1
|
Hykollari A, Malzl D, Jin C, Eschenbach C, Kianičková K, Wilson IB, Paschinger K. New insights into the N-glycomes of Dictyostelium species. BBA ADVANCES 2025; 7:100142. [PMID: 39911813 PMCID: PMC11795075 DOI: 10.1016/j.bbadva.2025.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Dictyostelia are cellular slime molds, a group of Amoebozoa, that form multicellular fruiting bodies out of aggregating cells able of differentiating into resistant spore forms. In previous studies on Dictyostelium discoideum, it was demonstrated that their N-glycans, as in most eukaryotes, derive from the Glc3Man9GlcNAc2-PP-Dol precursor; however, unique glyco-epitopes, including intersecting GlcNAc, core α1,3-fucosylation, sulphation and methylphosphorylation, were detected. In the present study, we have examined the N-glycans of two other Dictyostelium species, D. purpureum, whose genome is also sequenced, and D. giganteum. The detailed glycomic analysis of their fruiting bodies was based on isomeric separation of the glycan structures by HPLC, followed by mass spectrometry in combination with enzymatic digests and chemical treatments. Two features absent from the 'model' dictyostelid D. discoideum were found: especially in D. purpureum, a long linear galactose arm β1,4-linked to the β1,4-N-acetylglucosamine on the 'lower' A-branch of its oligo-mannosylated structures could be identified. In contrast, neutral N-glycans with multiple fucose residues attached to terminal mannoses were found in D. giganteum. All three species have common modifications on their anionic N-glycans: while (methyl)phosphorylated residues are always associated with terminal mannose residues, the sulphation position differs. While D. discoideum has 6-sulphation of subterminal mannose residues, D. giganteum and D. purpureum may rather have 2-sulphation of core α1,6-mannose. Overall, we have discovered species-specific glycan variations and our data will contribute to future comparative and functional studies on these three species within the same genus.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
- Department für Interdisziplinäre Lebenswissenschaften, Veterinärmedizinische Universität, 1160 Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Chunsheng Jin
- Institutionen för biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Carina Eschenbach
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
- Department für Interdisziplinäre Lebenswissenschaften, Veterinärmedizinische Universität, 1160 Wien, Austria
| | | | - Iain B.H. Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | | |
Collapse
|
2
|
Škerlová J, Brynda J, Šobotník J, Zákopčaník M, Novák P, Bourguignon T, Sillam-Dussès D, Řezáčová P. Crystal structure of blue laccase BP76, a unique termite suicidal defense weapon. Structure 2024; 32:1581-1585.e5. [PMID: 39151418 DOI: 10.1016/j.str.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Aging workers of the termite Neocapritermes taracua can defend their colony by sacrificing themselves by body rupture, mixing the externally stored blue laccase BP76 with hydroquinones to produce a sticky liquid rich in toxic benzoquinones. Here, we describe the crystal structure of BP76 isolated from N. taracua in its native form. The structure reveals several stabilization strategies, including compact folding, glycosylation, and flexible loops with disulfide bridges and tight dimer interface. The remarkable stability of BP76 maintains its catalytic activity in solid state during the lifespan of N. taracua workers, providing old workers with an efficient defensive weapon to protect their colony.
Collapse
Affiliation(s)
- Jana Škerlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, 165 00 Prague, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Marek Zákopčaník
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology, UR 4443, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| |
Collapse
|
3
|
Hu ZX, Lyu YS, Song HB, Liu L, Voglmeir J. Galactosylation of glycoconjugates using Pacific oyster β-1,3-galactosyltransferases. Carbohydr Res 2024; 544:109254. [PMID: 39216435 DOI: 10.1016/j.carres.2024.109254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The Pacific oyster (Magallana gigas) exhibits an extensive diversity of N- and O-linked glycoconjugates, offering significant potential for biotechnological applications. Through genomic data mining, we have identified and characterized a suite of β-1,3-galactosyltransferase enzymes, pivotal for the synthesis of glycan structures. Out of ten cloned gene candidates, six enzymes were successfully expressed recombinantly in Escherichia coli. Four of these enzymes exhibited measurable catalytic activity in the transfer of galactose to various acceptor substrates. Notably, MgB3GalT1 demonstrated the highest efficiency, achieving a 91.2 % conversion rate. This enzyme was proficient in glycosylating diverse glycan structures, including Core 2 O-glycans and several di-, tri-, and tetra-antennary complex N-glycan standards. Mass spectrometric analysis confirmed the successful modification of N-glycans. These findings open new approaches for utilizing oyster-derived enzymes in glycan-based therapeutics and molecular glycoengineering, highlighting their utility in synthetic applications and biotechnological advancements.
Collapse
Affiliation(s)
- Zi-Xuan Hu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yun-Sheng Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hui-Bo Song
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
5
|
Hykollari A, Paschinger K, Wilson IBH. Negative-mode mass spectrometry in the analysis of invertebrate, fungal, and protist N-glycans. MASS SPECTROMETRY REVIEWS 2022; 41:945-963. [PMID: 33955035 PMCID: PMC7616688 DOI: 10.1002/mas.21693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The approaches for analysis of N-glycans have radically altered in the last 20 years or so. Due to increased sensitivity, mass spectrometry has become the predominant method in modern glycomics. Here, we summarize recent studies showing that the improved resolution and detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has contributed greatly to the discovery of a large range of anionic and zwitterionic N-glycan structures across the different kingdoms of life, whereby MALDI-TOF MS in negative mode is less widely performed than in positive mode. However, its use enables the detection of key fragments indicative of certain sugar modifications such as sulfate, (methyl) phosphate, phosphoethanolamine, (methyl)aminoethylphosphonate, glucuronic, and sialic acid, thereby enabling certain isobaric glycan variations to be distinguished. As we also discuss in this review, complementary approaches such as negative-mode electrospray ionization-MS/MS, Fourier-transform ion cyclotron resonance MS, and ion mobility MS yield, respectively, cross-linkage fragments, high accuracy masses, and isomeric information, thus adding other components to complete the jigsaw puzzle when defining unusual glycan modifications from lower organisms.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur Wien, Wien, Austria
- VetCore Facility for Research, Veterinärmedizinische Universität Wien, Wien, Austria
| | | | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur Wien, Wien, Austria
| |
Collapse
|
6
|
Toustou C, Walet‐Balieu M, Kiefer‐Meyer M, Houdou M, Lerouge P, Foulquier F, Bardor M. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:732-748. [PMID: 34873817 PMCID: PMC9300197 DOI: 10.1111/brv.12820] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
N-glycosylation is an important post-translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N-glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N-glycan processing and further describe recent findings regarding the diversity of N-glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N-glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N-glycosylation are highlighted, especially the regulation of the biosynthesis of complex-type N-glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.
Collapse
Affiliation(s)
- Charlotte Toustou
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marie‐Laure Walet‐Balieu
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marie‐Christine Kiefer‐Meyer
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marine Houdou
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenHerestraat 49, Box 802Leuven3000Belgium
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - François Foulquier
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
| |
Collapse
|
7
|
Tseng HC, Hsiao CT, Yamakawa N, Guérardel Y, Khoo KH. Discovery Sulfoglycomics and Identification of the Characteristic Fragment Ions for High-Sensitivity Precise Mapping of Adult Zebrafish Brain-Specific Glycotopes. Front Mol Biosci 2022; 8:771447. [PMID: 34988116 PMCID: PMC8721812 DOI: 10.3389/fmolb.2021.771447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Mass spectrometry-based high-sensitivity mapping of terminal glycotopes relies on diagnostic MS2 and/or MS3 ions that can differentiate linkage and define the location of substituents including sulfates. Unambiguous identification of adult zebrafish glycotopes is particularly challenging due to the presence of extra β4-galactosylation on the basic building block of Galβ1-4GlcNAc that can be fucosylated and variably sialylated by N-acetyl, N-glycolyl, or deaminated neuraminic acids. Building on previous groundwork that have identified various organ-specific N- and O-glycans of adult zebrafish, we show here that all the major glycotopes of interest can be readily mapped by direct nano-LC-MS/MS analysis of permethylated glycans. Homing in on the brain-, intestine-, and ovary-derived samples, organ-specific glycomic reference maps based on overlaid extracted ion chromatograms of resolved glycan species, and composite charts of summed intensities of diagnostic MS2 ions representing the distribution and relative abundance of each of the glycotopes and sialic acid variants were established. Moreover, switching to negative mode analysis of sample fractions enriched in negatively charged glycans, we show, for the first time, that a full range of sulfated glycotopes is expressed in adult zebrafish. In particular, 3-O-sulfation of terminal Gal was commonly found, whereas terminal sulfated HexNAc as in GalNAcβ1-4GlcNAc (LacdiNAc), and 3-O-sulfated hexuronic acid as in HNK-1 epitope (SO3-3GlcAβ1-3Galβ1-4GlcNAc) were identified only in the brain and not in the intestine or ovaries analyzed in parallel. Other characteristic structural features of sulfated O- and N-glycans along with their diagnostic ions detected in this discovery mode sulfoglycomic work collectively expand our adult zebrafish glycome atlas, which can now allow for a more complete navigation and probing of the underlying sulfotransferases and glycosyltransferases, in search of the functional relevance of zebrafish-specific glycotopes. Of particular importance is the knowledge of glycomic features distinct from those of humans when using adult zebrafish as an alternative vertebrate model, rather than mouse, for brain-related glyco-neurobiology studies.
Collapse
Affiliation(s)
- Huan-Chuan Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Cheng-Te Hsiao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Nao Yamakawa
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, Lille, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576-UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Echinoderms: Structure and Possible Functions. Cells 2021; 10:cells10092331. [PMID: 34571980 PMCID: PMC8467561 DOI: 10.3390/cells10092331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
Echinoderms are one of the most ancient groups of invertebrates. The study of their genomes has made it possible to conclude that these animals have a wide variety of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The phylogenetic analysis shows that the MMPs and TIMPs underwent repeated duplication and active divergence after the separation of Ambulacraria (Echinodermata+Hemichordata) from the Chordata. In this regard the homology of the proteinases and their inhibitors between these groups of animals cannot be established. However, the MMPs of echinoderms and vertebrates have a similar domain structure. Echinoderm proteinases can be structurally divided into three groups-archetypal MMPs, matrilysins, and furin-activatable MMPs. Gelatinases homologous to those of vertebrates were not found in genomes of studied species and are probably absent in echinoderms. The MMPs of echinoderms possess lytic activity toward collagen type I and gelatin and play an important role in the mechanisms of development, asexual reproduction and regeneration. Echinoderms have a large number of genes encoding TIMPs and TIMP-like proteins. TIMPs of these animals, with a few exceptions, have a structure typical for this class of proteins. They contain an NTR domain and 10-12 conservatively located cysteine residues. Repeated duplication and divergence of TIMP genes of echinoderms was probably associated with an increase in the functional importance of the proteins encoded by them in the physiology of the animals.
Collapse
|
9
|
A mass spectrometry-based glycotope-centric cellular glycomics is the more fruitful way forward to see the forest for the trees. Biochem Soc Trans 2021; 49:55-69. [PMID: 33492355 DOI: 10.1042/bst20190861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The nature of protein glycosylation renders cellular glycomics a very challenging task in having to deal with all the disparate glycans carried on membrane glycoproteins. Rapid mapping by mass spectrometry analysis provides only a coarse sketch of the glycomic complexity based primarily on glycosyl compositions, whereby the missing high-resolution structural details require a combination of multi-mode separations and multi-stages of induced fragmentation to gain sufficiently discriminative precision, often at the expenses of throughput and sensitivity. Given the available technology and foreseeable advances in the near future, homing in on resolving the terminal fucosylated, sialylated and/or sulfated structural units, or glycotopes, maybe a more pragmatic and ultimately more rewarding approach to gain insights into myriad biological processes mediated by these terminal coding units carried on important glycoproteins, to be decoded by a host of endogenous glycan-binding proteins and antibodies. A broad overview of recent technical advances and limitations in cellular glycomics is first provided as a backdrop to the propounded glycotope-centric approach based on advanced nanoLC-MS2/MS3 analysis of permethylated glycans. To prioritize analytical focus on the more tangible glycotopes is akin to first identifying the eye-catching and characteristic-defining flowers and fruits of the glyco-forest, to see the forest for the trees. It has the best prospects of attaining the much-needed balance in sensitivity, structural precision and analytical throughput to match advances in other omics.
Collapse
|
10
|
West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol Cell Proteomics 2021; 20:100024. [PMID: 32994314 PMCID: PMC8724618 DOI: 10.1074/mcp.r120.002263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; VetCore Facility for Research/Proteomics Unit, Veterinärmedizinische Universität, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
11
|
Petit D, Teppa RE, Harduin-Lepers A. A phylogenetic view and functional annotation of the animal β1,3-glycosyltransferases of the GT31 CAZy family. Glycobiology 2020; 31:243-259. [PMID: 32886776 PMCID: PMC8022947 DOI: 10.1093/glycob/cwaa086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
The formation of β1,3-linkages on animal glycoconjugates is catalyzed by a subset of β1,3-glycosyltransferases grouped in the Carbohydrate-Active enZYmes family glycosyltransferase-31 (GT31). This family represents an extremely diverse set of β1,3-N-acetylglucosaminyltransferases [B3GNTs and Fringe β1,3-N-acetylglucosaminyltransferases], β1,3-N-acetylgalactosaminyltransferases (B3GALNTs), β1,3-galactosyltransferases [B3GALTs and core 1 β1,3-galactosyltransferases (C1GALTs)], β1,3-glucosyltransferase (B3GLCT) and β1,3-glucuronyl acid transferases (B3GLCATs or CHs). The mammalian enzymes were particularly well studied and shown to use a large variety of sugar donors and acceptor substrates leading to the formation of β1,3-linkages in various glycosylation pathways. In contrast, there are only a few studies related to other metazoan and lower vertebrates GT31 enzymes and the evolutionary relationships of these divergent sequences remain obscure. In this study, we used bioinformatics approaches to identify more than 920 of putative GT31 sequences in Metazoa, Fungi and Choanoflagellata revealing their deep ancestry. Sequence-based analysis shed light on conserved motifs and structural features that are signatures of all the GT31. We leverage pieces of evidence from gene structure, phylogenetic and sequence-based analyses to identify two major subgroups of GT31 named Fringe-related and B3GALT-related and demonstrate the existence of 10 orthologue groups in the Urmetazoa, the hypothetical last common ancestor of all animals. Finally, synteny and paralogy analysis unveiled the existence of 30 subfamilies in vertebrates, among which 5 are new and were named C1GALT2, C1GALT3, B3GALT8, B3GNT10 and B3GNT11. Altogether, these various approaches enabled us to propose the first comprehensive analysis of the metazoan GT31 disentangling their evolutionary relationships.
Collapse
Affiliation(s)
- Daniel Petit
- Glycosylation et différenciation cellulaire, EA 7500, Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Roxana Elin Teppa
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
12
|
Eckmair B, Jin C, Karlsson NG, Abed-Navandi D, Wilson IBH, Paschinger K. Glycosylation at an evolutionary nexus: the brittle star Ophiactis savignyi expresses both vertebrate and invertebrate N-glycomic features. J Biol Chem 2020; 295:3173-3188. [PMID: 32001617 DOI: 10.1074/jbc.ra119.011703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Echinoderms are among the most primitive deuterostomes and have been used as model organisms to understand chordate biology because of their close evolutionary relationship to this phylogenetic group. However, there are almost no data available regarding the N-glycomic capacity of echinoderms, which are otherwise known to produce a diverse set of species-specific glycoconjugates, including ones heavily modified by fucose, sulfate, and sialic acid residues. To increase the knowledge of diversity of carbohydrate structures within this phylum, here we conducted an in-depth analysis of N-glycans from a brittle star (Ophiactis savignyi) as an example member of the class Ophiuroidea. To this end, we performed a multi-step N-glycan analysis by HPLC and various exoglyosidase and chemical treatments in combination with MALDI-TOF MS and MS/MS. Using this approach, we found a wealth of hybrid and complex oligosaccharide structures reminiscent of those in higher vertebrates as well as some classical invertebrate glycan structures. 70% of these N-glycans were anionic, carrying either sialic acid, sulfate, or phosphate residues. In terms of glycophylogeny, our data position the brittle star between invertebrates and vertebrates and confirm the high diversity of N-glycosylation in lower organisms.
Collapse
Affiliation(s)
- Barbara Eckmair
- Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs Universitet, 405 30 Göteborg, Sweden
| | - Niclas G Karlsson
- Institutionen för Biomedicin, Göteborgs Universitet, 405 30 Göteborg, Sweden
| | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | | |
Collapse
|