1
|
Tangsongcharoen C, Toca-Herrera JL, Promdonkoy B, Srisucharitpanit K, Tharad S. Oligomer assembly of Bacillus thuringiensis Cyt2Aa2 on lipid membranes reveals a thread-like structure. Toxicon X 2025; 26:100220. [PMID: 40162061 PMCID: PMC11951046 DOI: 10.1016/j.toxcx.2025.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/20/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Bacillus thuringiensis, a well-known insecticidal bacterium, produces several insecticidal proteins, including cytolytic (Cyt) proteins. Cyt proteins bind directly to the lipid membrane and form large protein complexes. In addition to the protein ladder bands, information on the oligomeric structure in lipid membranes is necessary to understand the mechanism of Cyt proteins on target cells. In this work, we have investigated the oligomeric Cyt2Aa2 complex with synthetic lipid and with erythrocyte membranes. When the activated Cyt2Aa2 protein was incubated with these lipid membranes, the protein ladder pattern relevant to hemolytic activity was detected in SDS-PAGE. Moreover, AFM topographic images revealed a fusilli-like structure and a ring-like structure for synthetic POPC and POPC/Chol, respectively. Furthermore, TEM micrographs provided an additional information on the oligomeric structure of Cyt2Aa2 in erythrocytes. Cyt2Aa2 appears to oligomerise/aggregate into mixed structures between the filamentous structure and small protein complexes in erythrocytes. In addition, a nanopore was found to be a substructure of the filamentous structure. These results strengthen the understanding of Cyt2Aa2 behavior in these two membrane systems, the fusilli and ring-like structures, depending on the type of lipid membrane. Furthermore, the structure of Cyt2Aa2 in insect target membranes remains to be investigated.
Collapse
Affiliation(s)
| | - Jose L. Toca-Herrera
- Institut für Biophysik, Department für Bionanowissenschaften, Universität für Bodenkultur Wien (BOKU), Vienna, 1190, Austria
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology, Development Agency, Pathumthani, 12120, Thailand
| | | | - Sudarat Tharad
- Department of Biology, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| |
Collapse
|
2
|
Costa LTM, Rocha BL, Teixeira CC, Martins HC, Silveira MCA, Albuquerque B, Cangussu ASR, He P, Aguiar RWS, Maia AMS, Smagghe G, Oliveira EE. Preparation of β-Myrcene-Chitosan Nanoparticles and Their Uptake and Toxicity in Aedes aegypti Larvae. INSECTS 2024; 15:998. [PMID: 39769600 PMCID: PMC11676548 DOI: 10.3390/insects15120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Mosquito control still relies heavily on synthetic molecules, which can lead to the selection of resistant populations and undesirable environmental problems. This study described the preparation of a nanoparticle of the plant-derived molecule, β-myrcene, with chitosan, and the assessment of its toxicity against larvae of the yellow fever mosquito, Aedes aegypti. By producing fluorescent chitosan nanoparticles, we were able to observe their distribution in the digestive tract of larvae of Ae. aegypti. Chitosan-based nanoparticles containing β-myrcene (238 mg/L) could kill 100% of the larvae tested, whereas the blank control (i.e., the nanoparticle without β-myrcene) showed no larvicidal activity. The chitosan nanoparticles with β-myrcene had a zeta potential of +15 mV and a hydrodynamic diameter ranging from 30 to 2800 nm. The blank control, without β-myrcene, had a zeta potential of +26 mV and a diameter of 30 to 830 nm. Fluorescence analysis showed that the nanoparticles were efficiently absorbed and distributed in the digestive tract organs of the Ae. aegypti larvae. In short, our results reinforce the benefits of using chitosan to carry molecules of plant-derived-molecules, such as β-myrcene, in mosquito control, suggesting a broad internal distribution that contributes to their toxicity.
Collapse
Affiliation(s)
- Lara T. M. Costa
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Bruna L. Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.S.R.C.)
| | - Cleidiane C. Teixeira
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.M.S.M.)
| | - Hemilly C. Martins
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.M.S.M.)
| | - Mauren Cristine A. Silveira
- Coordenação de Ciências Exatas e Biotecnológicas, Universidade Federal do Tocantins (UFT), P.O. Box 66, Gurupi 77402-970, TO, Brazil
| | - Benedito Albuquerque
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.S.R.C.)
| | - Alex Sander R. Cangussu
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.S.R.C.)
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.M.S.M.)
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China;
| | - Raimundo Wagner S. Aguiar
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.S.R.C.)
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.M.S.M.)
| | - Ana Maria S. Maia
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.M.S.M.)
| | - Guy Smagghe
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.S.R.C.)
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Eugênio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil (A.S.R.C.)
| |
Collapse
|
3
|
Deng SQ, Li N, Yang XK, Lu HZ, Liu JH, Peng ZY, Wang LM, Zhang M, Zhang C, Chen C. Recombinant Beauveria bassiana expressing Bacillus thuringiensis toxin Cyt1Aa: a promising approach for enhancing Aedes mosquito control. Microbiol Spectr 2024; 12:e0379223. [PMID: 38809029 PMCID: PMC11218515 DOI: 10.1128/spectrum.03792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/20/2024] [Indexed: 05/30/2024] Open
Abstract
The entomopathogenic fungus Beauveria bassiana provides an eco-friendly substitute to chemical insecticides for mosquito control. Nevertheless, its widespread application has been hindered by its comparatively slow efficacy in eliminating mosquitoes. To augment the potency of B. bassiana against Aedes mosquitoes, a novel recombinant strain, Bb-Cyt1Aa, was developed by incorporating the Bacillus thuringiensis toxin gene Cyt1Aa into B. bassiana. The virulence of Bb-Cyt1Aa was evaluated against Aedes aegypti and Aedes albopictus using insect bioassays. Compared to the wild-type (WT) strain, the median lethal time (LT50) for A. aegypti larvae infected with Bb-Cyt1Aa decreased by 33.3% at a concentration of 1 × 108 conidia/mL and by 22.2% at 1 × 107 conidia/mL. The LT50 for A. aegypti adults infected with Bb-Cyt1Aa through conidia ingestion was reduced by 37.5% at 1 × 108 conidia/mL and by 33.3% at 1 × 107 conidia/mL. Likewise, the LT50 for A. aegypti adults infected with Bb-Cyt1Aa through cuticle contact decreased by 33.3% and 30.8% at the same concentrations, respectively. Furthermore, the Bb-Cyt1Aa strain also demonstrated increased toxicity against both larval and adult A. albopictus, when compared to the WT strain. In conclusion, our study demonstrated that the expression of B. thuringiensis toxin Cyt1Aa in B. bassiana enhanced its virulence against Aedes mosquitoes. This suggests that B. bassiana expressing Cyt1Aa has potential value for use in mosquito control. IMPORTANCE Beauveria bassiana is a naturally occurring fungus that can be utilized as a bioinsecticide against mosquitoes. Cyt1Aa is a delta-endotoxin protein produced by Bacillus thuringiensis that exhibits specific and potent insecticidal activity against mosquitoes. In our study, the expression of this toxin Cyt1Aa in B. bassiana enhances the virulence of B. bassiana against Aedes aegypti and Aedes albopictus, thereby increasing their effectiveness in killing mosquitoes. This novel strain can be used alongside chemical insecticides to reduce dependence on harmful chemicals, thereby minimizing negative impacts on the environment and human health. Additionally, the potential resistance of B. bassiana against mosquitoes in the future could be overcome by acquiring novel combinations of exogenous toxin genes. The presence of B. bassiana that expresses Cyt1Aa is of significant importance in mosquito control as it enhances genetic diversity, creates novel virulent strains, and contributes to the development of safer and more sustainable methods of mosquito control.
Collapse
Affiliation(s)
- Sheng-Qun Deng
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Ni Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xu-Ke Yang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Hong-Zheng Lu
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jia-Hua Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhe-Yu Peng
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lin-Min Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mao Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Chao Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Chen Chen
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Savelyeva E, Avdeenko A. The use of antigens derived from Bacillus thuringiensis bacteria for further differentiation. Heliyon 2024; 10:e29744. [PMID: 38681647 PMCID: PMC11053190 DOI: 10.1016/j.heliyon.2024.e29744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
This study is devoted to studying Bacillus thuringiensis antigens and their insecticide activity as critical features in bacterial differentiation. Indeed, 190 samples were examined for flagellar antigenicity as well as the insecticidal activity exhibited. From a serological perspective, 122 isolates (64.2 %) were attributed to 8 H-serogroups, including 3 non-typeable and 65 unverified. The dominant serotype was H3abc (82 % frequency); H6 was less frequent (8.5 %). The other 6 serotypes accounted for a low frequency of occurrence (up to 1.5 %). Of the 190 isolates tested, 125 (65.8 %) formed bipyramidal, and 63 (33.2 %) represented spherical inclusions. All H3abc isolates contained bipyramidal inclusions. The same applied to H8ab and H7 isolates. Insecticide activity was noted in 70.1 % of the population. In general, 128 samples were toxic to both species (Bombyx mori, Aedes sp.). Another 3 samples were toxic only to B. mori, and 2 for Aedes sp. Among the samples exhibiting toxicity to both species, 97.6 % belonged to bipyramidal paraspore inclusions (H3abc). All H7 samples were toxic to two insect species. Monotoxic B. thuringiensis against Aedes sp. were found only among organisms producing spherical parasporal inclusions in the cell. Examples of such microorganisms include an isolate of the H4ab/43 serotype.
Collapse
Affiliation(s)
- Ekaterina Savelyeva
- Department of Medical Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Aleksei Avdeenko
- Department of Agriculture and Storage Technologies for Crop Products, Don State Agrarian University, Persianovsky, Russian Federation
| |
Collapse
|
5
|
Chen SWW, Teulon JM, Pellequer JL. Cry11Aa and Cyt1Aa exhibit different structural orders in crystal topography. J Mol Recognit 2023; 36:e3047. [PMID: 37474122 DOI: 10.1002/jmr.3047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Cry11Aa and Cyt1Aa are two pesticidal toxins produced by Bacillus thuringiensis subsp. israelensis. To improve our understanding of the nature of their oligomers in the toxic actions and synergistic effects, we performed the atomic force microscopy to probe the surfaces of their natively grown crystals, and used the L-weight filter to enhance the structural features. By L-weight filtering, molecular sizes of the Cry11Aa and Cyt1Aa monomers obtained are in excellent agreement with the three-dimensional structures determined by x-ray crystallography. Moreover, our results show that the layered feature of a structural element distinguishes the topographic characteristics of Cry11Aa and Cyt1Aa crystals, suggesting that the Cry11Aa toxin has a better chance than Cyt1Aa for multimerization and therefore cooperativeness of the toxic actions.
Collapse
Affiliation(s)
- Shu-Wen W Chen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- Rue Cyprien Jullin, Vinay, France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
6
|
da Silva JS, Oliveira M, Viana JL, da Silva MC, Pinheiro VCS, Zilse GAC, Tadei WP. Cyt1Aa toxin gene frequency in Bacillus thuringiensis isolates and its relation with pathogenicity for vector mosquitoes. Acta Trop 2022; 233:106549. [PMID: 35671782 DOI: 10.1016/j.actatropica.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis produces several virulence factors, the main ones being the Cry and Cyt toxins, present in the parasporal body produced during sporulation. The Cyt toxins have mechanisms specific for mosquitoes and Cyt1Aa, the most studied cytolytic toxin, is effective for mosquito control by acting in synergism with Cry toxins. The goal of the present work was to study the frequency of the codifying gene for Cyt1Aa in B. thuringiensis native isolates acquired from samples of soil, insect and water, as well as to verify any possible genetic polymorphism. 1,448 B. thuringiensis strains were used for DNA extraction and PCR technique, all with the use of a primer that amplifies a fragment of 300 pairs of the cyt1Aa gene. The strains that showed amplification in the PCR reaction were sequenced and compared to each other and to the sequences available at Genbank. 32 (2.3%) strains of B. thuringiensis showed positive amplification for the cyt1Aa gene. The highest frequency of isolates with cyt1Aa gene was acquired from samples coming from the Cerrado biome, both isolates from soil and from insects, equally with 3.4%. The cyt1Aa gene sequencing highlighted that, for that 300 bp region, the gene is conserved and there is no single-base polymorphism.
Collapse
Affiliation(s)
- Joelma S da Silva
- Curso Ciências Naturais, Centro de Ciências de Codó, Universidade Federal do Maranhão, Avenida Dr. José Anselmo, 2008, São Sebastião, Codó, Maranhão, 65400-000, Brasil.
| | - Maxcilene Oliveira
- Laboratório de Entomologia Médica, Departamento de Química e Biologia, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão, Praça Duque de Caxias, s/n, Morro do Alecrim, Caxias, Maranhão, 65604-380, Brasil
| | - Juliete L Viana
- Universidade do Estado do Amazonas - UEA, Programa de Pós-graduação em Biodiversidade e Biotecnologia da Rede BIONORTE - PPG BIONORTE, Av. Carvalho Leal, 1777, Ed. Anexo, 4° andar, Cachoeirinha, CEP 69065001, Manaus, AM, Brasil
| | - Maria C da Silva
- Laboratório de Bactérias Entomopatogênicas e Marcadores Moleculares, Departamento de Química e Biologia, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão, Praça Duque de Caxias, s/n, Morro do Alecrim, Caxias, Maranhão, 65604-380, Brasil
| | - Valéria C S Pinheiro
- Laboratório de Entomologia Médica, Departamento de Química e Biologia, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão, Praça Duque de Caxias, s/n, Morro do Alecrim, Caxias, Maranhão, 65604-380, Brasil
| | - Gislene A C Zilse
- Grupo de Pesquisas em Abelhas, Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Entomologia, Avenida André Araújo, 2936, Petrópolis, Manaus, Amazonas, 69067-375, Brasil
| | - Wanderli P Tadei
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Entomologia, Avenida André Araújo, 2936, Petrópolis, Manaus, Amazonas, 69067-375, Brasil
| |
Collapse
|
7
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|