic effect. The in vivo study revealed the influence of the CHIP expression level on the differentiation and migration of cerebellar granule neuron progenitors during cerebellar development. CONCLUSIONS Our findings provide clinical, genetic, and a mechanistic insight linking the novel heterozygous STUB1 frameshift mutation at the highly conserved U-box domain of CHIP as the cause of autosomal dominant SCA48. Our results further stress the importance of CHIP activity in neuronal protein homeostasis and cerebellar functions.
Collapse
Affiliation(s)
- Huan-Yun Chen
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, Number 7, Chung-Shan South Road, Taipei, 10051, Taiwan
| | - Yung-Feng Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Jung Ho
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ye-Ru Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,Center of Precision Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Number 7, Chung-Shan South Road, Taipei, 10051, Taiwan.
| |
Collapse
|
10
|
Clinical and Genetic Characterization of Autosomal Recessive Spinocerebellar Ataxia Type 16 (SCAR16) in Taiwan. THE CEREBELLUM 2021; 19:544-549. [PMID: 32367277 DOI: 10.1007/s12311-020-01136-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mutations in STUB1 have been identified to cause autosomal recessive spinocerebellar ataxia type 16 (SCAR16), also named as Gordon Holmes syndrome, which is characterized by cerebellar ataxia, cognitive decline, and hypogonadism. Additionally, several heterozygous mutations in STUB1 have recently been described as a cause of autosomal dominant spinocerebellar ataxia type 48. STUB1 encodes C-terminus of HSC70-interacting protein (CHIP), which functions as an E3 ubiquitin ligase and co-chaperone and has been implicated in several neurodegenerative diseases. In this study, we identified two SCAR16 pedigrees from 512 Taiwanese families with cerebellar ataxia. Two compound heterozygous mutations in STUB1, c.[433A>C];[721C>T] (p.[K145Q];[R241W]) and c.[433A>C];[694T>G] (p.[K145Q];[C232G]), were found in each SCAR16 family by Sanger sequencing, respectively. Among them, STUB1 p.R241W and p.C232G were novel mutations. SCAR16 seems to be an uncommon ataxic syndrome, accounting for 0.4% (2/512) of our cohort with cerebellar ataxia. Clinically, the three patients from the two SCAR16 families presented with cerebellar ataxia alone or in combination with cognitive impairment. The brain MRIs showed a marked cerebellar atrophy of the patients. In conclusion, SCAR16 is an important but often neglected diagnosis of cerebellar ataxia of unknown cause, and the isolated cerebellar ataxia without involvement of other systems cannot be a basis to exclude the possibility of STUB1-related disease.
Collapse
|
11
|
Ravel JM, Benkirane M, Calmels N, Marelli C, Ory-Magne F, Ewenczyk C, Halleb Y, Tison F, Lecocq C, Pische G, Casenave P, Chaussenot A, Frismand S, Tyvaert L, Larrieu L, Pointaux M, Drouot N, Bossenmeyer-Pourié C, Oussalah A, Guéant JL, Leheup B, Bonnet C, Anheim M, Tranchant C, Lambert L, Chelly J, Koenig M, Renaud M. Expanding the clinical spectrum of STIP1 homology and U-box containing protein 1-associated ataxia. J Neurol 2021; 268:1927-1937. [PMID: 33417001 DOI: 10.1007/s00415-020-10348-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND STUB1 has been first associated with autosomal recessive (SCAR16, MIM# 615768) and later with dominant forms of ataxia (SCA48, MIM# 618093). Pathogenic variations in STUB1 are now considered a frequent cause of cerebellar ataxia. OBJECTIVE We aimed to improve the clinical, radiological, and molecular delineation of SCAR16 and SCA48. METHODS Retrospective collection of patients with SCAR16 or SCA48 diagnosed in three French genetic centers (Montpellier, Strasbourg and Nancy). RESULTS Here, we report four SCAR16 and nine SCA48 patients from two SCAR16 and five SCA48 unrelated French families. All presented with slowly progressive cerebellar ataxia. Additional findings included cognitive decline, dystonia, parkinsonism and swallowing difficulties. The age at onset was highly variable, ranging from 14 to 76 years. Brain MRI showed marked cerebellar atrophy in all patients. Phenotypic findings associated with STUB1 pathogenic variations cover a broad spectrum, ranging from isolated slowly progressive ataxia to severe encephalopathy, and include extrapyramidal features. We described five new pathogenic variations, two previously reported pathogenic variations, and two rare variants of unknown significance in association with STUB1-related disorders. We also report the first pathogenic variation associated with both dominant and recessive forms of inheritance (SCAR16 and SCA48). CONCLUSION Even though differences are observed between the recessive and dominant forms, it appears that a continuum exists between these two entities. While adding new symptoms associated with STUB1 pathogenic variations, we insist on the difficulty of genetic counselling in STUB1-related pathologies. Finally, we underscore the usefulness of DAT-scan as an additional clue for diagnosis.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Mehdi Benkirane
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Nadège Calmels
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale D'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cecilia Marelli
- Expert Centre for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, University Montpellier, CHU, Montpellier, France
- MMDN, University Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Claire Ewenczyk
- Sorbonne Université, Institut du Cerveau et de la Moelle Épinière (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
- Service de génétique clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Yosra Halleb
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - François Tison
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, Bordeaux, France
- Centre Mémoire de Ressources et de Recherches, CHU de Bordeaux, Pôle de Neurosciences Cliniques, Bordeaux, France
| | - Claire Lecocq
- Service de Neurologie, Centre Hospitalier de Haguenau, Haguenau, France
| | - Guillaume Pische
- Service de Neurologie, Centre Hospitalier de Haguenau, Haguenau, France
| | | | - Annabelle Chaussenot
- Service de Génétique Médicale, Centre de Référence des Maladies Mitochondriales, Hôpital de l'Archet 2, Nice, France
| | | | | | - Lise Larrieu
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Morgane Pointaux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Carine Bossenmeyer-Pourié
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Abderrahim Oussalah
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Nancy, France
| | - Bruno Leheup
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Céline Bonnet
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Mathieu Anheim
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 avenue Molière, 67098, Cedex, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Christine Tranchant
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 avenue Molière, 67098, Cedex, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Laëtitia Lambert
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Jamel Chelly
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale D'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France.
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France.
| | - Mathilde Renaud
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France.
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France.
- Service de Neurologie, CHRU Nancy, Nancy, France.
| |
Collapse
|
12
|
Schuster S, Heuten E, Velic A, Admard J, Synofzik M, Ossowski S, Macek B, Hauser S, Schöls L. CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons. Dis Model Mech 2020; 13:13/10/dmm045096. [PMID: 33097556 PMCID: PMC7578354 DOI: 10.1242/dmm.045096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023] Open
Abstract
C-terminus of HSC70-interacting protein (CHIP) encoded by the gene STUB1 is a co-chaperone and E3 ligase that acts as a key regulator of cellular protein homeostasis. Mutations in STUB1 cause autosomal recessive spinocerebellar ataxia type 16 (SCAR16) with widespread neurodegeneration manifesting as spastic-ataxic gait disorder, dementia and epilepsy. CHIP-/- mice display severe cerebellar atrophy, show high perinatal lethality and impaired heat stress tolerance. To decipher the pathomechanism underlying SCAR16, we investigated the heat shock response (HSR) in primary fibroblasts of three SCAR16 patients. We found impaired HSR induction and recovery compared to healthy controls. HSPA1A/B transcript levels (coding for HSP70) were reduced upon heat shock but HSP70 remained higher upon recovery in patient- compared to control-fibroblasts. As SCAR16 primarily affects the central nervous system we next investigated the HSR in cortical neurons (CNs) derived from induced pluripotent stem cells of SCAR16 patients. We found CNs of patients and controls to be surprisingly resistant to heat stress with high basal levels of HSP70 compared to fibroblasts. Although heat stress resulted in strong transcript level increases of many HSPs, this did not translate into higher HSP70 protein levels upon heat shock, independent of STUB1 mutations. Furthermore, STUB1(-/-) neurons generated by CRISPR/Cas9-mediated genome editing from an isogenic healthy control line showed a similar HSR to patients. Proteomic analysis of CNs showed dysfunctional protein (re)folding and higher basal oxidative stress levels in patients. Our results question the role of impaired HSR in SCAR16 neuropathology and highlight the need for careful selection of proper cell types for modeling human diseases.
Collapse
Affiliation(s)
- S Schuster
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - E Heuten
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - A Velic
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - J Admard
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - M Synofzik
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - S Ossowski
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - B Macek
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - S Hauser
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - L Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| |
Collapse
|
13
|
CHIP as a therapeutic target for neurological diseases. Cell Death Dis 2020; 11:727. [PMID: 32908122 PMCID: PMC7481199 DOI: 10.1038/s41419-020-02953-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Carboxy-terminus of Hsc70-interacting protein (CHIP) functions both as a molecular co-chaperone and ubiquitin E3 ligase playing a critical role in modulating the degradation of numerous chaperone-bound proteins. To date, it has been implicated in the regulation of numerous biological functions, including misfolded-protein refolding, autophagy, immunity, and necroptosis. Moreover, the ubiquitous expression of CHIP in the central nervous system suggests that it may be implicated in a wide range of functions in neurological diseases. Several recent studies of our laboratory and other groups have highlighted the beneficial role of CHIP in the pathogenesis of several neurological diseases. The objective of this review is to discuss the possible molecular mechanisms that contribute to the pathogenesis of neurological diseases in which CHIP has a pivotal role, such as stroke, intracerebral hemorrhage, Alzheimer's disease, Parkinson's disease, and polyglutamine diseases; furthermore, CHIP mutations could also cause neurodegenerative diseases. Based on the available literature, CHIP overexpression could serve as a promising therapeutic target for several neurological diseases.
Collapse
|
14
|
Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment. Genet Med 2020; 22:1851-1862. [PMID: 32713943 DOI: 10.1038/s41436-020-0899-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Pathogenic variants in STUB1 were initially described in autosomal recessive spinocerebellar ataxia type 16 and dominant cerebellar ataxia with cerebellar cognitive dysfunction (SCA48). METHODS We analyzed a large series of 440 index cerebellar ataxia cases, mostly with dominant inheritance. RESULTS STUB1 variants were detected in 50 patients. Age at onset and severity were remarkably variable. Cognitive impairment, predominantly frontal syndrome, was observed in 54% of STUB1 variant carriers, including five families with Huntington or frontotemporal dementia disease-like phenotypes associated with ataxia, while no STUB1 variant was found in 115 patients with frontotemporal dementia. We report neuropathological findings of a STUB1 heterozygous patient, showing massive loss of Purkinje cells in the vermis and major loss in the cerebellar hemispheres without atrophy of the pons, hippocampus, or cerebral cortex. This screening of STUB1 variants revealed new features: (1) the majority of patients were women (70%) and (2) "second hits" in AFG3L2, PRKCG, and TBP were detected in three families suggesting synergic effects. CONCLUSION Our results reveal an unexpectedly frequent (7%) implication of STUB1 among dominantly inherited cerebellar ataxias, and suggest that the penetrance of STUB1 variants could be modulated by other factors, including sex and variants in other ataxia-related genes.
Collapse
|
15
|
Spinocerebellar ataxia type 48: last but not least. Neurol Sci 2020; 41:2423-2432. [PMID: 32342324 DOI: 10.1007/s10072-020-04408-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Biallelic mutations in STUB1, which encodes the E3 ubiquitin ligase CHIP, were originally described in association with SCAR16, a rare autosomal recessive spinocerebellar ataxia, so far reported in 16 kindreds. In the last 2 years, a new form of spinocerebellar ataxia (SCA48), associated with heterozygous mutations in the same gene, has been described in 12 kindreds with autosomal dominant inheritance. METHODS We reviewed molecular and clinical findings of both SCAR16 and SCA48 described patients. RESULTS AND CONCLUSION SCAR16 is characterized by early onset spastic ataxia and a wide disease spectrum, including cognitive dysfunction, hyperkinetic disorders, epilepsy, peripheral neuropathy, and hypogonadism. SCA48 is an adult-onset syndrome characterized by ataxia and cognitive-psychiatric features, variably associated with chorea, parkinsonism, dystonia, and urinary symptoms. SCA48, the last dominant ataxia to be described, could emerge as the most frequent among the SCAs due to conventional mutations. The overlap of several clinical signs between SCAR16 and SCA48 indicates the presence of a continuous clinical spectrum among recessively and dominantly inherited mutations of STUB1. Different kinds of mutations, scattered over the three gene domains, have been found in both disorders. Their pathogenesis and the relationship between SCA48 and SCAR16 remain to be clarified.
Collapse
|
16
|
Mol MO, van Rooij JGJ, Brusse E, Verkerk AJMH, Melhem S, den Dunnen WFA, Rizzu P, Cupidi C, van Swieten JC, Donker Kaat L. Clinical and pathologic phenotype of a large family with heterozygous STUB1 mutation. NEUROLOGY-GENETICS 2020; 6:e417. [PMID: 32337344 PMCID: PMC7164971 DOI: 10.1212/nxg.0000000000000417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
Objective To describe the clinical and pathologic features of a novel pedigree with heterozygous STUB1 mutation causing SCA48. Methods We report a large pedigree of Dutch decent. Clinical and pathologic data were reviewed, and genetic analyses (whole-exome sequencing, whole-genome sequencing, and linkage analysis) were performed on multiple family members. Results Patients presented with adult-onset gait disturbance (ataxia or parkinsonism), combined with prominent cognitive decline and behavioral changes. Whole-exome sequencing identified a novel heterozygous frameshift variant c.731_732delGC (p.C244Yfs*24) in STUB1 segregating with the disease. This variant was present in a linkage peak on chromosome 16p13.3. Neuropathologic examination of 3 cases revealed a consistent pattern of ubiquitin/p62-positive neuronal inclusions in the cerebellum, neocortex, and brainstem. In addition, tau pathology was present in 1 case. Conclusions This study confirms previous findings of heterozygous STUB1 mutations as the cause of SCA48 and highlights its prominent cognitive involvement, besides cerebellar ataxia and movement disorders as cardinal features. The presence of intranuclear inclusions is a pathologic hallmark of the disease. Future studies will provide more insight into its pathologic heterogeneity.
Collapse
Affiliation(s)
- Merel O Mol
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jeroen G J van Rooij
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Esther Brusse
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annemieke J M H Verkerk
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Patrizia Rizzu
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Chiara Cupidi
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Laura Donker Kaat
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|