1
|
Gibaut QM, Li C, Cheng A, Moranguinho I, Mori LP, Valente ST. FUBP3 enhances HIV-1 transcriptional activity and regulates immune response pathways in T cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102525. [PMID: 40248217 PMCID: PMC12005928 DOI: 10.1016/j.omtn.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Far-upstream element-binding protein 3 (FUBP3) was identified at actively transcribing HIV promoters through chromatin affinity purification and mass spectrometry. Known for regulating cellular processes such as transcription and translation by binding to DNAs and RNAs, FUBP3's role in HIV transcriptional regulation was previously unrecognized. This study reveals that FUBP3 enhances HIV-1 transcriptional activation by interacting with Tat and trans-activation response (TAR)-RNA, critical for boosting viral transcription through recruitment of activating factors that promote RNA polymerase II (RNAPII) elongation. Transcriptomic analysis, chromatin immunoprecipitation, and biochemical assays demonstrated that FUBP3 associates with and stabilizes TAR-RNA, in a Tat-dependent manner, and enhances Tat steady-state levels via interaction with Tat's basic domain. Suppressing FUBP3 decreased HIV-1 transcription and altered expression of host genes linked to T cell activation and inflammation, underscoring its broad regulatory impact. Additionally, FUBP3 was enriched at active promoters, confirming its role in transcriptional regulation at specific genomic locations. These findings highlight FUBP3's critical role in the HIV-1 life cycle and suggest its potential as a therapeutic target in HIV-1 infection. Additionally, this study expands our understanding of FUBP3's functions in oncogenic and inflammatory pathways.
Collapse
Affiliation(s)
- Quentin M.R. Gibaut
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Chuan Li
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Anqi Cheng
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Ines Moranguinho
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Luisa P. Mori
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Susana T. Valente
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Bou-Nader C, Link KA, Suddala KC, Knutson JR, Zhang J. Structures of complete HIV-1 TAR RNA portray a dynamic platform poised for protein binding and structural remodeling. Nat Commun 2025; 16:2252. [PMID: 40050622 PMCID: PMC11885821 DOI: 10.1038/s41467-025-57519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
The HIV-1 TAR RNA plays key roles in viral genome architecture, transcription and replication. Previous structural analyses focused on its upper stem loop, which has served as a paradigm to study RNA structural dynamics. However, an imperfectly paired lower stem immediately abuts and stacks with the upper half, both of which are required for efficient HIV replication. Here, we report crystal structures of the full-length HIV-1 TAR which reveal substantial conformational mobility in its three conserved bulges and in its lower stem, which coordinately maintain the structural fluidity of the entire RNA. We find that TAR RNA is a robust inhibitor of PKR, and primarily uses its lower stem to capture and sequester PKR monomers, preventing their dimerization and activation. The lower stem exhibits transient conformational excursions detected by a ligation assay. Time-resolved fluorescence spectroscopy reveals local and global TAR structural remodeling by HIV-1 nucleocapsid, Tat, and PKR. This study portrays the structure, dynamics, and interactions of a complete TAR RNA, uncovers a convergent RNA-based viral strategy to evade innate immunity, and provides avenues to develop antivirals that target a dynamic, multifunctional viral RNA.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Katie A Link
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jay R Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
3
|
Abramyan AM, Bochicchio A, Wu C, Damm W, Langley DR, Shivakumar D, Lupyan D, Wang L, Harder E, Oloo EO. Accurate Physics-Based Prediction of Binding Affinities of RNA- and DNA-Targeting Ligands. J Chem Inf Model 2025; 65:1392-1403. [PMID: 39883536 DOI: 10.1021/acs.jcim.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Accurate prediction of the affinity of ligand binding to nucleic acids represents a formidable challenge for current computational approaches. This limitation has hindered the use of computational methods to develop small-molecule drugs that modulate the activity of nucleic acids, including those associated with anticancer, antiviral, and antibacterial effects. In recent years, significant scientific and technological advances as well as easier access to compute resources have contributed to free-energy perturbation (FEP) becoming one of the most consistently reliable approaches for predicting relative binding affinities of ligands to proteins. Nevertheless, FEP's applicability to nucleic-acid targeting ligands has remained largely undetermined. In this work, we present a systematic assessment of the accuracy of FEP, as implemented in FEP+ software and facilitated by the OPLS4 force field, in predicting relative binding free energies of congeneric series of ligands interacting with a variety of DNA/RNA systems. The study encompassed more than 100 ligands exhibiting diverse binding modes, some partially exposed and others deeply buried. Using a consistent simulation protocol, more than half of the predictions are within 1 kcal/mol of the experimentally measured values. Across the data set, we report a combined average pairwise root-mean-square-error of <1.4 kcal/mol, which falls within one log unit of the experimentally measured dissociation constants. These results suggest that FEP+ has sufficient accuracy to guide the optimization of lead series in drug discovery programs targeting RNA and DNA.
Collapse
Affiliation(s)
- Ara M Abramyan
- Schrödinger Incorporated, San Diego, California 92121, United States
| | | | - Chuanjie Wu
- Schrödinger Incorporated, New York, New York 10036, United States
| | - Wolfgang Damm
- Schrödinger Incorporated, New York, New York 10036, United States
| | - David R Langley
- Arvinas Incorporated, New Haven, Connecticut 06511, United States
| | | | - Dmitry Lupyan
- Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States
| | - Lingle Wang
- Schrödinger Incorporated, New York, New York 10036, United States
| | - Edward Harder
- Schrödinger Incorporated, New York, New York 10036, United States
| | - Eliud O Oloo
- Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
4
|
Iannuzzelli JA, Bonn R, Hong AS, Anitha AS, Jenkins JL, Wedekind JE, Fasan R. Cyclic peptides targeting the SARS-CoV-2 programmed ribosomal frameshifting RNA from a multiplexed phage display library. Chem Sci 2024; 15:19520-19533. [PMID: 39568906 PMCID: PMC11575553 DOI: 10.1039/d4sc04026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024] Open
Abstract
RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge. Here, we report a strategy for the discovery and selection of RNA-targeted macrocyclic peptides derived from combinatorial libraries of peptide macrocycles displayed by bacteriophages. Specifically, a platform for phage display of macrocyclic organo-peptide hybrids (MOrPH-PhD) was combined with a diverse set of non-canonical amino acid-based cyclization modules to produce large libraries of 107 structurally diverse, genetically encoded peptide macrocycles. These libraries were panned against the -1 programmed ribosomal frameshifting stimulatory sequence (FSS) RNA pseudoknot of SARS-CoV-2, which revealed specific macrocyclic peptide sequences that bind this essential motif with high affinity and selectivity. Peptide binding localizes to the FSS dimerization loop based on chemical modification analysis and binding assays and the cyclic peptides show specificity toward the target RNA over unrelated RNA pseudoknots. This work introduces a novel system for the generation and high-throughput screening of topologically diverse cyclopeptide scaffolds (multiplexed MOrPH-PhD), and it provides a blueprint for the exploration and evolution of genetically encoded macrocyclic peptides that target specific RNAs.
Collapse
Affiliation(s)
| | - Rachel Bonn
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Andrew S Hong
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | - Abhijith Saseendran Anitha
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
- Department of Chemistry & Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
- Department of Chemistry & Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
5
|
Jangra R, Kukhta T, Trant JF, Sharma P. Decoding the enigma of RNA-protein recognition: quantum chemical insights into arginine fork motifs. Phys Chem Chem Phys 2024; 26:28091-28100. [PMID: 39494723 DOI: 10.1039/d4cp03987d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Arginine (Arg) forks are noncovalent recognition motifs wherein an Arg interacts with the phosphates and guanine nucleobases of RNA, providing extraordinary specific RNA:protein recognition. In this work, we carried out an in-depth DFT based quantum mechanical investigation on all known classes of Arg forks to estimate their intrinsic structural stabilities and interaction energies. The optimized structures closely mimic the structural characteristics of Arg forks and this close match between experimental and optimized geometries suggests that Arg forks are intrinsically stable and do not require additional support from other RNA or protein components. Both hydrogen-bonding and cation-π interactions are important for the intrinsic stability of Arg forks, providing an average interaction energy of -36.7 kcal mol-1. Furthermore, we found a direct correlation between Arg forks' interaction energies and the number of phosphates involved, which is more delicately modulated by other factors, like the types of hydrogen bonds and cation-π interactions that constitute the Arg fork. Additionally, we observed a positive correlation between the average interaction energies of Arg forks and the frequency of their occurrence in available crystal structures. At the broader level, this work establishes the groundwork for more precise modeling and understanding of RNA-protein interfaces, which could have potential implications in advancing the knowledge of biomolecular recognition patterns.
Collapse
Affiliation(s)
- Raman Jangra
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada.
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada.
- We-Spark Health Institute, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada
- Binary Star Research Services, LaSalle, ON, N9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
6
|
Panei FP, Gkeka P, Bonomi M. Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN. Nat Commun 2024; 15:5725. [PMID: 38977675 PMCID: PMC11231146 DOI: 10.1038/s41467-024-49638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.
Collapse
Affiliation(s)
- F P Panei
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
| | - P Gkeka
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France.
| | - M Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France.
| |
Collapse
|
7
|
Chakraborty A, Samant D, Sarkar R, Sangeet S, Prusty S, Roy S. RNA's Dynamic Conformational Selection and Entropic Allosteric Mechanism in Controlling Cascade Protein Binding Events. J Phys Chem Lett 2024; 15:6115-6125. [PMID: 38830201 DOI: 10.1021/acs.jpclett.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In the TAR RNA of immunodeficiency viruses, an allosteric communication exists between a distant loop and a bulge. The bulge interacts with the TAT protein vital for transactivating viral RNA, while the loop interacts with cyclin-T1, contingent on TAT binding. Through extensive atomistic and free energy simulations, we investigate TAR-TAT binding in nonpathogenic bovine immunodeficiency virus (BIV) and pathogenic human immunodeficiency virus (HIV). Thermodynamic analysis reveals enthalpically driven binding in BIV and entropically favored binding in HIV. The broader global basin in HIV is attributed to binding-induced loop fluctuation, corroborated by nuclear magnetic resonance (NMR), indicating classical entropic allostery onset. While this loop fluctuation affects the TAT binding affinity, it generates a binding-competent conformation that aids subsequent effector (cyclin-T1) binding. This study underscores how two structurally similar apo-RNA scaffolds adopt distinct conformational selection mechanisms to drive enthalpic and entropic allostery, influencing protein affinity in the signaling cascade.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Dibyamanjaree Samant
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Sangram Prusty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
8
|
Patarca R, Haseltine WA. Bioinformatics Insights on Viral Gene Expression Transactivation: From HIV-1 to SARS-CoV-2. Int J Mol Sci 2024; 25:3378. [PMID: 38542351 PMCID: PMC10970485 DOI: 10.3390/ijms25063378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs. SARS-CoV-2 nucleocapsid participates in early viral transcription, recruits similar cellular proteins, and shares intracellular, surface, and extracellular distribution with Tat. SARS-CoV-2 nucleocapsid interacting with the replication-transcription complex might, therefore, transactivate viral and cellular RNAs in the transcription and reactivation of self and other viruses, acute and chronic pathogenesis, immune evasion, and viral evolution. Here, we show, by using primary and secondary structural comparisons, that the leaders of SARS-CoV-2 and other coronaviruses contain TAR-like sequences in stem-loops 2 and 3. The coronaviral nucleocapsid C-terminal domains harbor a region of similarity to TAR-binding regions of lentiviral Tat proteins, and coronaviral nonstructural protein 12 has a cysteine-rich metal binding, dimerization domain, as do lentiviral Tat proteins. Although SARS-CoV-1 nucleocapsid transactivated gene expression in a replicon-based study, further experimental evidence for coronaviral transactivation and its possible implications is warranted.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
9
|
Khatkar P, Mensah G, Ning S, Cowen M, Kim Y, Williams A, Abulwerdi FA, Zhao Y, Zeng C, Le Grice SFJ, Kashanchi F. HIV-1 Transcription Inhibition Using Small RNA-Binding Molecules. Pharmaceuticals (Basel) 2023; 17:33. [PMID: 38256867 PMCID: PMC10819208 DOI: 10.3390/ph17010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The HIV-1 transactivator protein Tat interacts with the transactivation response element (TAR) at the three-nucleotide UCU bulge to facilitate the recruitment of transcription elongation factor-b (P-TEFb) and induce the transcription of the integrated proviral genome. Therefore, the Tat-TAR interaction, unique to the virus, is a promising target for developing antiviral therapeutics. Currently, there are no FDA-approved drugs against HIV-1 transcription, suggesting the need to develop novel inhibitors that specifically target HIV-1 transcription. We have identified potential candidates that effectively inhibit viral transcription in myeloid and T cells without apparent toxicity. Among these candidates, two molecules showed inhibition of viral protein expression. A molecular docking and simulation approach was used to determine the binding dynamics of these small molecules on TAR RNA in the presence of the P-TEFb complex, which was further validated by a biotinylated RNA pulldown assay. Furthermore, we examined the effect of these molecules on transcription factors, including the SWI/SNF complex (BAF or PBAF), which plays an important role in chromatin remodeling near the transcription start site and hence regulates virus transcription. The top candidates showed significant viral transcription inhibition in primary cells infected with HIV-1 (98.6). Collectively, our study identified potential transcription inhibitors that can potentially complement existing cART drugs to address the current therapeutic gap in current regimens. Additionally, shifting of the TAR RNA loop towards Cyclin T1 upon molecule binding during molecular simulation studies suggested that targeting the TAR loop and Tat-binding UCU bulge together should be an essential feature of TAR-binding molecules/inhibitors to achieve complete viral transcription inhibition.
Collapse
Affiliation(s)
- Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (P.K.)
| | - Gifty Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (P.K.)
| | - Shangbo Ning
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (P.K.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (P.K.)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (P.K.)
| | | | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chen Zeng
- Physics Department, The George Washington University, Washington, DC 20052, USA
| | | | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (P.K.)
| |
Collapse
|
10
|
Geng A, Ganser L, Roy R, Shi H, Pratihar S, Case DA, Al-Hashimi HM. An RNA excited conformational state at atomic resolution. Nat Commun 2023; 14:8432. [PMID: 38114465 PMCID: PMC10730710 DOI: 10.1038/s41467-023-43673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Sparse and short-lived excited RNA conformational states are essential players in cell physiology, disease, and therapeutic development, yet determining their 3D structures remains challenging. Combining mutagenesis, NMR spectroscopy, and computational modeling, we determined the 3D structural ensemble formed by a short-lived (lifetime ~2.1 ms) lowly-populated (~0.4%) conformational state in HIV-1 TAR RNA. Through a strand register shift, the excited conformational state completely remodels the 3D structure of the ground state (RMSD from the ground state = 7.2 ± 0.9 Å), forming a surprisingly more ordered conformational ensemble rich in non-canonical mismatches. The structure impedes the formation of the motifs recognized by Tat and the super elongation complex, explaining why this alternative TAR conformation cannot activate HIV-1 transcription. The ability to determine the 3D structures of fleeting RNA states using the presented methodology holds great promise for our understanding of RNA biology, disease mechanisms, and the development of RNA-targeting therapeutics.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laura Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Supriya Pratihar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Shin YH, Kim DE, Yu KL, Park CM, Kim HG, Kim KC, Bae S, Yoon CH. A Novel Time-Resolved Fluorescence Resonance Energy Transfer Assay for the Discovery of Small-Molecule Inhibitors of HIV-1 Tat-Regulated Transcription. Int J Mol Sci 2023; 24:9139. [PMID: 37298089 PMCID: PMC10252837 DOI: 10.3390/ijms24119139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) transactivator (Tat)-mediated transcription is essential for HIV-1 replication. It is determined by the interaction between Tat and transactivation response (TAR) RNA, a highly conserved process representing a prominent therapeutic target against HIV-1 replication. However, owing to the limitations of current high-throughput screening (HTS) assays, no drug that disrupts the Tat-TAR RNA interaction has been uncovered yet. We designed a homogenous (mix-and-read) time-resolved fluorescence resonance energy transfer (TR-FRET) assay using europium cryptate as a fluorescence donor. It was optimized by evaluating different probing systems for Tat-derived peptides or TAR RNA. The specificity of the optimal assay was validated by mutants of the Tat-derived peptides and TAR RNA fragment, individually and by competitive inhibition with known TAR RNA-binding peptides. The assay generated a constant Tat-TAR RNA interaction signal, discriminating the compounds that disrupted the interaction. Combined with a functional assay, the TR-FRET assay identified two small molecules (460-G06 and 463-H08) capable of inhibiting Tat activity and HIV-1 infection from a large-scale compound library. The simplicity, ease of operation, and rapidity of our assay render it suitable for HTS to identify Tat-TAR RNA interaction inhibitors. The identified compounds may also act as potent molecular scaffolds for developing a new HIV-1 drug class.
Collapse
Affiliation(s)
- Young Hyun Shin
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju 363951, Republic of Korea; (Y.H.S.); (D.-E.K.); (K.L.Y.); (K.-C.K.); (S.B.)
| | - Dong-Eun Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju 363951, Republic of Korea; (Y.H.S.); (D.-E.K.); (K.L.Y.); (K.-C.K.); (S.B.)
| | - Kyung Lee Yu
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju 363951, Republic of Korea; (Y.H.S.); (D.-E.K.); (K.L.Y.); (K.-C.K.); (S.B.)
| | - Chul Min Park
- Department for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Republic of Korea; (C.M.P.); (H.G.K.)
| | - Hong Gi Kim
- Department for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Republic of Korea; (C.M.P.); (H.G.K.)
| | - Kyung-Chang Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju 363951, Republic of Korea; (Y.H.S.); (D.-E.K.); (K.L.Y.); (K.-C.K.); (S.B.)
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju 363951, Republic of Korea; (Y.H.S.); (D.-E.K.); (K.L.Y.); (K.-C.K.); (S.B.)
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju 363951, Republic of Korea; (Y.H.S.); (D.-E.K.); (K.L.Y.); (K.-C.K.); (S.B.)
| |
Collapse
|
12
|
Ken ML, Roy R, Geng A, Ganser LR, Manghrani A, Cullen BR, Schulze-Gahmen U, Herschlag D, Al-Hashimi HM. RNA conformational propensities determine cellular activity. Nature 2023; 617:835-841. [PMID: 37198487 PMCID: PMC10429349 DOI: 10.1038/s41586-023-06080-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Cellular processes are the product of interactions between biomolecules, which associate to form biologically active complexes1. These interactions are mediated by intermolecular contacts, which if disrupted, lead to alterations in cell physiology. Nevertheless, the formation of intermolecular contacts nearly universally requires changes in the conformations of the interacting biomolecules. As a result, binding affinity and cellular activity crucially depend both on the strength of the contacts and on the inherent propensities to form binding-competent conformational states2,3. Thus, conformational penalties are ubiquitous in biology and must be known in order to quantitatively model binding energetics for protein and nucleic acid interactions4,5. However, conceptual and technological limitations have hindered our ability to dissect and quantitatively measure how conformational propensities affect cellular activity. Here we systematically altered and determined the propensities for forming the protein-bound conformation of HIV-1 TAR RNA. These propensities quantitatively predicted the binding affinities of TAR to the RNA-binding region of the Tat protein and predicted the extent of HIV-1 Tat-dependent transactivation in cells. Our results establish the role of ensemble-based conformational propensities in cellular activity and reveal an example of a cellular process driven by an exceptionally rare and short-lived RNA conformational state.
Collapse
Affiliation(s)
- Megan L Ken
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Laura R Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, USA.
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov 2023; 18:207-226. [PMID: 36322542 DOI: 10.1080/17460441.2022.2134852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The field of RNA-targeted small molecules is rapidly evolving, owing to the advances in experimental and computational technologies. With the identification of several bioactive small molecules that target RNA, including the FDA-approved risdiplam, the biopharmaceutical industry is gaining confidence in the field. This review, based on the literature obtained from PubMed, aims to disseminate information about the various technologies developed for targeting RNA with small molecules and propose areas for improvement to develop drugs more efficiently, particularly those linked to diseases with unmet medical needs. AREAS COVERED The technologies for the identification of RNA targets, screening of chemical libraries against RNA, assessing the bioactivity and target engagement of the hit compounds, structure determination, and hit-to-lead optimization are reviewed. Along with the description of the technologies, their strengths, limitations, and examples of how they can impact drug discovery are provided. EXPERT OPINION Many existing technologies employed for protein targets have been repurposed for use in the discovery of RNA-targeted small molecules. In addition, technologies tailored for RNA targets have been developed. Nevertheless, more improvements are necessary, such as artificial intelligence to dissect important RNA structures and RNA-small-molecule interactions and more powerful chemical probing and structure prediction techniques.
Collapse
|
14
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
15
|
Chavali SS, Mali SM, Bonn R, Saseendran A, Bennett RP, Smith HC, Fasan R, Wedekind JE. Cyclic peptides with a distinct arginine-fork motif recognize the HIV trans-activation response RNA in vitro and in cells. J Biol Chem 2021; 297:101390. [PMID: 34767799 DOI: 10.1016/j.jbc.2021.101390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by the cyclic peptide TB-CP-6.9a. This peptide was derived from a TAR-binding loop that emerged during lab-evolution of a TAR-binding protein (TBP) family. Here we synthesized and characterized a next-generation, cyclic-peptide library based on the TBP scaffold. We sought to identify conserved RNA-binding interactions, and the influence of cyclization linkers on RNA binding and antiviral activity. A diverse group of cyclization linkers, encompassing disulfide bonds to bicyclic aromatic staples, was used to restrain the cyclic peptide geometry. Thermodynamic profiling revealed specific arginine-rich sequences with low to sub-micromolar affinity driven by enthalpic and entropic contributions. The best compounds exhibited no appreciable off-target binding to related molecules, such as BIV TAR and human 7SK RNAs. A specific arginine-to-lysine change in the highest affinity cyclic peptide reduced TAR binding by 10-fold, suggesting that TBP-derived cyclic peptides use an arginine-fork motif to recognize the TAR major-groove while differentiating the mode of binding from other TAR-targeting molecules. Finally, we showed that HIV infectivity in cell culture was reduced in the presence of cyclic peptides constrained by methylene or naphthalene-based linkers. Our findings provide insight into the molecular determinants required for HIV-1 TAR recognition and antiviral activity. These findings are broadly relevant to the development of antivirals that target RNA molecules.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA
| | - Sachitanand M Mali
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA
| | - Rachel Bonn
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA
| | | | | | - Harold C Smith
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA; OyaGen, Inc., Rochester NY 14623, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA.
| |
Collapse
|
16
|
Anokhina VS, Miller BL. Targeting Ribosomal Frameshifting as an Antiviral Strategy: From HIV-1 to SARS-CoV-2. Acc Chem Res 2021; 54:3349-3361. [PMID: 34403258 DOI: 10.1021/acs.accounts.1c00316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment of HIV-1 has largely involved targeting viral enzymes using a cocktail of inhibitors. However, resistance to these inhibitors and toxicity in the long term have pushed the field to identify new therapeutic targets. To that end, -1 programmed ribosomal frameshifting (-1 PRF) has gained attention as a potential node for therapeutic intervention. In this process, a ribosome moves one nucleotide backward in the course of translating a mRNA, revealing a new reading frame for protein synthesis. In HIV-1, -1 PRF allows the virus to regulate the ratios of enzymatic and structural proteins as needed for correct viral particle assembly. Two RNA structural elements are central to -1 PRF in HIV: a slippery sequence and a highly conserved stable hairpin called the HIV-1 frameshifting stimulatory signal (FSS). Dysregulation of -1 PRF is deleterious for the virus. Thus, -1 PRF is an attractive target for new antiviral development. It is important to note that HIV-1 is not the only virus exploiting -1 PRF for regulating production of its proteins. Coronaviruses, including the COVID-19 pandemic virus SARS-CoV-2, also rely on -1 PRF. In SARS-CoV-2 and other coronaviruses, -1 PRF is required for synthesis of RNA-dependent RNA polymerase and several other nonstructural proteins. Coronaviruses employ a more complex RNA structural element for regulating -1 PRF called a pseudoknot. The purpose of this Account is primarily to review the development of molecules targeting HIV-1 -1 PRF. These approaches are case studies illustrating how the entire pipeline from screening to the generation of high-affinity leads might be implemented. We consider both target-based and function-based screening, with a particular focus on our group's approach beginning with a resin-bound dynamic combinatorial library (RBDCL) screen. We then used rational design approaches to optimize binding affinity, selectivity, and cellular bioavailability. Our tactic is, to the best of our knowledge, the only study resulting in compounds that bind specifically to the HIV-1 FSS RNA and reduce infectivity of laboratory and drug-resistant strains of HIV-1 in human cells. Lessons learned from strategies targeting -1 PRF HIV-1 might provide solutions in the development of antivirals in areas of unmet medical need. This includes the development of new frameshift-altering therapies for SARS-CoV-2, approaches to which are very recently beginning to appear.
Collapse
Affiliation(s)
- Viktoriya S. Anokhina
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, United States
| | - Benjamin L. Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, United States
- Department of Dermatology, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
17
|
Variations in the Abortive HIV-1 RNA Hairpin Do Not Impede Viral Sensing and Innate Immune Responses. Pathogens 2021; 10:pathogens10070897. [PMID: 34358047 PMCID: PMC8308900 DOI: 10.3390/pathogens10070897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The highly conserved trans-acting response element (TAR) present in the RNA genome of human immunodeficiency virus 1 (HIV-1) is a stably folded hairpin structure involved in viral replication. However, TAR is also sensed by viral sensors, leading to antiviral immunity. While high variation in the TAR RNA structure renders the virus replication-incompetent, effects on viral sensing remain unclear. Here, we investigated the role of TAR RNA structure and stability on viral sensing. TAR mutants with deletions in the TAR hairpin that enhanced thermodynamic stability increased antiviral responses. Strikingly, TAR mutants with lower stability due to destabilization of the TAR hairpin also increased antiviral responses without affecting pro-inflammatory responses. Moreover, mutations that affected the TAR RNA sequence also enhanced specific antiviral responses. Our data suggest that mutations in TAR of replication-incompetent viruses can still induce immune responses via viral sensors, hereby underscoring the robustness of HIV-1 RNA sensing mechanisms.
Collapse
|
18
|
Affinity and Structural Analysis of the U1A RNA Recognition Motif with Engineered Methionines to Improve Experimental Phasing. CRYSTALS 2021; 11. [PMID: 33777416 PMCID: PMC7996396 DOI: 10.3390/cryst11030273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA plays a central role in all organisms and can fold into complex structures to orchestrate function. Visualization of such structures often requires crystallization, which can be a bottleneck in the structure-determination process. To promote crystallization, an RNA-recognition motif (RRM) of the U1A spliceosomal protein has been co-opted as a crystallization module. Specifically, the U1-snRNA hairpin II (hpII) single-stranded loop recognized by U1A can be transplanted into an RNA target to promote crystal contacts and to attain phase information via molecular replacement or anomalous diffraction methods using selenomethionine. Herein, we produced the F37M/F77M mutant of U1A to augment the phasing capability of this powerful crystallization module. Selenomethionine-substituted U1A(F37M/F77M) retains high affinity for hpII (K D of 59.7 ± 11.4 nM). The 2.20 Å resolution crystal structure reveals that the mutated sidechains make new S-π interactions in the hydrophobic core and are useful for single-wavelength anomalous diffraction. Crystals were also attained of U1A(F37M/F77M) in complex with a bacterial preQ1-II riboswitch. The F34M/F37M/F77M mutant was introduced similarly into a lab-evolved U1A variant (TBP6.9) that recognizes the internal bulged loop of HIV-1 TAR RNA. We envision that this short RNA sequence can be placed into non-essential duplex regions to promote crystallization and phasing of target RNAs. We show that selenomethionine-substituted TBP6.9(F34M/F37M/F77M) binds a TAR variant wherein the apical loop was replaced with a GNRA tetraloop (K D of 69.8 ± 2.9 nM), laying the groundwork for use of TBP6.9(F34M/F37M/F77M) as a crystallization module. These new tools are available to the research community.
Collapse
|
19
|
Bis-3-Chloropiperidines Targeting TAR RNA as A Novel Strategy to Impair the HIV-1 Nucleocapsid Protein. Molecules 2021; 26:molecules26071874. [PMID: 33810333 PMCID: PMC8038054 DOI: 10.3390/molecules26071874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Specific RNA sequences regulate functions essential to life. The Trans-Activation Response element (TAR) is an RNA stem-bulge-loop structure involved in several steps of HIV-1 replication. In this work, we show how RNA targeting can inhibit HIV-1 nucleocapsid (NC), a highly conserved protein known to catalyze nucleic acid melting and strand transfers during reverse transcription. Our RNA targeting strategy consists of the employment of bis-3-chloropiperidines (B-CePs) to impair RNA melting through bifunctional alkylation. Specific interactions between B-CePs and TAR RNA were analytically investigated by gel electrophoresis and mass spectrometry, allowing the elucidation of B-CePs' recognition of TAR, and highlighting an RNA-directed mechanism of protein inhibition. We propose that B-CePs can freeze TAR tridimensional conformation, impairing NC-induced dynamics and finally inhibiting its functions in vitro.
Collapse
|
20
|
Ganser LR, Chu CC, Bogerd HP, Kelly ML, Cullen BR, Al-Hashimi HM. Probing RNA Conformational Equilibria within the Functional Cellular Context. Cell Rep 2021; 30:2472-2480.e4. [PMID: 32101729 DOI: 10.1016/j.celrep.2020.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Low-abundance short-lived non-native conformations referred to as excited states (ESs) are increasingly observed in vitro and implicated in the folding and biological activities of regulatory RNAs. We developed an approach for assessing the relative abundance of RNA ESs within the functional cellular context. Nuclear magnetic resonance (NMR) spectroscopy was used to estimate the degree to which substitution mutations bias conformational equilibria toward the inactive ES in vitro. The cellular activity of the ES-stabilizing mutants was used as an indirect measure of the conformational equilibria within the functional cellular context. Compensatory mutations that restore the ground-state conformation were used to control for changes in sequence. Using this approach, we show that the ESs of two regulatory RNAs from HIV-1, the transactivation response element (TAR) and the Rev response element (RRE), likely form in cells with abundances comparable to those measured in vitro, and their targeted stabilization may provide an avenue for developing anti-HIV therapeutics.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Abdelsattar AS, Mansour Y, Aboul-Ela F. The Perturbed Free-Energy Landscape: Linking Ligand Binding to Biomolecular Folding. Chembiochem 2021; 22:1499-1516. [PMID: 33351206 DOI: 10.1002/cbic.202000695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The effects of ligand binding on biomolecular conformation are crucial in drug design, enzyme mechanisms, the regulation of gene expression, and other biological processes. Descriptive models such as "lock and key", "induced fit", and "conformation selection" are common ways to interpret such interactions. Another historical model, linked equilibria, proposes that the free-energy landscape (FEL) is perturbed by the addition of ligand binding energy for the bound population of biomolecules. This principle leads to a unified, quantitative theory of ligand-induced conformation change, building upon the FEL concept. We call the map of binding free energy over biomolecular conformational space the "binding affinity landscape" (BAL). The perturbed FEL predicts/explains ligand-induced conformational changes conforming to all common descriptive models. We review recent experimental and computational studies that exemplify the perturbed FEL, with emphasis on RNA. This way of understanding ligand-induced conformation dynamics motivates new experimental and theoretical approaches to ligand design, structural biology and systems biology.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Youssef Mansour
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Fareed Aboul-Ela
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| |
Collapse
|
22
|
The Dihydroquinolizinone Compound RG7834 Inhibits the Polyadenylase Function of PAPD5 and PAPD7 and Accelerates the Degradation of Matured Hepatitis B Virus Surface Protein mRNA. Antimicrob Agents Chemother 2020; 65:AAC.00640-20. [PMID: 33046485 DOI: 10.1128/aac.00640-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) mRNA metabolism is dependent upon host proteins PAPD5 and PAPD7 (PAPD5/7). PAPD5/7 are cellular, noncanonical, poly(A) polymerases (PAPs) whose main function is to oligoadenylate the 3' end of noncoding RNA (ncRNA) for exosome degradation. HBV seems to exploit these two ncRNA quality-control factors for viral mRNA stabilization, rather than degradation. RG7834 is a small-molecule compound that binds PAPD5/7 and inhibits HBV gene production in both tissue culture and animal study. We reported that RG7834 was able to destabilize multiple HBV mRNA species, ranging from the 3.5-kb pregenomic/precore mRNAs to the 2.4/2.1-kb hepatitis B virus surface protein (HBs) mRNAs, except for the smallest 0.7-kb X protein (HBx) mRNA. Compound-induced HBV mRNA destabilization was initiated by a shortening of the poly(A) tail, followed by an accelerated degradation process in both the nucleus and cytoplasm. In cells expressing HBV mRNA, both PAPD5/7 were found to be physically associated with the viral RNA, and the polyadenylating activities of PAPD5/7 were susceptible to RG7834 repression in a biochemical assay. Moreover, in PAPD5/7 double-knockout cells, viral transcripts with a regular length of the poly(A) sequence could be initially synthesized but became shortened in hours, suggesting that participation of PAPD5/7 in RNA 3' end processing, either during adenosine oligomerization or afterward, is crucial for RNA stabilization.
Collapse
|
23
|
Chavali SS, Mali SM, Jenkins JL, Fasan R, Wedekind JE. Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors. J Biol Chem 2020; 295:16470-16486. [PMID: 33051202 PMCID: PMC7864049 DOI: 10.1074/jbc.ra120.015444] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Indexed: 01/28/2023] Open
Abstract
RNA-protein interfaces control key replication events during the HIV-1 life cycle. The viral trans-activator of transcription (Tat) protein uses an archetypal arginine-rich motif (ARM) to recruit the host positive transcription elongation factor b (pTEFb) complex onto the viral trans-activation response (TAR) RNA, leading to activation of HIV transcription. Efforts to block this interaction have stimulated production of biologics designed to disrupt this essential RNA-protein interface. Here, we present four co-crystal structures of lab-evolved TAR-binding proteins (TBPs) in complex with HIV-1 TAR. Our results reveal that high-affinity binding requires a distinct sequence and spacing of arginines within a specific β2-β3 hairpin loop that arose during selection. Although loops with as many as five arginines were analyzed, only three arginines could bind simultaneously with major-groove guanines. Amino acids that promote backbone interactions within the β2-β3 loop were also observed to be important for high-affinity interactions. Based on structural and affinity analyses, we designed two cyclic peptide mimics of the TAR-binding β2-β3 loop sequences present in two high-affinity TBPs (KD values of 4.2 ± 0.3 and 3.0 ± 0.3 nm). Our efforts yielded low-molecular weight compounds that bind TAR with low micromolar affinity (KD values ranging from 3.6 to 22 μm). Significantly, one cyclic compound within this series blocked binding of the Tat-ARM peptide to TAR in solution assays, whereas its linear counterpart did not. Overall, this work provides insight into protein-mediated TAR recognition and lays the ground for the development of cyclic peptide inhibitors of a vital HIV-1 RNA-protein interaction.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sachitanand M Mali
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
24
|
Depicting HIV-1 Transcriptional Mechanisms: A Summary of What We Know. Viruses 2020; 12:v12121385. [PMID: 33287435 PMCID: PMC7761857 DOI: 10.3390/v12121385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the introduction of combinatory antiretroviral therapy (cART), HIV-1 infection cannot be cured and is still one of the major health issues worldwide. Indeed, as soon as cART is interrupted, a rapid rebound of viremia is observed. The establishment of viral latency and the persistence of the virus in cellular reservoirs constitute the main barrier to HIV eradication. For this reason, new therapeutic approaches have emerged to purge or restrain the HIV-1 reservoirs in order to cure infected patients. However, the viral latency is a multifactorial process that depends on various cellular mechanisms. Since these new therapies mainly target viral transcription, their development requires a detailed and precise understanding of the regulatory mechanism underlying HIV-1 transcription. In this review, we discuss the complex molecular transcriptional network regulating HIV-1 gene expression by focusing on the involvement of host cell factors that could be used as potential drug targets to design new therapeutic strategies and, to a larger extent, to reach an HIV-1 functional cure.
Collapse
|
25
|
Chavali SS, Cavender CE, Mathews DH, Wedekind JE. Arginine Forks Are a Widespread Motif to Recognize Phosphate Backbones and Guanine Nucleobases in the RNA Major Groove. J Am Chem Soc 2020; 142:19835-19839. [PMID: 33170672 DOI: 10.1021/jacs.0c09689] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA recognition by proteins is central to biology. Here we demonstrate the existence of a recurrent structural motif, the "arginine fork", that codifies arginine readout of cognate backbone and guanine nucleobase interactions in a variety of protein-RNA complexes derived from viruses, metabolic enzymes, and ribosomes. Nearly 30 years ago, a theoretical arginine fork model was posited to account for the specificity between the HIV-1 Tat protein and TAR RNA. This model predicted that a single arginine should form four complementary contacts with nearby phosphates, yielding a two-pronged backbone readout. Recent high-resolution structures of TAR-protein complexes have unveiled new details, including (i) arginine interactions with the phosphate backbone and the major-groove edge of guanine and (ii) simultaneous cation-π contacts between the guanidinium group and flanking nucleobases. These findings prompted us to search for arginine forks within experimental protein-RNA structures retrieved from the Protein Data Bank. The results revealed four distinct classes of arginine forks that we have defined using a rigorous but flexible nomenclature. Examples are presented in the context of ribosomal and nonribosomal interfaces with analysis of arginine dihedral angles and structural (suite) classification of RNA targets. When arginine fork chemical recognition principles were applied to existing structures with unusual arginine-guanine recognition, we found that the arginine fork geometry was more consistent with the experimental data, suggesting the utility of fork classifications to improve structural models. Software to analyze arginine-RNA interactions has been made available to the community.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Chapin E Cavender
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - David H Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United States
| |
Collapse
|
26
|
Ursu A, Childs-Disney JL, Andrews RJ, O'Leary CA, Meyer SM, Angelbello AJ, Moss WN, Disney MD. Design of small molecules targeting RNA structure from sequence. Chem Soc Rev 2020; 49:7252-7270. [PMID: 32935689 PMCID: PMC7707016 DOI: 10.1039/d0cs00455c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design and discovery of small molecule medicines has largely been focused on a small number of druggable protein families. A new paradigm is emerging, however, in which small molecules exert a biological effect by interacting with RNA, both to study human disease biology and provide lead therapeutic modalities. Due to this potential for expanding target pipelines and treating a larger number of human diseases, robust platforms for the rational design and optimization of small molecules interacting with RNAs (SMIRNAs) are in high demand. This review highlights three major pillars in this area. First, the transcriptome-wide identification and validation of structured RNA elements, or motifs, within disease-causing RNAs directly from sequence is presented. Second, we provide an overview of high-throughput screening approaches to identify SMIRNAs as well as discuss the lead identification strategy, Inforna, which decodes the three-dimensional (3D) conformation of RNA motifs with small molecule binding partners, directly from sequence. An emphasis is placed on target validation methods to study the causality between modulating the RNA motif in vitro and the phenotypic outcome in cells. Third, emergent modalities that convert occupancy-driven mode of action SMIRNAs into event-driven small molecule chemical probes, such as RNA cleavers and degraders, are presented. Finally, the future of the small molecule RNA therapeutics field is discussed, as well as hurdles to overcome to develop potent and selective RNA-centric chemical probes.
Collapse
Affiliation(s)
- Andrei Ursu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA.
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA.
| | - Samantha M Meyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Alicia J Angelbello
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA.
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
27
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
28
|
Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res 2020; 48:e101. [PMID: 32797156 PMCID: PMC7515716 DOI: 10.1093/nar/gkaa673] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in biological engineering have made detection of nucleic acids in samples more rapid, inexpensive and sensitive using CRISPR-based approaches. We expand one of these Cas13a-based methods to detect small molecules in a one-batch assay. Using SHERLOCK-based profiling of in vitrotranscription (SPRINT), in vitro transcribed RNA sequence-specifically triggers the RNase activity of Cas13a. This event activates its non-specific RNase activity, which enables cleavage of an RNA oligonucleotide labeled with a quencher/fluorophore pair and thereby de-quenches the fluorophore. This fluorogenic output can be measured to assess transcriptional output. The use of riboswitches or proteins to regulate transcription via specific effector molecules is leveraged as a coupled assay that transforms effector concentration into fluorescence intensity. In this way, we quantified eight different compounds, including cofactors, nucleotides, metabolites of amino acids, tetracycline and monatomic ions in samples. In this manner, hundreds of reactions can be easily quantified in a few hours. This increased throughput also enables detailed characterization of transcriptional regulators, synthetic compounds that inhibit transcription, or other coupled enzymatic reactions. These SPRINT reactions are easily adaptable to portable formats and could therefore be used for the detection of analytes in the field or at point-of-care situations.
Collapse
Affiliation(s)
- Roman S Iwasaki
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
29
|
Schroeder GM, Dutta D, Cavender CE, Jenkins J, Pritchett EM, Baker CD, Ashton JM, Mathews DH, Wedekind JE. Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation. Nucleic Acids Res 2020; 48:8146-8164. [PMID: 32597951 PMCID: PMC7641330 DOI: 10.1093/nar/gkaa546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/20/2023] Open
Abstract
Riboswitches are structured RNA motifs that recognize metabolites to alter the conformations of downstream sequences, leading to gene regulation. To investigate this molecular framework, we determined crystal structures of a preQ1-I riboswitch in effector-free and bound states at 2.00 Å and 2.65 Å-resolution. Both pseudoknots exhibited the elusive L2 loop, which displayed distinct conformations. Conversely, the Shine-Dalgarno sequence (SDS) in the S2 helix of each structure remained unbroken. The expectation that the effector-free state should expose the SDS prompted us to conduct solution experiments to delineate environmental changes to specific nucleobases in response to preQ1. We then used nudged elastic band computational methods to derive conformational-change pathways linking the crystallographically-determined effector-free and bound-state structures. Pathways featured: (i) unstacking and unpairing of L2 and S2 nucleobases without preQ1-exposing the SDS for translation and (ii) stacking and pairing L2 and S2 nucleobases with preQ1-sequestering the SDS. Our results reveal how preQ1 binding reorganizes L2 into a nucleobase-stacking spine that sequesters the SDS, linking effector recognition to biological function. The generality of stacking spines as conduits for effector-dependent, interdomain communication is discussed in light of their existence in adenine riboswitches, as well as the turnip yellow mosaic virus ribosome sensor.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Debapratim Dutta
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Chapin E Cavender
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Elizabeth M Pritchett
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - John M Ashton
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
30
|
Kasprzak WK, Ahmed NA, Shapiro BA. Modeling ligand docking to RNA in the design of RNA-based nanostructures. Curr Opin Biotechnol 2020; 63:16-25. [DOI: 10.1016/j.copbio.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|
31
|
Ganser LR, Kelly ML, Patwardhan NN, Hargrove AE, Al-Hashimi HM. Demonstration that Small Molecules can Bind and Stabilize Low-abundance Short-lived RNA Excited Conformational States. J Mol Biol 2019; 432:1297-1304. [PMID: 31863746 DOI: 10.1016/j.jmb.2019.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022]
Abstract
Many promising RNA drug targets have functions that require the formation of RNA-protein complexes, but inhibiting RNA-protein interactions can prove difficult using small molecules. Regulatory RNAs have been shown to transiently form excited conformational states (ESs) that remodel local aspects of secondary structure. In some cases, the ES conformation has been shown to be inactive and to be poorly recognized by protein binding partners. In these cases, specifically targeting and stabilizing the RNA ES using a small molecule provides a rational structure-based strategy for inhibiting RNA activity. However, this requires that a small molecule discriminates between two conformations of the same RNA to preferentially bind and stabilize the short-lived low-abundance ES relative to the long-lived more abundant ground state (GS). Here, we tested the feasibility of this approach by designing a mutant that inverts the conformational equilibrium of the HIV-1 transactivation response element (TAR) RNA, such that the native GS conformation becomes a low-abundance ES. Using this mutant and NMR chemical shift mapping experiments, we show that argininamide, a ligand mimic of TAR's cognate protein binding partner Tat, is able to restore a native-like conformation by preferentially binding and stabilizing the transient and low-populated ES. A synthetic small molecule optimized to bind the TAR GS also partially stabilized the ES, whereas an aminoglycoside molecule that binds RNAs nonspecifically did not preferentially stabilize the ES to a similar extent. These results support the feasibility of inhibiting RNA activity using small molecules that preferentially bind and stabilize the ES.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Amanda E Hargrove
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA; Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
32
|
Patwardhan NN, Cai Z, Umuhire Juru A, Hargrove AE. Driving factors in amiloride recognition of HIV RNA targets. Org Biomol Chem 2019; 17:9313-9320. [PMID: 31612165 PMCID: PMC6909927 DOI: 10.1039/c9ob01702j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Noncoding RNAs are increasingly promising drug targets yet ligand design is hindered by a paucity of methods that reveal driving factors in selective small molecule : RNA interactions, particularly given the difficulties of high-resolution structural characterization. HIV RNAs are excellent model systems for method development given their targeting history, known structure-function relationships, and the unmet need for more effective treatments. Herein we report a strategy combining synthetic diversification, profiling against multiple RNA targets, and predictive cheminformatic analysis to identify driving factors for selectivity and affinity of small molecules for distinct HIV RNA targets. Using this strategy, we discovered improved ligands for multiple targets and the first ligands for ESSV, an exonic splicing silencer critical to replication. Computational analysis revealed guiding principles for future designs and a predictive cheminformatics model of small molecule : RNA binding. These methods are expected to facilitate progress toward selective targeting of disease-causing RNAs.
Collapse
Affiliation(s)
- Neeraj N Patwardhan
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | | | | | | |
Collapse
|
33
|
Ursu A, Vézina-Dawod S, Disney MD. Methods to identify and optimize small molecules interacting with RNA (SMIRNAs). Drug Discov Today 2019; 24:2002-2016. [PMID: 31356880 PMCID: PMC6842402 DOI: 10.1016/j.drudis.2019.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 01/14/2023]
Abstract
RNAs, particularly noncoding RNAs (ncRNAs), are becoming increasingly important therapeutic targets, because they are causative and antagonists of human disease. Indeed, aberrant RNA structural elements and expression deregulate biological processes. In this review, we describe methodologies to discover and optimize small molecules interacting with RNA (SMIRNAs), including the evaluation of direct target engagement and the rescue of RNA-mediated phenotypes in vitro and in vivo. Such studies are essential to fully characterize the mode of action of SMIRNAs and advance our understanding of rationally and efficiently drugging RNAs for therapeutic benefit.
Collapse
Affiliation(s)
- Andrei Ursu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Simon Vézina-Dawod
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|