1
|
Mehrazin H, Sakha M, Safi S. Effects of Age, Sex, and Exercise on Measurement of Serum CTnI Levels and Some Parameters Related to the Cardiovascular Capacity of Caspian Horses. Vet Med Sci 2025; 11:e70202. [PMID: 40065591 PMCID: PMC11893729 DOI: 10.1002/vms3.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 03/14/2025] Open
Abstract
Due to their high specificity and exclusive cardiac myocyte sensitivity, cardiac troponins T and I (cTnT, cTnI) are currently regarded as ideal biomarkers to identify cardiomyocyte damage, myocardial injury, myocardial infarction, and chronic heart failure. In fact, cTnI is considered the most reliable biomarker for diagnosing heart-related issues. This study aimed to investigate the effects of age, gender, and exercise training on serum cTnI levels and various parameters related to the cardiovascular capacity of Caspian horses. For this purpose, 50 adult Caspian horses over 3 years old, both male and female, were selected from horse breeding centres and clubs in the provinces of Tehran, Alborz, and Gilan. To account for age-related differences, the horses were divided into three groups: Group A (less than 5 years), Group B (between 5 and 10 years), and Group C (over 10 years). To measure cTnI levels, 10 mL of blood was collected from the jugular vein of each horse using a venoject blood collection tube before exercise and another 10 mL 2 h post-exercise. The samples were refrigerated and centrifuged for 30 min after collection. Two millilitres of serum obtained from each horse at both time points was stored at -20°C for subsequent analysis. Troponin I levels were measured in the laboratory using the electrochemical luminescence (ECL) method. The results of this study reveal for the first time that the normal average of serum cTnI, packed cell volume (PCV), and blood haemoglobin (Hb) levels in Caspian horses is 2.5 ng/L, 35.52%, and 12.1%, respectively. Furthermore, the findings indicate that exercise significantly increases serum levels of cTnI, PCV, and blood haemoglobin; however, age and gender did not appear to affect these measured parameters. Therefore, it can be concluded that exercise stimulates the release of troponin due to myocardial injury.
Collapse
Affiliation(s)
- Hossein Mehrazin
- Department of Clinical ScienceSchool of Veterinary MedicineScience and research branch,Islamic Azad UniversityTehranIran
| | - Mehdi Sakha
- Department of Clinical ScienceSchool of Veterinary MedicineScience and research branch,Islamic Azad UniversityTehranIran
| | - Shahabeddin Safi
- Department of PathobiologyFaculty of Veterinary MedicineScience and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
2
|
Patsalis C, Kyriakou S, Georgiadou M, Ioannou L, Constantinou L, Soteriou V, Jossif A, Evangelidou P, Sismani C, Kypri E, Ioannides M, Koumbaris G. Investigating TNNC1 gene inheritance and clinical outcomes through a comprehensive familial study. Am J Med Genet A 2025; 197:e63838. [PMID: 39248034 DOI: 10.1002/ajmg.a.63838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) and restrictive cardiomyopathy (RCM) have significant phenotypic overlap and a similar genetic background, both caused mainly by variants in sarcomeric genes. HCM is the most common cardiomyopathy, while RCM is a rare and often underdiagnosed heart condition, with a poor prognosis. This study focuses on a large family with four infants diagnosed with fatal RCM associated with biventricular hypertrophy. Affected infants were found to be homozygous for NM_003280.3(TNNC1):c.23C>T(p.Ala8Val) variant. Interestingly, this variant resulted in a low penetrance and mild form of hypertrophic cardiomyopathy (HCM) in relatives carrying a single copy of the variant. Overall, this study underscores the complex nature of genetic inheritance in cardiomyopathies and the wide range of clinical presentations they can exhibit. This emphasizes the vital role of genetic testing in providing essential insights crucial for diagnosis, prognosis, early intervention, and the development of potential treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonis Jossif
- Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
| | - Paola Evangelidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | |
Collapse
|
3
|
Creso JG, Gokhan I, Rynkiewicz MJ, Lehman W, Moore JR, Campbell SG. In silico and in vitro models reveal the molecular mechanisms of hypocontractility caused by TPM1 M8R. Front Physiol 2024; 15:1452509. [PMID: 39282088 PMCID: PMC11392859 DOI: 10.3389/fphys.2024.1452509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is an inherited disorder often leading to severe heart failure. Linkage studies in affected families have revealed hundreds of different mutations that can cause DCM, with most occurring in genes associated with the cardiac sarcomere. We have developed an investigational pipeline for discovering mechanistic genotype-phenotype relationships in DCM and here apply it to the DCM-linked tropomyosin mutation TPM1 M8R. Atomistic simulations predict that M8R increases flexibility of the tropomyosin chain and enhances affinity for the blocked or inactive state of tropomyosin on actin. Applying these molecular effects to a Markov model of the cardiac thin filament reproduced the shifts in Ca2+sensitivity, maximum force, and a qualitative drop in cooperativity that were observed in an in vitro system containing TPM1 M8R. The model was then used to simulate the impact of M8R expression on twitch contractions of intact cardiac muscle, predicting that M8R would reduce peak force and duration of contraction in a dose-dependent manner. To evaluate this prediction, TPM1 M8R was expressed via adenovirus in human engineered heart tissues and isometric twitch force was observed. The mutant tissues manifested depressed contractility and twitch duration that agreed in detail with model predictions. Additional exploratory simulations suggest that M8R-mediated alterations in tropomyosin-actin interactions contribute more potently than tropomyosin chain stiffness to cardiac twitch dysfunction, and presumably to the ultimate manifestation of DCM. This study is an example of the growing potential for successful in silico prediction of mutation pathogenicity for inherited cardiac muscle disorders.
Collapse
Affiliation(s)
- Jenette G. Creso
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Ilhan Gokhan
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - William Lehman
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey R. Moore
- Department of Biological Sciences, University of Massachusetts–Lowell, Lowell, MA, United States
| | - Stuart G. Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Paromov V, Uversky VN, Cooley A, Liburd LE, Mukherjee S, Na I, Dayhoff GW, Pratap S. The Proteomic Analysis of Cancer-Related Alterations in the Human Unfoldome. Int J Mol Sci 2024; 25:1552. [PMID: 38338831 PMCID: PMC10855131 DOI: 10.3390/ijms25031552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Many proteins lack stable 3D structures. These intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains with intrinsically disordered protein regions (IDPRs) often carry out regulatory functions related to molecular recognition and signal transduction. IDPs/IDPRs constitute a substantial portion of the human proteome and are termed "the unfoldome". Herein, we probe the human breast cancer unfoldome and investigate relations between IDPs and key disease genes and pathways. We utilized bottom-up proteomics, MudPIT (Multidimensional Protein Identification Technology), to profile differentially expressed IDPs in human normal (MCF-10A) and breast cancer (BT-549) cell lines. Overall, we identified 2271 protein groups in the unfoldome of normal and cancer proteomes, with 148 IDPs found to be significantly differentially expressed in cancer cells. Further analysis produced annotations of 140 IDPs, which were then classified to GO (Gene Ontology) categories and pathways. In total, 65% (91 of 140) IDPs were related to various diseases, and 20% (28 of 140) mapped to cancer terms. A substantial portion of the differentially expressed IDPs contained disordered regions, confirmed by in silico characterization. Overall, our analyses suggest high levels of interactivity in the human cancer unfoldome and a prevalence of moderately and highly disordered proteins in the network.
Collapse
Affiliation(s)
- Victor Paromov
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Ayorinde Cooley
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Lincoln E. Liburd
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Shyamali Mukherjee
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Insung Na
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33613, USA;
| | - Siddharth Pratap
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
5
|
Rodriguez Garcia M, Schmeckpeper J, Landim-Vieira M, Coscarella IL, Fang X, Ma W, Spran PA, Yuan S, Qi L, Kahmini AR, Shoemaker MB, Atkinson JB, Kekenes-Huskey PM, Irving TC, Chase PB, Knollmann BC, Pinto JR. Disruption of Z-Disc Function Promotes Mechanical Dysfunction in Human Myocardium: Evidence for a Dual Myofilament Modulatory Role by Alpha-Actinin 2. Int J Mol Sci 2023; 24:14572. [PMID: 37834023 PMCID: PMC10572656 DOI: 10.3390/ijms241914572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.
Collapse
Affiliation(s)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Xuan Fang
- Department of Cell & Molecular Physiology, Loyola University, Chicago, IL 60660, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Payton A. Spran
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shengyao Yuan
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Lin Qi
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aida Rahimi Kahmini
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - M. Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James B. Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Björn C. Knollmann
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jose Renato Pinto
- Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Tikunova SB, Thuma J, Davis JP. Mouse Models of Cardiomyopathies Caused by Mutations in Troponin C. Int J Mol Sci 2023; 24:12349. [PMID: 37569724 PMCID: PMC10419064 DOI: 10.3390/ijms241512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiac muscle contraction is regulated via Ca2+ exchange with the hetero-trimeric troponin complex located on the thin filament. Binding of Ca2+ to cardiac troponin C, a Ca2+ sensing subunit within the troponin complex, results in a series of conformational re-arrangements among the thin filament components, leading to an increase in the formation of actomyosin cross-bridges and muscle contraction. Ultimately, a decline in intracellular Ca2+ leads to the dissociation of Ca2+ from troponin C, inhibiting cross-bridge cycling and initiating muscle relaxation. Therefore, troponin C plays a crucial role in the regulation of cardiac muscle contraction and relaxation. Naturally occurring and engineered mutations in troponin C can lead to altered interactions among components of the thin filament and to aberrant Ca2+ binding and exchange with the thin filament. Mutations in troponin C have been associated with various forms of cardiac disease, including hypertrophic, restrictive, dilated, and left ventricular noncompaction cardiomyopathies. Despite progress made to date, more information from human studies, biophysical characterizations, and animal models is required for a clearer understanding of disease drivers that lead to cardiomyopathies. The unique use of engineered cardiac troponin C with the L48Q mutation that had been thoroughly characterized and genetically introduced into mouse myocardium clearly demonstrates that Ca2+ sensitization in and of itself should not necessarily be considered a disease driver. This opens the door for small molecule and protein engineering strategies to help boost impaired systolic function. On the other hand, the engineered troponin C mutants (I61Q and D73N), genetically introduced into mouse myocardium, demonstrate that Ca2+ desensitization under basal conditions may be a driving factor for dilated cardiomyopathy. In addition to enhancing our knowledge of molecular mechanisms that trigger hypertrophy, dilation, morbidity, and mortality, these cardiomyopathy mouse models could be used to test novel treatment strategies for cardiovascular diseases. In this review, we will discuss (1) the various ways mutations in cardiac troponin C might lead to disease; (2) relevant data on mutations in cardiac troponin C linked to human disease, and (3) all currently existing mouse models containing cardiac troponin C mutations (disease-associated and engineered).
Collapse
Affiliation(s)
- Svetlana B. Tikunova
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA (J.P.D.)
| | | | | |
Collapse
|
7
|
Zhu L, Landim-Vieira M, Garcia MR, Pinto JR, Chalovich JM. Negative Charges Introduced Near the IT Helix of Cardiac Troponin T Stabilize the Active State of Actin Filaments. Biochemistry 2023; 62:2137-2146. [PMID: 37379571 PMCID: PMC10576618 DOI: 10.1021/acs.biochem.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The disordered and basic C-terminal 14 residues of human troponin T (TnT) are essential for full inhibition of actomyosin ATPase activity at low Ca2+ levels and for limiting activation at saturating Ca2+. In previous studies, stepwise truncation of the C-terminal region of TnT increased activity in proportion to the number of positive charges eliminated. To define key basic residues more closely, we generated phosphomimetic-like mutants of TnT. Phosphomimetic mutants were chosen because of reports that phosphorylation of TnT, including sites within the C terminal region, depressed activity, contrary to our expectations. Four constructs were made where one or more Ser and Thr residues were replaced with Asp residues. The S275D and T277D mutants, near the IT helix and adjacent to basic residues, produced the greatest activation of ATPase rates in solution; the effects of the S275D mutant were recapitulated in muscle fiber preparations with enhanced myofilament Ca2+ sensitivity. Actin filaments containing S275D TnT were also shown to be incapable of populating the inactive state at low Ca2+ levels. Actin filaments containing both S275D/T284D were not statistically different from those containing only S275D in both solution and cardiac muscle preparation studies. Finally, actin filaments containing T284D TnT, closer to the C-terminus and not adjacent to a basic residue, had the smallest effect on activity. Thus, the effects of negative charge placement in the C-terminal region of TnT were greatest near the IT helix and adjacent to a basic residue.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, United States
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32304, United States
| | - Michelle Rodriguez Garcia
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32304, United States
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32304, United States
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
8
|
Landim-Vieira M, Ma W, Song T, Rastegarpouyani H, Gong H, Coscarella IL, Bogaards SJP, Conijn SP, Ottenheijm CAC, Hwang HS, Papadaki M, Knollmann BC, Sadayappan S, Irving TC, Galkin VE, Chase PB, Pinto JR. Cardiac troponin T N-domain variant destabilizes the actin interface resulting in disturbed myofilament function. Proc Natl Acad Sci U S A 2023; 120:e2221244120. [PMID: 37252999 PMCID: PMC10265946 DOI: 10.1073/pnas.2221244120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca2+ regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca2+ sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament's relaxed state resulting in an increased number of crossbridges during Ca2+ activation. Additionally, in the low Ca2+-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca2+, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL32306
| | - Weikang Ma
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| | - Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH45267
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Institude of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Henry Gong
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| | - Isabella Leite Coscarella
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL32306
| | - Sylvia J. P. Bogaards
- Department of Physiology, Amsterdam University Medical Center, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stefan P. Conijn
- Department of Physiology, Amsterdam University Medical Center, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Coen A. C. Ottenheijm
- Department of Physiology, Amsterdam University Medical Center, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Hyun S. Hwang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL32306
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, IL60153
| | - Bjorn C. Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH45267
| | - Thomas C. Irving
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| | - Vitold E. Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA23507
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL32306
| |
Collapse
|
9
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
10
|
Sequeira V, Wang L, Wijnker PJ, Kim K, Pinto JR, dos Remedios C, Redwood C, Knollmann BC, van der Velden J. Low expression of the K280N TNNT2 mutation is sufficient to increase basal myofilament activation in human hypertrophy cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100007. [PMID: 37159677 PMCID: PMC10160007 DOI: 10.1016/j.jmccpl.2022.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 05/11/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder with patients typically showing heterozygous inheritance of a pathogenic variant in a gene encoding a contractile protein. Here, we study the contractile effects of a rare homozygous mutation using explanted tissue and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to gain insight into how the balance between mutant and WT protein expression affects cardiomyocyte function. Methods Force measurements were performed in cardiomyocytes isolated from a HCM patient carrying a homozygous troponin T mutation (cTnT-K280N) and healthy donors. To discriminate between mutation-mediated and phosphorylation-related effects on Ca2+-sensitivity, cardiomyocytes were treated with alkaline phosphatase (AP) or protein kinase A (PKA). Troponin exchange experiments characterized the relation between mutant levels and myofilament function. To define mutation-mediated effects on Ca2+-dynamics we used CRISPR/Cas9 to generate hiPSC-CMs harbouring heterozygous and homozygous TnT-K280N mutations. Ca2+-transient and cell shortening experiments compared these lines against isogenic controls. Results Myofilament Ca2+-sensitivity was higher in homozygous cTnT-K280N cardiomyocytes and was not corrected by AP- and PKA-treatment. In cTnT-K280N cells exchanged with cTnT-WT, a low level (14%) of cTnT-K280N mutation elevated Ca2+-sensitivity. Similarly, exchange of donor cells with 45 ± 2% cTnT-K280N increased Ca2+-sensitivity and was not corrected by PKA. cTnT-K280N hiPSC-CMs show elevated diastolic Ca2+ and increases in cell shortening. Impaired cardiomyocyte relaxation was only evident in homozygous cTnT-K280N hiPSC-CMs. Conclusions The cTnT-K280N mutation increases myofilament Ca2+-sensitivity, elevates diastolic Ca2+, enhances contractility and impairs cellular relaxation. A low level (14%) of the cTnT-K280N sensitizes myofilaments to Ca2+, a universal finding of human HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
- Comprehensive Heart Failure Center (CHFC) University Clinic Würzburg, Würzburg, Germany
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Paul J.M. Wijnker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Kyungsoo Kim
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Jose R. Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Cris dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, The University of Sydney, Sydney, Australia
| | | | - Bjorn C. Knollmann
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Liang HF, Li XD. Locusta migratoria flight muscle troponin partially activates thin filament in a calcium-dependent manner. INSECT MOLECULAR BIOLOGY 2022; 31:346-355. [PMID: 35084070 DOI: 10.1111/imb.12763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/16/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The troponin (Tn) complex, the sensor for Ca2+ to regulate contraction of striated muscle, is composed of three subunits, that is, TnT, TnI and TnC. Different isoforms of TnI and TnC are expressed in the thorax dorsal longitudinal muscle (flight muscle) and the hind leg extensor tibiae muscle (jump muscle) of the migratory locust, Locusta migratoria. The major Tn complexes in the flight muscle and the jump muscle are Tn-171 (TnT1/TnI7/TnC1) and Tn-153 (TnT1/TnI5/TnC3), respectively. Here, we prepared a number of recombinant Tn complexes and the reconstituted thin filaments, and investigated their regulation on thin filament. Although both Tn-171 and Tn-153 regulate thin filament in a Ca2+ -dependent manner, the extent of Ca2+ activation mediated by Tn-171 was significantly lower than that by Tn-153. We demonstrated that TnC1 and TnC3, rather than TnI5 and TnI7, are responsible for the different levels of the thin filament activation. Mutagenesis of TnC1 and TnC3 shows that the low level of TnC1-mediated thin filament activation can be attributed to the noncanonical residue Leu60 in the EF-hand-II of TnC1. We therefore propose that, in addition to Ca2+ , other regulatory mechanism(s) is required for the full activation of locust flight muscle.
Collapse
Affiliation(s)
- Hui-Fang Liang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Chalovich JM, Zhu L, Johnson D. Hypertrophic Cardiomyopathy Mutations of Troponin Reveal Details of Striated Muscle Regulation. Front Physiol 2022; 13:902079. [PMID: 35694406 PMCID: PMC9178916 DOI: 10.3389/fphys.2022.902079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Striated muscle contraction is inhibited by the actin associated proteins tropomyosin, troponin T, troponin I and troponin C. Binding of Ca2+ to troponin C relieves this inhibition by changing contacts among the regulatory components and ultimately repositioning tropomyosin on the actin filament creating a state that is permissive for contraction. Several lines of evidence suggest that there are three possible positions of tropomyosin on actin commonly called Blocked, Closed/Calcium and Open or Myosin states. These states are thought to correlate with different functional states of the contractile system: inactive-Ca2+-free, inactive-Ca2+-bound and active. The inactive-Ca2+-free state is highly occupied at low free Ca2+ levels. However, saturating Ca2+ produces a mixture of inactive and active states making study of the individual states difficult. Disease causing mutations of troponin, as well as phosphomimetic mutations change the stabilities of the states of the regulatory complex thus providing tools for studying individual states. Mutants of troponin are available to stabilize each of three structural states. Particular attention is given to the hypertrophic cardiomyopathy causing mutation, Δ14 of TnT, that is missing the last 14 C-terminal residues of cardiac troponin T. Removal of the basic residues in this region eliminates the inactive-Ca2+-free state. The major state occupied with Δ14 TnT at inactivating Ca2+ levels resembles the inactive-Ca2+-bound state in function and in displacement of TnI from actin-tropomyosin. Addition of Ca2+, with Δ14TnT, shifts the equilibrium between the inactive-Ca2+-bound and the active state to favor that latter state. These mutants suggest a unique role for the C-terminal region of Troponin T as a brake to limit Ca2+ activation.
Collapse
|
13
|
Zhu L, Johnson D, Chalovich JM. C-Terminal Basic Region of Troponin T Alters the Ca 2+-Dependent Changes in Troponin I Interactions. Biochemistry 2022; 61:1103-1112. [PMID: 35522994 DOI: 10.1021/acs.biochem.2c00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C-terminal 14-16 residues of human troponin T are required for full inactivation, and they prevent full activation at saturating Ca2+. Basic residues within that C-terminal region of TnT are essential for its function, but the mechanism of action is unknown. That region of TnT is natively disordered and does not appear in reconstructions of the troponin structure. We used Förster resonance energy transfer to determine if the C-terminal basic region of TnT alters transitions of TnI or if it operates independently. We also examined Ca2+-dependent changes in the C-terminal region of TnT itself. Probes on TnI-143 (inhibitory region) and TnI-159 (switch region) moved away from sites on actin and tropomyosin and toward TnC-84 at high Ca2+. Ca2+ also displaced C-terminal TnT from actin-tropomyosin but without movement toward TnC. Deletion of C-terminal TnT produced changes in TnI-143 like those effected by Ca2+, but effects on TnI-159 were muted; there was no effect on the distance of the switch region to TnC-84. Substituting Ala for basic residues within C-terminal TnT displaced C-terminal TnT from actin-tropomyosin. The results suggest that C-terminal TnT stabilizes tropomyosin in the inactive position on actin. Removal of basic residues from C-terminal TnT produced a Ca2+-like state except that the switch region of TnI was not bound to TnC. Addition of Ca2+ caused more extreme displacement from actin-tropomyosin as the active state became more fully occupied as in the case of wild-type TnT in the presence of both Ca2+ and bound rigor myosin S1.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - Dylan Johnson
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| |
Collapse
|
14
|
De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents. Int J Mol Sci 2021; 22:ijms22179625. [PMID: 34502534 PMCID: PMC8431798 DOI: 10.3390/ijms22179625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/09/2023] Open
Abstract
Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.
Collapse
|
15
|
Shi Y, Bethea JP, Hetzel-Ebben HL, Landim-Vieira M, Mayper RJ, Williams RL, Kessler LE, Ruiz AM, Gargiulo K, Rose JSM, Platt G, Pinto JR, Washburn BK, Chase PB. Mandibular muscle troponin of the Florida carpenter ant Camponotus floridanus: extending our insights into invertebrate Ca 2+ regulation. J Muscle Res Cell Motil 2021; 42:399-417. [PMID: 34255253 DOI: 10.1007/s10974-021-09606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Ants use their mandibles for a variety of functions and behaviors. We investigated mandibular muscle structure and function from major workers of the Florida carpenter ant Camponotus floridanus: force-pCa relation and velocity of unloaded shortening of single, permeabilized fibres, primary sequences of troponin subunits (TnC, TnI and TnT) from a mandibular muscle cDNA library, and muscle fibre ultrastructure. From the mechanical measurements, we found Ca2+-sensitivity of isometric force was markedly shifted rightward compared with vertebrate striated muscle. From the troponin sequence results, we identified features that could explain the rightward shift of Ca2+-activation: the N-helix of TnC is effectively absent and three of the four EF-hands of TnC (sites I, II and III) do not adhere to canonical sequence rules for divalent cation binding; two alternatively spliced isoforms of TnI were identified with the alternatively spliced exon occurring in the region of the IT-arm α-helical coiled-coil, and the N-terminal extension of TnI may be involved in modulation of regulation, as in mammalian cardiac muscle; and TnT has a Glu-rich C-terminus. In addition, a structural homology model was built of C. floridanus troponin on the thin filament. From analysis of electron micrographs, we found thick filaments are almost as long as the 6.8 μm sarcomeres, have diameter of ~ 16 nm, and typical center-to-center spacing of ~ 46 nm. These results have implications for the mechanisms by which mandibular muscle fibres perform such a variety of functions, and how the structure of the troponin complex aids in these tasks.
Collapse
Affiliation(s)
- Yun Shi
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Julia P Bethea
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hannah L Hetzel-Ebben
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Ross J Mayper
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Regan L Williams
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Lauren E Kessler
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Amanda M Ruiz
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Kathryn Gargiulo
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Jennifer S M Rose
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Grayson Platt
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA. .,Department of Biological Science, Florida State University, Biology Unit One, Box 3064370, Tallahassee, FL, 32306-4370, USA.
| |
Collapse
|
16
|
Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, Zhuang D, Jiang H, Chen X, He Y, Huang S, Zhu P. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater 2021; 6:1388-1401. [PMID: 33210031 PMCID: PMC7658327 DOI: 10.1016/j.bioactmat.2020.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is still one of the leading causes of death in the world, and heart transplantation is the current major treatment for end-stage cardiovascular diseases. However, because of the shortage of heart donors, new sources of cardiac regenerative medicine are greatly needed. The prominent development of tissue engineering using bioactive materials has creatively laid a direct promising foundation. Whereas, how to precisely pattern a cardiac structure with complete biological function still requires technological breakthroughs. Recently, the emerging three-dimensional (3D) bioprinting technology for tissue engineering has shown great advantages in generating micro-scale cardiac tissues, which has established its impressive potential as a novel foundation for cardiovascular regeneration. Whether 3D bioprinted hearts can replace traditional heart transplantation as a novel strategy for treating cardiovascular diseases in the future is a frontier issue. In this review article, we emphasize the current knowledge and future perspectives regarding available bioinks, bioprinting strategies and the latest outcome progress in cardiac 3D bioprinting to move this promising medical approach towards potential clinical implementation.
Collapse
Affiliation(s)
- Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xing Ye
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Mingyi Zhao
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Peng Wu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guihuan Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Donglin Zhuang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Haodong Jiang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaowei Chen
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yinru He
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
17
|
Marques MA, Landim-Vieira M, Moraes AH, Sun B, Johnston JR, Dieseldorff Jones KM, Cino EA, Parvatiyar MS, Valera IC, Silva JL, Galkin VE, Chase PB, Kekenes-Huskey PM, de Oliveira GAP, Pinto JR. Anomalous structural dynamics of minimally frustrated residues in cardiac troponin C triggers hypertrophic cardiomyopathy. Chem Sci 2021; 12:7308-7323. [PMID: 34163821 PMCID: PMC8171346 DOI: 10.1039/d1sc01886h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac TnC (cTnC) is highly conserved among mammals, and genetic variants can result in disease by perturbing Ca2+-regulation of myocardial contraction. Here, we report the molecular basis of a human mutation in cTnC's αD-helix (TNNC1-p.C84Y) that impacts conformational dynamics of the D/E central-linker and sampling of discrete states in the N-domain, favoring the "primed" state associated with Ca2+ binding. We demonstrate cTnC's αD-helix normally functions as a central hub that controls minimally frustrated interactions, maintaining evolutionarily conserved rigidity of the N-domain. αD-helix perturbation remotely alters conformational dynamics of the N-domain, compromising its structural rigidity. Transgenic mice carrying this cTnC mutation exhibit altered dynamics of sarcomere function and hypertrophic cardiomyopathy. Together, our data suggest that disruption of evolutionary conserved molecular frustration networks by a myofilament protein mutation may ultimately compromise contractile performance and trigger hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Adolfo H Moraes
- Department of Chemistry, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago Maywood IL USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Karissa M Dieseldorff Jones
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Elio A Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University Tallahassee FL USA
| | - Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University Tallahassee FL USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School Norfolk VA USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University Tallahassee FL USA
| | | | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| |
Collapse
|
18
|
Mahmud Z, Dhami PS, Rans C, Liu PB, Hwang PM. Dilated Cardiomyopathy Mutations and Phosphorylation disrupt the Active Orientation of Cardiac Troponin C. J Mol Biol 2021; 433:167010. [PMID: 33901537 DOI: 10.1016/j.jmb.2021.167010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the "active" orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s-1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s-1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17-23 s-1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a "dormant" orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations.
Collapse
Affiliation(s)
- Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Prabhpaul S Dhami
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Caleb Rans
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Philip B Liu
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
19
|
D'Andréa ÉD, Retel JS, Diehl A, Schmieder P, Oschkinat H, Pires JR. NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi. J Struct Biol 2021; 213:107715. [PMID: 33705979 DOI: 10.1016/j.jsb.2021.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel β-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.
Collapse
Affiliation(s)
- Éverton Dias D'Andréa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil
| | - Joren Sebastian Retel
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany; Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, Berlin 14195, Germany
| | - José Ricardo Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
20
|
Schuldt M, Johnston JR, He H, Huurman R, Pei J, Harakalova M, Poggesi C, Michels M, Kuster DWD, Pinto JR, van der Velden J. Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. J Mol Cell Cardiol 2021; 150:77-90. [PMID: 33148509 PMCID: PMC10616699 DOI: 10.1016/j.yjmcc.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND The clinical outcome of hypertrophic cardiomyopathy patients is not only determined by the disease-causing mutation but influenced by a variety of disease modifiers. Here, we defined the role of the mutation location and the mutant protein dose of the troponin T mutations I79N, R94C and R278C. METHODS AND RESULTS We determined myofilament function after troponin exchange in permeabilized single human cardiomyocytes as well as in cardiac patient samples harboring the R278C mutation. Notably, we found that a small dose of mutant protein is sufficient for the maximal effect on myofilament Ca2+-sensitivity for the I79N and R94C mutation while the mutation location determines the magnitude of this effect. While incorporation of I79N and R94C increased myofilament Ca2+-sensitivity, incorporation of R278C increased Ca2+-sensitivity at low and intermediate dose, while it decreased Ca2+-sensitivity at high dose. All three cTnT mutants showed reduced thin filament binding affinity, which coincided with a relatively low maximal exchange (50.5 ± 5.2%) of mutant troponin complex in cardiomyocytes. In accordance, 32.2 ± 4.0% mutant R278C was found in two patient samples which showed 50.0 ± 3.7% mutant mRNA. In accordance with studies that showed clinical variability in patients with the exact same mutation, we observed variability on the functional single cell level in patients with the R278C mutation. These differences in myofilament properties could not be explained by differences in the amount of mutant protein. CONCLUSIONS Using troponin exchange in single human cardiomyocytes, we show that TNNT2 mutation-induced changes in myofilament Ca2+-sensitivity depend on mutation location, while all mutants show reduced thin filament binding affinity. The specific mutation-effect observed for R278C could not be translated to myofilament function of cardiomyocytes from patients, and is most likely explained by other (post)-translational troponin modifications. Overall, our studies illustrate that mutation location underlies variability in myofilament Ca2+-sensitivity, while only the R278C mutation shows a highly dose-dependent effect on myofilament function.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Roy Huurman
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jiayi Pei
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
21
|
A comprehensive guide to genetic variants and post-translational modifications of cardiac troponin C. J Muscle Res Cell Motil 2020; 42:323-342. [PMID: 33179204 DOI: 10.1007/s10974-020-09592-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Familial cardiomyopathy is an inherited disease that affects the structure and function of heart muscle and has an extreme range of phenotypes. Among the millions of affected individuals, patients with hypertrophic (HCM), dilated (DCM), or left ventricular non-compaction (LVNC) cardiomyopathy can experience morphologic changes of the heart which lead to sudden death in the most detrimental cases. TNNC1, the gene that codes for cardiac troponin C (cTnC), is a sarcomere gene associated with cardiomyopathies in which probands exhibit young age of presentation and high death, transplant or ventricular fibrillation events relative to TNNT2 and TNNI3 probands. Using GnomAD, ClinVar, UniProt and PhosphoSitePlus databases and published literature, an extensive list to date of identified genetic variants in TNNC1 and post-translational modifications (PTMs) in cTnC was compiled. Additionally, a recent cryo-EM structure of the cardiac thin filament regulatory unit was used to localize each functionally studied amino acid variant and each PTM (acetylation, glycation, s-nitrosylation, phosphorylation) in the structure of cTnC. TNNC1 has a large number of variants (> 100) relative to other genes of the same transcript size. Surprisingly, the mapped variant amino acids and PTMs are distributed throughout the cTnC structure. While many cardiomyopathy-associated variants are localized in α-helical regions of cTnC, this was not statistically significant χ2 (p = 0.72). Exploring the variants in TNNC1 and PTMs of cTnC in the contexts of cardiomyopathy association, physiological modulation and potential non-canonical roles provides insights into the normal function of cTnC along with the many facets of TNNC1 as a cardiomyopathic gene.
Collapse
|
22
|
Lopez Davila AJ, Zhu L, Fritz L, Kraft T, Chalovich JM. The Positively Charged C-Terminal Region of Human Skeletal Troponin T Retards Activation and Decreases Calcium Sensitivity. Biochemistry 2020; 59:4189-4201. [PMID: 33074652 DOI: 10.1021/acs.biochem.0c00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcium binding to troponin C (TnC) activates striated muscle contraction by removing TnI (troponin I) from its inhibitory site on actin. Troponin T (TnT) links TnI with tropomyosin, causing tropomyosin to move from an inhibitory position on actin to an activating position. Positive charges within the C-terminal region of human cardiac TnT limit Ca2+ activation. We now show that the positively charged region of TnT has an even larger impact on skeletal muscle regulation. We prepared one variant of human skeletal TnT that had the C-terminal 16 residues truncated (Δ16) and another with an added C-terminal Cys residue and Ala substituted for the last 6 basic residues (251C-HAHA). Both mutants reduced (based on S1 binding kinetics) or eliminated (based on acrylodan-tropomyosin fluorescence) the first inactive state of actin at <10 nM free Ca2+. 251C-HAHA-TnT and Δ16-TnT mutants greatly increased ATPase activation at 0.2 mM Ca2+, even without high-affinity cross-bridge binding. They also shifted the force-pCa curve of muscle fibers to lower Ca2+ by 0.8-1.2 pCa units (the larger shift for 251C-HAHA-TnT). Shifts in force-pCa were maintained in the presence of para-aminoblebbistatin. The effects of modification of the C-terminal region of TnT on the kinetics of S1 binding to actin were somewhat different from those observed earlier with the cardiac analogue. In general, the C-terminal region of human skeletal TnT is critical to regulation, just as it is in the cardiac system, and is a potential target for modulating activity.
Collapse
Affiliation(s)
- Alfredo Jesus Lopez Davila
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Street 1, 103-Block 1-Ebene 03-1010, Hannover 30625, Germany
| | - Li Zhu
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Leon Fritz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Street 1, 103-Block 1-Ebene 03-1010, Hannover 30625, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Street 1, 103-Block 1-Ebene 03-1010, Hannover 30625, Germany
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
23
|
Johnson D, Landim-Vieira M, Solı S C, Zhu L, Robinson JM, Pinto JR, Chalovich JM. Eliminating the First Inactive State and Stabilizing the Active State of the Cardiac Regulatory System Alters Behavior in Solution and in Ordered Systems. Biochemistry 2020; 59:3487-3497. [PMID: 32840354 DOI: 10.1021/acs.biochem.0c00430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium binding to troponin C (TnC) is insufficient for full activation of myosin ATPase activity by actin-tropomyosin-troponin. Previous attempts to investigate full activation utilized ATP-free myosin or chemically modified myosin to stabilize the active state of regulated actin. We utilized the Δ14-TnT and the A8V-TnC mutants to stabilize the activated state at saturating Ca2+ and to eliminate one of the inactive states at low Ca2+. The observed effects differed in solution studies and in the more ordered in vitro motility assay and in skinned cardiac muscle preparations. At saturating Ca2+, full activation with Δ14-TnT·A8V-TnC decreased the apparent KM for actin-activated ATPase activity compared to bare actin filaments. Rates of in vitro motility increased at both high and low Ca2+ with Δ14-TnT; the maximum shortening speed at high Ca2+ increased 1.8-fold. Cardiac muscle preparations exhibited increased Ca2+ sensitivity and large increases in resting force with either Δ14-TnT or Δ14-TnT·A8V-TnC. We also observed a significant increase in the maximal rate of tension redevelopment. The results of full activation with Ca2+ and Δ14-TnT·A8V-TnC confirmed and extended several earlier observations using other means of reaching full activation. Furthermore, at low Ca2+, elimination of the first inactive state led to partial activation. This work also confirms, in three distinct experimental systems, that troponin is able to stabilize the active state of actin-tropomyosin-troponin without the need for high-affinity myosin binding. The results are relevant to the reason for two inactive states and for the role of force producing myosin in regulation.
Collapse
Affiliation(s)
- Dylan Johnson
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Christopher Solı S
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Li Zhu
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| | - John M Robinson
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
24
|
Clayton JS, McNamara EL, Goullee H, Conijn S, Muthsam K, Musk GC, Coote D, Kijas J, Testa AC, Taylor RL, O’Hara AJ, Groth D, Ottenheijm C, Ravenscroft G, Laing NG, Nowak KJ. Ovine congenital progressive muscular dystrophy (OCPMD) is a model of TNNT1 congenital myopathy. Acta Neuropathol Commun 2020; 8:142. [PMID: 32819427 PMCID: PMC7441672 DOI: 10.1186/s40478-020-01017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Ovine congenital progressive muscular dystrophy (OCPMD) was first described in Merino sheep flocks in Queensland and Western Australia in the 1960s and 1970s. The most prominent feature of the disease is a distinctive gait with stiffness of the hind limbs that can be seen as early as 3 weeks after birth. The disease is progressive. Histopathological examination had revealed dystrophic changes specifically in type I (slow) myofibres, while electron microscopy had demonstrated abundant nemaline bodies. Therefore, it was never certain whether the disease was a dystrophy or a congenital myopathy with dystrophic features. In this study, we performed whole genome sequencing of OCPMD sheep and identified a single base deletion at the splice donor site (+ 1) of intron 13 in the type I myofibre-specific TNNT1 gene (KT218690 c.614 + 1delG). All affected sheep were homozygous for this variant. Examination of TNNT1 splicing by RT-PCR showed intron retention and premature termination, which disrupts the highly conserved 14 amino acid C-terminus. The variant did not reduce TNNT1 protein levels or affect its localization but impaired its ability to modulate muscle contraction in response to Ca2+ levels. Identification of the causative variant in TNNT1 finally clarifies that the OCPMD sheep is in fact a large animal model of TNNT1 congenital myopathy. This model could now be used for testing molecular or gene therapies.
Collapse
Affiliation(s)
- Joshua S. Clayton
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Elyshia L. McNamara
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Hayley Goullee
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Stefan Conijn
- Department of Physiology, Amsterdam University Medical Center (Location VUmc), Amsterdam, Netherlands
| | - Keren Muthsam
- Animal Care Services, University of Western Australia, Nedlands, 6009 WA Australia
| | - Gabrielle C. Musk
- Animal Care Services, University of Western Australia, Nedlands, 6009 WA Australia
| | - David Coote
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, Brisbane, 4067 QLD Australia
| | - Alison C. Testa
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Amanda J. O’Hara
- School of Veterinary Medicine, Murdoch University, Murdoch, 6150 WA Australia
| | - David Groth
- School of Pharmacy and Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, 6102 WA Australia
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam University Medical Center (Location VUmc), Amsterdam, Netherlands
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Kristen J. Nowak
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Office of Population Health Genomics, Public and Aboriginal Health Division, Western Australian Department of Health, East Perth, 6004 WA Australia
| |
Collapse
|
25
|
Tadros HJ, Life CS, Garcia G, Pirozzi E, Jones EG, Datta S, Parvatiyar MS, Chase PB, Allen HD, Kim JJ, Pinto JR, Landstrom AP. Meta-analysis of cardiomyopathy-associated variants in troponin genes identifies loci and intragenic hot spots that are associated with worse clinical outcomes. J Mol Cell Cardiol 2020; 142:118-125. [PMID: 32278834 PMCID: PMC7275889 DOI: 10.1016/j.yjmcc.2020.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Chelsea S Life
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Gustavo Garcia
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Elisa Pirozzi
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward G Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Hugh D Allen
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|