1
|
Ran L, Fang Y, Cheng C, He Y, Shao Z, Kong Y, Huang H, Xu S, Luo X, Wang W, Hao X, Wang M. Genome-wide and phenome-wide studies provided insights into brain glymphatic system function and its clinical associations. SCIENCE ADVANCES 2025; 11:eadr4606. [PMID: 39823331 PMCID: PMC11740961 DOI: 10.1126/sciadv.adr4606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
We applied an MRI technique diffusion tensor imaging along the perivascular space (DTI-ALPS) for assessing glymphatic system (GS) in a genome-wide association study (GWAS) and phenome-wide association study (PheWAS) of 40,486 European individuals. Exploratory analysis revealed 17 genetic loci significantly associating with the regional DTI-ALPS index. We found 58 genes, including SPPL2C and EFCAB5, which prioritized in the DTI-ALPS index subtypes and associated with neurodegenerative diseases. PheWAS of 241 traits suggested that body mass index and blood pressure phenotypes closely related to GS function. Moreover, we detected disrupted GS function in 44 of 625 predefined disease conditions. Notably, Mendelian randomization and mediation analysis indicated that lower DTI-ALPS index was a risk factor for ischemic stroke (odds ratio = 1.56, P = 0.028) by partly mediating the risk factor of obesity. Results provide insights into the genetic architecture and mechanism for the DIT-ALPS index and highlight its great clinical value, especially in cerebral stroke.
Collapse
Affiliation(s)
- Lusen Ran
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Cheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqin He
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghe Shao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Kong
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Sridaran D, Mahajan NP. ACK1/TNK2 kinase: molecular mechanisms and emerging cancer therapeutics. Trends Pharmacol Sci 2025; 46:62-77. [PMID: 39721828 DOI: 10.1016/j.tips.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
Activated CDC42-associated kinase 1 (ACK1), encoded by the TNK2 gene, is a cytoplasmic non-receptor tyrosine kinase whose aberrant activation correlates positively with cancer severity. Recent research has revealed the functional relevance of this oncokinase - it is an epigenetic regulator that drives cancer progression in multiple malignancies. Although ACK1 is an attractive target for therapeutic intervention, incomplete knowledge of its diverse signaling mechanisms and the lack of specific inhibitors have challenged its clinical success. We summarize recent breakthroughs in understanding ACK1 regulation and cellular signaling, and shed light on its immunomodulatory role in balancing T cell activation. We provide a comprehensive overview of preclinical, proof-of-concept studies of potent ACK1-targeting small-molecule inhibitors that are expected to enter clinical trials for cancer patients.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University at St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Cancer Research Building, Washington University at St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Bolden NC, Pavchinskiy RG, Melikian HE. Dopamine transporter endocytic trafficking: Neuronal mechanisms and potential impact on DA-dependent behaviors. J Neurochem 2025; 169:e16284. [PMID: 39655745 PMCID: PMC11631176 DOI: 10.1111/jnc.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
The dopamine (DA) transporter (DAT) is a major determinant of DAergic neurotransmission, and is a primary target for addictive and therapeutic psychostimulants. Evidence accumulated over decades in cell lines and in vitro preparations revealed that DAT function is acutely regulated by membrane trafficking. Many of these findings have recently been validated in vivo and in situ, and several behavioral and physiological findings raise the possibility that regulated DAT trafficking may impact DA signaling and DA-dependent behaviors. Here we review key DAT trafficking findings across multiple systems, and discuss the cellular mechanisms that mediate DAT trafficking, as well as the endogenous receptors and signaling pathways that drive regulated DAT trafficking. We additionally discuss recent findings that DAT trafficking dysfunction correlates to perturbations in DA signaling and DA-dependent behaviors.
Collapse
Affiliation(s)
- Nicholas C. Bolden
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| | - Rebecca G. Pavchinskiy
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| | - Haley E. Melikian
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| |
Collapse
|
4
|
Sorkina T, Bagalkot T, Cheng MH, Guthrie DA, Newman AH, Watkins SC, Sorkin A. Monoamine transporter ubiquitination and inward-open conformation synergistically maximize transporter endocytosis. SCIENCE ADVANCES 2024; 10:eadq9793. [PMID: 39576869 PMCID: PMC11584022 DOI: 10.1126/sciadv.adq9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Monoamine transporters function in neuronal membranes to control extracellular concentrations of their substrates. Cell-surface expression of transporters is regulated by substrates and intracellular signaling, but the underlying mechanisms remain unclear. Here, we found that substrates of the dopamine transporter (DAT), amphetamine and dopamine, synergize with protein kinase C (PKC)-dependent DAT ubiquitination to markedly elevate clathrin-mediated endocytosis of DAT, which is accompanied by DAT movement out of plasma membrane protrusions with a negative curvature. Disruption of the outward-open (OO) DAT conformation or its stabilization in the inward-open (IO) conformation recapitulates substrate effects on DAT endocytosis. Amphetamine strongly increases PKC-dependent endocytosis of norepinephrine transporter (NET) but not of serotonin transporter (SERT), correlating with a substantially weaker ubiquitination of SERT compared to NET. We propose a "shape-transition" model whereby shifting from convex-shaped OO conformers to IO conformers minimizes retention of transporters in negatively curved membranes, which facilitates their PKC-dependent ubiquitination and recruitment to positively invaginated clathrin-coated membranes, driving robust transporter endocytosis.
Collapse
Affiliation(s)
- Tatiana Sorkina
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tarique Bagalkot
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Gao AYL, Montagna DR, Hirst WD, Temkin PA. RIT2 regulates autophagy lysosomal pathway induction and protects against α-synuclein pathology in a cellular model of Parkinson's disease. Neurobiol Dis 2024; 199:106568. [PMID: 38885848 DOI: 10.1016/j.nbd.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Substantial work has been devoted to better understand the contribution of the myriad of genes that may underly the development of Parkinson's disease (PD) and their role in disease etiology. The small GTPase Ras-like without CAAX2 (RIT2) is one such genetic risk factor, with one single nucleotide polymorphism in the RIT2 locus, rs12456492, having been associated with PD risk in multiple populations. While RIT2 has previously been shown to influence signaling pathways, dopamine transporter trafficking, and LRRK2 activity, its cellular function remains unclear. In the current study, we have situated RIT2 to be upstream of various diverse processes associated with PD. In cellular models, we have shown that RIT2 is necessary for activity-dependent changes in the expression of genes related to the autophagy-lysosomal pathway (ALP) by regulating the nuclear translocation of MiT/TFE3-family transcription factors. RIT2 is also associated with lysosomes and can regulate autophagic flux and clearance by regulating lysosomal hydrolase expression and activity. Interestingly, upregulation of RIT2 can augment ALP flux and protect against α-synuclein aggregation in cortical neurons. Taken together, the present study suggests that RIT2 can regulates gene expression upstream of ALP function and that enhancing RIT2 activity may provide therapeutic benefit in PD.
Collapse
Affiliation(s)
- Andy Y L Gao
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA; Biogen Postdoctoral Scientist Program, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Daniel R Montagna
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Warren D Hirst
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Paul A Temkin
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Rosoff DB, Hamandi AM, Bell AS, Mavromatis LA, Park LM, Jung J, Wagner J, Lohoff FW. Major Psychiatric Disorders, Substance Use Behaviors, and Longevity. JAMA Psychiatry 2024; 81:889-901. [PMID: 38888899 PMCID: PMC11195603 DOI: 10.1001/jamapsychiatry.2024.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 06/20/2024]
Abstract
Importance Observational studies suggest that major psychiatric disorders and substance use behaviors reduce longevity, making it difficult to disentangle their relationships with aging-related outcomes. Objective To evaluate the associations between the genetic liabilities for major psychiatric disorders, substance use behaviors (smoking and alcohol consumption), and longevity. Design, Settings, and Participants This 2-sample mendelian randomization (MR) study assessed associations between psychiatric disorders, substance use behaviors, and longevity using single-variable and multivariable models. Multiomics analyses were performed elucidating transcriptomic underpinnings of the MR associations and identifying potential proteomic therapeutic targets. This study sourced summary-level genome-wide association study (GWAS) data, gene expression, and proteomic data from cohorts of European ancestry. Analyses were performed from May 2022 to November 2023. Exposures Genetic susceptibility for major depression (n = 500 199), bipolar disorder (n = 413 466), schizophrenia (n = 127 906), problematic alcohol use (n = 435 563), weekly alcohol consumption (n = 666 978), and lifetime smoking index (n = 462 690). Main Outcomes and Measures The main outcome encompassed aspects of health span, lifespan, and exceptional longevity. Additional outcomes were epigenetic age acceleration (EAA) clocks. Results Findings from multivariable MR models simultaneously assessing psychiatric disorders and substance use behaviorsm suggest a negative association between smoking and longevity in cohorts of European ancestry (n = 709 709; 431 503 [60.8%] female; β, -0.33; 95% CI, -0.38 to -0.28; P = 4.59 × 10-34) and with increased EAA (n = 34 449; 18 017 [52.3%] female; eg, PhenoAge: β, 1.76; 95% CI, 0.72 to 2.79; P = 8.83 × 10-4). Transcriptomic imputation and colocalization identified 249 genes associated with smoking, including 36 novel genes not captured by the original smoking GWAS. Enriched pathways included chromatin remodeling and telomere assembly and maintenance. The transcriptome-wide signature of smoking was inversely associated with longevity, and estimates of individual smoking-associated genes, eg, XRCC3 and PRMT6, aligned with the smoking-longevity MR analyses, suggesting underlying transcriptomic mediators. Cis-instrument MR prioritized brain proteins associated with smoking behavior, including LY6H (β, 0.02; 95% CI, 0.01 to 0.03; P = 2.37 × 10-6) and RIT2 (β, 0.02; 95% CI, 0.01 to 0.03; P = 1.05 × 10-5), which had favorable adverse-effect profiles across 367 traits evaluated in phenome-wide MR. Conclusions The findings suggest that the genetic liability of smoking, but not of psychiatric disorders, is associated with longevity. Transcriptomic associations offer insights into smoking-related pathways, and identified proteomic targets may inform therapeutic development for smoking cessation strategies.
Collapse
Affiliation(s)
- Daniel B. Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
- Radcliffe Department of Medicine, NIH-Oxford-Cambridge Scholars Program, University of Oxford, United Kingdom
| | - Ali M. Hamandi
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Andrew S. Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Lucas A. Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Lauren M. Park
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Kearney PJ, Zhang Y, Liang M, Tan Y, Kahuno E, Conklin TL, Fagan RR, Pavchinskiy RG, Shaffer SA, Yue Z, Melikian HE. Silencing Parkinson's risk allele Rit2 sex-specifically compromises motor function and dopamine neuron viability. NPJ Parkinsons Dis 2024; 10:41. [PMID: 38395968 PMCID: PMC10891080 DOI: 10.1038/s41531-024-00648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and arises from dopamine (DA) neuron death selectively in the substantia nigra pars compacta (SNc). Rit2 is a reported PD risk allele, and recent single cell transcriptomic studies identified a major RIT2 cluster in PD DA neurons, potentially linking Rit2 expression loss to a PD patient cohort. However, it is still unknown whether Rit2 loss itself impacts DA neuron function and/or viability. Here we report that conditional Rit2 silencing in mouse DA neurons drove motor dysfunction that occurred earlier in males than females and was rescued at early stages by either inhibiting the DA transporter (DAT) or with L-DOPA treatment. Motor dysfunction was accompanied by decreased DA release, striatal DA content, phenotypic DAergic markers, DA neurons, and DAergic terminals, with increased pSer129-alpha synuclein and pSer935-LRRK2 expression. These results provide clear evidence that Rit2 loss is causal for SNc cell death and motor dysfunction, and reveal key sex-specific differences in the response to Rit2 loss.
Collapse
Affiliation(s)
- Patrick J Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
- University of California, San Diego, CA, USA
| | - Yuanxi Zhang
- Department of Neurology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marianna Liang
- Department of Neurology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yanglan Tan
- Mass Spectrometry Facility, Department of Biochemistry and Molecular Biotechnology, UMASS Chan Medical School, Worcester, MA, USA
- DMPK Group, Merck, S. San Francisco, CA, USA
| | - Elizabeth Kahuno
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
| | - Tucker L Conklin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
- Regeneron, Albany, NY, USA
| | - Rita R Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
- University of California, San Francisco, CA, USA
| | - Rebecca G Pavchinskiy
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Scott A Shaffer
- Mass Spectrometry Facility, Department of Biochemistry and Molecular Biotechnology, UMASS Chan Medical School, Worcester, MA, USA
| | - Zhenyu Yue
- Department of Neurology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haley E Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA.
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Bagalkot T, Sorkin A. Amphetamine Induces Sex-Dependent Loss of the Striatal Dopamine Transporter in Sensitized Mice. eNeuro 2024; 11:ENEURO.0491-23.2023. [PMID: 38164591 PMCID: PMC10849026 DOI: 10.1523/eneuro.0491-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph administration induces transient DAT endocytosis, which, among other Amph effects on dopaminergic neurons, elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT are unknown. Hence, we developed a 14 d Amph-sensitization protocol in knock-in mice expressing HA-epitope-tagged DAT (HA-DAT) and investigated the effects of Amph challenge on sensitized HA-DAT animals. The Amph challenge resulted in the highest locomotor activity on Day 14 in both sexes, which was sustained for 1 h in male but not female mice. Strikingly, significant (by 30-60%) loss of the HA-DAT protein in the striatum was caused by the Amph challenge of sensitized males but not females. Amph also reduced V max of dopamine transport in the striatal synaptosomes of males without changing K m values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT colocalization with the endosomal protein VPS35 only in Amph-challenged males. Amph-induced loss of striatal HA-DAT in sensitized mice was blocked by chloroquine, vacuolin-1, and inhibitor of Rho-associated kinases ROCK1/2, indicative of the involvement of endocytic trafficking in the DAT protein loss. Interestingly, an apparent degradation of HA-DAT protein was observed in the nucleus accumbens and not in the dorsal striatum. We propose that Amph challenge in sensitized mice triggers Rho-mediated endocytosis and post-endocytic trafficking of DAT in a brain-region-specific and sex-dependent manner.
Collapse
Affiliation(s)
- Tarique Bagalkot
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
| |
Collapse
|
9
|
Bu M, Follett J, Deng I, Tatarnikov I, Wall S, Guenther D, Maczis M, Wimsatt G, Milnerwood A, Moehle MS, Khoshbouei H, Farrer MJ. Inhibition of LRRK2 kinase activity rescues deficits in striatal dopamine physiology in VPS35 p.D620N knock-in mice. NPJ Parkinsons Dis 2023; 9:167. [PMID: 38110354 PMCID: PMC10728137 DOI: 10.1038/s41531-023-00609-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Dysregulation of dopamine neurotransmission profoundly affects motor, motivation and learning behaviors, and can be observed during the prodromal phase of Parkinson's disease (PD). However, the mechanism underlying these pathophysiological changes remains to be elucidated. Mutations in vacuolar protein sorting 35 (VPS35) and leucine-rich repeat kinase 2 (LRRK2) both lead to autosomal dominant PD, and VPS35 and LRRK2 may physically interact to govern the trafficking of synaptic cargos within the endo-lysosomal network in a kinase-dependent manner. To better understand the functional role of VPS35 and LRRK2 on dopamine physiology, we examined Vps35 haploinsufficient (Haplo) and Vps35 p.D620N knock-in (VKI) mice and how their behavior, dopamine kinetics and biochemistry are influenced by LRRK2 kinase inhibitors. We found Vps35 p.D620N significantly elevates LRRK2-mediated phosphorylation of Rab10, Rab12 and Rab29. In contrast, Vps35 haploinsufficiency reduces phosphorylation of Rab12. While striatal dopamine transporter (DAT) expression and function is similarly impaired in both VKI and Haplo mice, that physiology is normalized in VKI by treatment with the LRRK2 kinase inhibitor, MLi-2. As a corollary, VKI animals show a significant increase in amphetamine induced hyperlocomotion, compared to Haplo mice, that is also abolished by MLi-2. Taken together, these data show Vps35 p.D620N confers a gain-of-function with respect to LRRK2 kinase activity, and that VPS35 and LRRK2 functionally interact to regulate DAT function and striatal dopamine transmission.
Collapse
Affiliation(s)
- Mengfei Bu
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jordan Follett
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Isaac Deng
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Igor Tatarnikov
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shannon Wall
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dylan Guenther
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Melissa Maczis
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Genevieve Wimsatt
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Austen Milnerwood
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Habibeh Khoshbouei
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Kearney PJ, Zhang Y, Tan Y, Kahuno E, Conklin TL, Fagan RR, Pavchinskiy RG, Shafer SA, Yue Z, Melikian HE. Rit2 silencing in dopamine neurons drives a Parkinsonian phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538430. [PMID: 37162843 PMCID: PMC10168302 DOI: 10.1101/2023.04.26.538430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and arises from dopamine (DA) neuron death selectively in the substantia nigra pars compacta (SNc). Rit2 is a reported PD risk allele, and recent single cell transcriptomic studies identified a major RIT2 cluster in PD DA neurons, potentially linking Rit2 expression loss to a PD patient cohort. However, it is still unknown whether Rit2 loss itself is causative for PD or PD-like symptoms. Here we report that conditional Rit2 silencing in mouse DA neurons drove motor dysfunction that occurred earlier in males than females and was rescued at early stages by either inhibiting the DA transporter (DAT) or with L-DOPA treatment. Motor dysfunction was accompanied by decreased DA release, striatal DA content, phenotypic DAergic markers, DA neurons, and DAergic terminals, with increased pSer129-alpha synuclein and pSer935-LRRK2 expression. These results provide the first evidence that Rit2 loss is causal for SNc cell death and a PD-like phenotype, and reveal key sex-specific differences in the response to Rit2 loss.
Collapse
|
11
|
Yamamoto Y, Takahata K, Kubota M, Takeuchi H, Moriguchi S, Sasaki T, Seki C, Endo H, Matsuoka K, Tagai K, Kimura Y, Kurose S, Mimura M, Kawamura K, Zhang MR, Higuchi M. Association of protein distribution and gene expression revealed by positron emission tomography and postmortem gene expression in the dopaminergic system of the human brain. Eur J Nucl Med Mol Imaging 2023; 50:3928-3936. [PMID: 37581725 DOI: 10.1007/s00259-023-06390-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution. METHODS We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman's rank correlation. RESULTS We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140). CONCLUSION We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.
Collapse
Affiliation(s)
- Yasuharu Yamamoto
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
| | - Manabu Kubota
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hiroyoshi Takeuchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Sho Moriguchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Takeshi Sasaki
- Department of Psychiatry, Tokyo Metropolitan Bokutoh Hospital, 4-23-15 Kotobashi, Sumida-Ku, Tokyo, 130-8575, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Yasuyuki Kimura
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan
| | - Shin Kurose
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| |
Collapse
|
12
|
Miller EJ, Khoshbouei H. Immunity on ice: The impact of methamphetamine on peripheral immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:217-250. [PMID: 38467482 DOI: 10.1016/bs.apha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Methamphetamine (METH) regulation of the dopamine transporter (DAT) and central nervous system (CNS) dopamine transmission have been extensively studied. However, our understanding of how METH influences neuroimmune communication and innate and adaptive immunity is still developing. Recent studies have shed light on the bidirectional communication between the CNS and the peripheral immune system. They have established a link between CNS dopamine levels, dopamine neuronal activity, and peripheral immunity. Akin to dopamine neurons in the CNS, a majority of peripheral immune cells also express DAT, implying that in addition to their effect in the CNS, DAT ligands such as methamphetamine may have a role in modulating peripheral immunity. For example, by directly influencing DAT-expressing peripheral immune cells and thus peripheral immunity, METH can trigger a feed-forward cascade that impacts the bidirectional communication between the CNS and peripheral immune system. In this review, we aim to discuss the current understanding of how METH modulates both innate and adaptive immunity and identify areas where knowledge gaps exist. These gaps will then be considered in guiding future research directions.
Collapse
Affiliation(s)
- Emily J Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
13
|
Shetty M, Bolland DE, Morrell J, Grove BD, Foster JD, Vaughan RA. Dopamine transporter membrane mobility is bidirectionally regulated by phosphorylation and palmitoylation. Curr Res Physiol 2023; 6:100106. [PMID: 38107792 PMCID: PMC10724222 DOI: 10.1016/j.crphys.2023.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The primary regulator of dopamine availability in the brain is the dopamine transporter (DAT), a plasma membrane protein that drives reuptake of released dopamine from the extracellular space into the presynaptic neuron. DAT activity is regulated by post-translational modifications that establish clearance capacity through impacts on transport kinetics, and dysregulation of these events may underlie dopaminergic imbalances in mood and psychiatric disorders. Here, using fluorescence recovery after photobleaching, we show that phosphorylation and palmitoylation induce opposing effects on DAT lateral membrane mobility, which may influence functional outcomes by regulating subcellular localization and binding partner interactions. Membrane mobility was also impacted by amphetamine and in polymorphic variant A559V in directions consistent with enhanced phosphorylation. These findings grow the list of DAT properties controlled by these post-translational modifications and highlight their role in establishment of dopaminergic tone in physiological and pathophysiological states.
Collapse
Affiliation(s)
- Madhur Shetty
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | | | - Joshua Morrell
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Bryon D. Grove
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| |
Collapse
|
14
|
Bagalkot T, Sorkin A. Endocytic down-regulation of the striatal dopamine transporter by amphetamine in sensitized mice in sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541165. [PMID: 37293021 PMCID: PMC10245703 DOI: 10.1101/2023.05.17.541165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph is proposed to cause transient DAT endocytosis which among other Amph effects on dopaminergic neurons elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT traffic are unknown. Hence, we developed a 14-day Amph-sensitization protocol in knock-in mice expressing HA-epitope tagged DAT (HA-DAT) and investigated effects of Amph challenge on HA-DAT in sensitized animals. Amph challenge resulted in the highest locomotor activity on day 14 in both sexes, which was however sustained for 1 hour in male but not female mice. Strikingly, significant (by 30-60%) reduction in the amount of the HA-DAT protein in striatum was observed in response to Amph challenge of sensitized males but not females. Amph reduced Vmax of dopamine transport in striatal synaptosomes of males without changing Km values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT co-localization with the endosomal protein VPS35 only in males. Amph-induced HA-DAT down-regulation in the striatum of sensitized mice was blocked by chloroquine, vacuolin-1 (inhibitor of PIKfive kinase), and inhibitor of Rho-associated kinases (ROCK1/2), indicative of the involvement of endocytic trafficking in DAT down-regulation. Interestingly, HA-DAT protein down-regulation was observed in nucleus accumbens and not in dorsal striatum. We propose that Amph challenge in sensitized mice leads to ROCK-dependent endocytosis and post-endocytic traffic of DAT in a brain-region-specific and sex-dependent manner.
Collapse
|
15
|
Obergasteiger J, Castonguay AM, Pizzi S, Magnabosco S, Frapporti G, Lobbestael E, Baekelandt V, Hicks AA, Pramstaller PP, Gravel C, Corti C, Lévesque M, Volta M. The small GTPase Rit2 modulates LRRK2 kinase activity, is required for lysosomal function and protects against alpha-synuclein neuropathology. NPJ Parkinsons Dis 2023; 9:44. [PMID: 36973269 PMCID: PMC10042831 DOI: 10.1038/s41531-023-00484-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Anne-Marie Castonguay
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Stefano Magnabosco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Claude Gravel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada.
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy.
| |
Collapse
|
16
|
Nourse JB, Russell SN, Moniz NA, Peter K, Seyfarth LM, Scott M, Park HA, Caldwell KA, Caldwell GA. Integrated regulation of dopaminergic and epigenetic effectors of neuroprotection in Parkinson's disease models. Proc Natl Acad Sci U S A 2023; 120:e2210712120. [PMID: 36745808 PMCID: PMC9963946 DOI: 10.1073/pnas.2210712120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
Whole-exome sequencing of Parkinson's disease (PD) patient DNA identified single-nucleotide polymorphisms (SNPs) in the tyrosine nonreceptor kinase-2 (TNK2) gene. Although this kinase had a previously demonstrated activity in preventing the endocytosis of the dopamine reuptake transporter (DAT), a causal role for TNK2-associated dysfunction in PD remains unresolved. We postulated the dopaminergic neurodegeneration resulting from patient-associated variants in TNK2 were a consequence of aberrant or prolonged TNK2 overactivity, the latter being a failure in TNK2 degradation by an E3 ubiquitin ligase, neuronal precursor cell-expressed developmentally down-regulated-4 (NEDD4). Interestingly, systemic RNA interference protein-3 (SID-3) is the sole TNK2 ortholog in the nematode Caenorhabditis elegans, where it is an established effector of epigenetic gene silencing mediated through the dsRNA-transporter, SID-1. We hypothesized that TNK2/SID-3 represents a node of integrated dopaminergic and epigenetic signaling essential to neuronal homeostasis. Use of a TNK2 inhibitor (AIM-100) or a NEDD4 activator [N-aryl benzimidazole 2 (NAB2)] in bioassays for either dopamine- or dsRNA-uptake into worm dopaminergic neurons revealed that sid-3 mutants displayed robust neuroprotection from 6-hydroxydopamine (6-OHDA) exposures, as did AIM-100 or NAB2-treated wild-type animals. Furthermore, NEDD4 activation by NAB2 in rat primary neurons correlated to a reduction in TNK2 levels and the attenuation of 6-OHDA neurotoxicity. CRISPR-edited nematodes engineered to endogenously express SID-3 variants analogous to TNK2 PD-associated SNPs exhibited enhanced susceptibility to dopaminergic neurodegeneration and circumvented the RNAi resistance characteristic of SID-3 dysfunction. This research exemplifies a molecular etiology for PD whereby dopaminergic and epigenetic signaling are coordinately regulated to confer susceptibility or resilience to neurodegeneration.
Collapse
Affiliation(s)
- J. Brucker Nourse
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Shannon N. Russell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Nathan A. Moniz
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Kylie Peter
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Lena M. Seyfarth
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Madison Scott
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL35487
| | - Han-A Park
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL35487
- Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL35487
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL35487
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
- Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL35487
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL35487
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Research in the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL35487
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Research in the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| |
Collapse
|
17
|
Wang J, Wei S, Zhang J, Wang H. Association between RIT2 rs16976358 Polymorphism and Autism Spectrum Disorder in Asian Populations: A Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8886927. [PMID: 36820223 PMCID: PMC9938773 DOI: 10.1155/2023/8886927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Recent studies have shown that Ras-like without CAAX2 (RIT2) polymorphism is a susceptible factor for Parkinson's disease (PD) and autism spectrum disorder (ASD). SNP rs12456492 and rs16976358 show the emerging evidence of increased risk of PD and ASD, respectively. A meta-analysis examining the relationship between rs12456492 and PD was reported, but the association between rs16976358 and ASD has not been investigated. METHODS We searched literature from the databases PubMed, Embase, Google Scholar, ScienceDirect, EBSCOhost, OVID, Web of Science, and Wiley up to February 2021. Three studies including 1160 ASD cases and 1367 controls were eventually enrolled in the meta-analysis based on strict inclusion and exclusion criteria. RESULTS All genetics models indicate a significant association between rs16976358 polymorphism and ASD susceptibility (C vs. T: p = 0.001; CC vs. TT: p = 0.001; CT vs. TT: p = 0.009; CC+CT vs. TT: p = 0.001; CC vs. CT+TT: p = 0.001; TT+CC vs. CT: p = 0.013). The results of sensitivity analysis and publication bias of Begg's and Egger's tests were stable in the models of allele (C vs. T), codominant (CC vs. TT), dominant (CC+CT vs. TT), and recessive (CC vs. CT+TT). CONCLUSIONS Our meta-analysis exhibits that the allele C, CC, and CT genotyping of rs16976358 suggest the risk for ASD, but additional studies using a large sample size and ethnically diverse populations need to be included in the future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shoupeng Wei
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20807, USA
| | - Jin Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hu Wang
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore 21215, USA
| |
Collapse
|
18
|
Kearney PJ, Bolden NC, Kahuno E, Conklin TL, Martin GE, Lubec G, Melikian HE. Presynaptic Gq-coupled receptors drive biphasic dopamine transporter trafficking that modulates dopamine clearance and motor function. J Biol Chem 2023; 299:102900. [PMID: 36640864 PMCID: PMC9943899 DOI: 10.1016/j.jbc.2023.102900] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Extracellular dopamine (DA) levels are constrained by the presynaptic DA transporter (DAT), a major psychostimulant target. Despite its necessity for DA neurotransmission, DAT regulation in situ is poorly understood, and it is unknown whether regulated DAT trafficking impacts dopaminergic signaling and/or behaviors. Leveraging chemogenetics and conditional gene silencing, we found that activating presynaptic Gq-coupled receptors, either hM3Dq or mGlu5, drove rapid biphasic DAT membrane trafficking in ex vivo striatal slices, with region-specific differences between ventral and dorsal striata. DAT insertion required D2 DA autoreceptors and intact retromer, whereas DAT retrieval required PKC activation and Rit2. Ex vivo voltammetric studies revealed that DAT trafficking impacts DA clearance. Furthermore, dopaminergic mGlu5 silencing elevated DAT surface expression and abolished motor learning, which was rescued by inhibiting DAT with a subthreshold CE-158 dose. We discovered that presynaptic DAT trafficking is complex, multimodal, and region specific, and for the first time, we identified cell autonomous mechanisms that govern presynaptic DAT tone. Importantly, the findings are consistent with a role for regulated DAT trafficking in DA clearance and motor function.
Collapse
Affiliation(s)
- Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Elizabeth Kahuno
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Tucker L. Conklin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gilles E. Martin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,For correspondence: Haley E. Melikian
| |
Collapse
|
19
|
Grochecki P, Smaga I, Surowka P, Marszalek-Grabska M, Kalaba P, Dragacevic V, Kotlinska P, Filip M, Lubec G, Kotlinska JH. Novel Dopamine Transporter Inhibitor, CE-123, Ameliorates Spatial Memory Deficits Induced by Maternal Separation in Adolescent Rats: Impact of Sex. Int J Mol Sci 2022; 23:ijms231810718. [PMID: 36142621 PMCID: PMC9503873 DOI: 10.3390/ijms231810718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal separation (MS) is a key contributor to neurodevelopmental disorders, including learning disabilities. To test the hypothesis that dopamine signaling is a major factor in this, an atypical new dopamine transporter (DAT) inhibitor, CE-123, was assessed for its potential to counteract the MS-induced spatial learning and memory deficit in male and female rats. Hence, neonatal rats (postnatal day (PND)1 to 21) were exposed to MS (180 min/day). Next, the acquisition of spatial learning and memory (Barnes maze task) and the expression of dopamine D1 receptor, dopamine transporter (DAT), and the neuronal GTPase, RIT2, which binds DAT in the vehicle-treated rats were evaluated in the prefrontal cortex and hippocampus in the adolescent animals. The results show that MS impairs the acquisition of spatial learning and memory in rats, with a more severe effect in females. Moreover, the MS induced upregulation of DAT and dopamine D1 receptors expression in the prefrontal cortex and hippocampus in adolescent rats. Regarding RIT2, the expression was decreased in the hippocampus for both the males and females, however, in the prefrontal cortex, reduction was found only in the females, suggesting that there are region-specific differences in DAT endocytic trafficking. CE-123 ameliorated the behavioral deficits associated with MS. Furthermore, it decreased the MS-induced upregulation of D1 receptor expression level in the hippocampus. These effects were more noted in females. Overall, CE-123, an atypical DAT inhibitor, is able to restore cognitive impairment and dopamine signaling in adolescent rats exposed to MS—with more evident effect in females than males.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Surowka
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
| | | | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81-448-7255; Fax: +48-81-448-7250
| |
Collapse
|
20
|
Gunturkun MH, Flashner E, Wang T, Mulligan MK, Williams RW, Prins P, Chen H. GeneCup: mining PubMed and GWAS catalog for gene-keyword relationships. G3 (BETHESDA, MD.) 2022; 12:jkac059. [PMID: 35285473 PMCID: PMC9073678 DOI: 10.1093/g3journal/jkac059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
Abstract
Interpreting and integrating results from omics studies typically requires a comprehensive and time consuming survey of extant literature. GeneCup is a literature mining web service that retrieves sentences containing user-provided gene symbols and keywords from PubMed abstracts. The keywords are organized into an ontology and can be extended to include results from human genome-wide association studies. We provide a drug addiction keyword ontology that contains over 300 keywords as an example. The literature search is conducted by querying the PubMed server using a programming interface, which is followed by retrieving abstracts from a local copy of the PubMed archive. The main results presented to the user are sentences where gene symbol and keywords co-occur. These sentences are presented through an interactive graphical interface or as tables. All results are linked to the original abstract in PubMed. In addition, a convolutional neural network is employed to distinguish sentences describing systemic stress from those describing cellular stress. The automated and comprehensive search strategy provided by GeneCup facilitates the integration of new discoveries from omic studies with existing literature. GeneCup is free and open source software. The source code of GeneCup and the link to a running instance is available at https://github.com/hakangunturkun/GeneCup.
Collapse
Affiliation(s)
- Mustafa H Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Efraim Flashner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| |
Collapse
|
21
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
22
|
Fagan RR, Kearney PJ, Luethi D, Bolden NC, Sitte HH, Emery P, Melikian HE. Dopaminergic Ric GTPase activity impacts amphetamine sensitivity and sleep quality in a dopamine transporter-dependent manner in Drosophila melanogaster. Mol Psychiatry 2021; 26:7793-7802. [PMID: 34471250 PMCID: PMC8881384 DOI: 10.1038/s41380-021-01275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Dopamine (DA) is required for movement, sleep, and reward, and DA signaling is tightly controlled by the presynaptic DA transporter (DAT). Therapeutic and addictive psychostimulants, including methylphenidate (Ritalin; MPH), cocaine, and amphetamine (AMPH), markedly elevate extracellular DA via their actions as competitive DAT inhibitors (MPH, cocaine) and substrates (AMPH). DAT silencing in mice and invertebrates results in hyperactivity, reduced sleep, and blunted psychostimulant responses, highlighting DAT's essential role in DA-dependent behaviors. DAT surface expression is not static; rather it is dynamically regulated by endocytic trafficking. PKC-stimulated DAT endocytosis requires the neuronal GTPase, Rit2, and Rit2 silencing in mouse DA neurons impacts psychostimulant sensitivity. However, it is unknown whether or not Rit2-mediated changes in psychostimulant sensitivity are DAT-dependent. Here, we leveraged Drosophila melanogaster to test whether the Drosophila Rit2 ortholog, Ric, impacts dDAT function, trafficking, and DA-dependent behaviors. Orthologous to hDAT and Rit2, dDAT and Ric directly interact, and the constitutively active Ric mutant Q117L increased dDAT surface levels and function in cell lines and ex vivo Drosophila brains. Moreover, DAergic RicQ117L expression caused sleep fragmentation in a DAT-dependent manner but had no effect on total sleep and daily locomotor activity. Importantly, we found that Rit2 is required for AMPH-stimulated DAT internalization in mouse striatum, and that DAergic RicQ117L expression significantly increased Drosophila AMPH sensitivity in a DAT-dependent manner, suggesting a conserved impact of Ric-dependent DAT trafficking on AMPH sensitivity. These studies support that the DAT/Rit2 interaction impacts both baseline behaviors and AMPH sensitivity, potentially by regulating DAT trafficking.
Collapse
Affiliation(s)
- Rita R. Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Dino Luethi
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Harald H. Sitte
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - Patrick Emery
- Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA,Address correspondence to: Haley Melikian, Ph.D., Department of Neurobiology, UMASS Medical School, LRB 726, 364 Plantation St., Worcester, MA 01605, 774-455-4308 (phone), 508-856-6266 (fax),
| |
Collapse
|
23
|
Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis 2021; 7:22. [PMID: 33674612 PMCID: PMC7935902 DOI: 10.1038/s41531-021-00161-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
The dopamine transporter (DAT) transports extracellular dopamine into the intracellular space contributing to the regulation of dopamine neurotransmission. A reduction of DAT density is implicated in Parkinson's disease (PD) by neuroimaging; dopamine turnover is dopamine turnover is elevated in early symptomatic PD and in presymptomatic individuals with monogenic mutations causal for parkinsonism. As an integral plasma membrane protein, DAT surface expression is dynamically regulated through endocytic trafficking, enabling flexible control of dopamine signaling in time and space, which in turn critically modulates movement, motivation and learning behavior. Yet the cellular machinery and functional implications of DAT trafficking remain enigmatic. In this review we summarize mechanisms governing DAT trafficking under normal physiological conditions and discuss how PD-linked mutations may disturb DAT homeostasis. We highlight the complexity of DAT trafficking and reveal DAT dysregulation as a common theme in genetic models of parkinsonism.
Collapse
|
24
|
Nolan SO, Zachry JE, Johnson AR, Brady LJ, Siciliano CA, Calipari ES. Direct dopamine terminal regulation by local striatal microcircuitry. J Neurochem 2020; 155:475-493. [PMID: 32356315 DOI: 10.1111/jnc.15034] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Regulation of axonal dopamine release by local microcircuitry is at the hub of several biological processes that govern the timing and magnitude of signaling events in reward-related brain regions. An important characteristic of dopamine release from axon terminals in the striatum is that it is rapidly modulated by local regulatory mechanisms. These processes can occur via homosynaptic mechanisms-such as presynaptic dopamine autoreceptors and dopamine transporters - as well heterosynaptic mechanisms such as retrograde signaling from postsynaptic cholinergic and dynorphin systems, among others. Additionally, modulation of dopamine release via diffusible messengers, such as nitric oxide and hydrogen peroxide, allows for various metabolic factors to quickly and efficiently regulate dopamine release and subsequent signaling. Here we review how these mechanisms work in concert to influence the timing and magnitude of striatal dopamine signaling, independent of action potential activity at the level of dopaminergic cell bodies in the midbrain, thereby providing a parallel pathway by which dopamine can be modulated. Understanding the complexities of local regulation of dopamine signaling is required for building comprehensive frameworks of how activity throughout the dopamine system is integrated to drive signaling and control behavior.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Amy R Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|