1
|
Reyes-Rosario D, Pardo JP, Guerra-Sánchez G, Vázquez-Meza H, López-Hernández G, Matus-Ortega G, González J, Baeza M, Romero-Aguilar L. Analysis of the Respiratory Activity in the Antarctic Yeast Rhodotorula mucilaginosa M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements. Microorganisms 2024; 12:1931. [PMID: 39458241 PMCID: PMC11509550 DOI: 10.3390/microorganisms12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. The activities of the components of the mitochondrial respiratory chain of the Antarctic yeast R. mucilaginosa M94C9 were identified by in-gel activity and SDS-PAGE. The mitochondria exhibited activity for the classical components of the electron transport chain (Complexes I, II, III, and IV), and supercomplexes were formed by a combination of the respiratory complexes I, III, and IV. Unfortunately, the activities of the monomeric and dimeric forms of the F1F0-ATP synthase were not revealed by the in-gel assay, but the two forms of the ATP synthase were visualized in the SDS-PAGE. Furthermore, two alternative pathways for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate dehydrogenase. In addition, an NADPH dehydrogenase and a lactate cytochrome b2 dehydrogenase were found. The residual respiratory activity following cyanide addition suggests the presence of an alternative oxidase in cells.
Collapse
Affiliation(s)
- Daniel Reyes-Rosario
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Georgina López-Hernández
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| |
Collapse
|
2
|
Manee MM, Al-Shomrani BM, Alqahtani FH. Mitochondrial DNA of the Arabian Camel Camelus dromedarius. Animals (Basel) 2024; 14:2460. [PMID: 39272245 PMCID: PMC11394021 DOI: 10.3390/ani14172460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Camelidae family, ranging from southwest Asia to north Africa, South America, and Australia, includes key domesticated species adapted to diverse environments. Among these, the Arabian camel (Camelus dromedarius) is vital to the cultural and economic landscape of the Arabian Peninsula. This review explores the mitochondrial DNA of the dromedary camel, focusing on the D-loop region to understand its genetic diversity, maternal inheritance, and evolutionary history. We aim to investigate the unique characteristics of Arabian camel mtDNA, analyze the D-loop for genetic diversity and maternal lineage patterns, and explore the implications of mitochondrial genomic studies for camel domestication and adaptation. Key findings on mtDNA structure and variation highlight significant genetic differences and adaptive traits. The D-loop, essential for mtDNA replication and transcription, reveals extensive polymorphisms and haplotypes, providing insights into dromedary camel domestication and breeding history. Comparative analyses with other camelid species reveal unique genetic signatures in the Arabian camel, reflecting its evolutionary and adaptive pathways. Finally, this review integrates recent advancements in mitochondrial genomics, demonstrating camel genetic diversity and potential applications in conservation and breeding programs. Through comprehensive mitochondrial genome analysis, we aim to enhance the understanding of Camelidae genetics and contribute to the preservation and improvement of these vital animals.
Collapse
Affiliation(s)
- Manee M Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Badr M Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fahad H Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
3
|
Bui THD, Labedzka-Dmoch K. RetroGREAT signaling: The lessons we learn from yeast. IUBMB Life 2024; 76:26-37. [PMID: 37565710 DOI: 10.1002/iub.2775] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The mitochondrial retrograde signaling (RTG) pathway of communication from mitochondria to the nucleus was first studied in yeast Saccharomyces cerevisiae. It rewires cellular metabolism according to the mitochondrial state by reprogramming nuclear gene expression in response to mitochondrial triggers. The main players involved in retrograde signaling are the Rtg1 and Rtg3 transcription factors, and a set of positive and negative regulators, including the Rtg2, Mks1, Lst8, and Bmh1/2 proteins. Retrograde regulation is integrated with other processes, including stress response, osmoregulation, and nutrient sensing through functional crosstalk with cellular pathways such as high osmolarity glycerol or target of rapamycin signaling. In this review, we summarize metabolic changes observed upon retrograde stimulation and analyze the progress made to uncover the mechanisms underlying the integration of regulatory circuits. Comparisons of the evolutionary adaptations of the retrograde pathway that have occurred in the different yeast groups can help to fully understand the process.
Collapse
Affiliation(s)
- Thi Hoang Diu Bui
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Coltman BL, Rebnegger C, Gasser B, Zanghellini J. Characterising the metabolic rewiring of extremely slow growing Komagataella phaffii. Microb Biotechnol 2024; 17:e14386. [PMID: 38206275 PMCID: PMC10832545 DOI: 10.1111/1751-7915.14386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Retentostat cultivations have enabled investigations into substrate-limited near-zero growth for a number of microbes. Quantitative physiology at these near-zero growth conditions has been widely discussed, yet characterisation of the fluxome is relatively under-reported. We investigated the rewiring of metabolism in the transition of a recombinant protein-producing strain of Komagataella phaffii to glucose-limited near-zero growth rates. We used cultivation data from a 200-fold range of growth rates and comprehensive biomass composition data to integrate growth rate dependent biomass equations, generated using a number of different approaches, into a K. phaffii genome-scale metabolic model. Here, we show that a non-growth-associated maintenance value of 0.65 mmol ATP g CDW - 1 h - 1 and a growth-associated maintenance value of 108 mmol ATP g CDW - 1 lead to accurate growth rate predictions. In line with its role as energy source, metabolism is rewired to increase the yield of ATP per glucose. This includes a reduction of flux through the pentose phosphate pathway, and a greater utilisation of glycolysis and the TCA cycle. Interestingly, we observed activity of an external, non-proton translocating NADH dehydrogenase in addition to the malate-aspartate shuttle. Regardless of the method used for the generation of biomass equations, a similar, yet different, growth rate dependent rewiring was predicted. As expected, these differences between the different methods were clearer at higher growth rates, where the biomass equation provides a much greater constraint than at slower growth rates. When placed on an increasingly limited glucose diet, the metabolism of K. phaffii adapts, enabling it to continue to drive critical processes sustaining its high viability at near-zero growth rates.
Collapse
Affiliation(s)
- Benjamin Luke Coltman
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Corinna Rebnegger
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Brigitte Gasser
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Jürgen Zanghellini
- Austrian Centre of Industrial BiotechnologyViennaAustria
- Department of Analytical ChemistryUniversity of ViennaViennaAustria
| |
Collapse
|
5
|
Lei JD, Zhang SB, Ding WZ, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of trans-anethole, the main constituent of Illicium verum fruit volatiles, on Aspergillus flavus in stored wheat. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Transcriptomics analyses and biochemical characterization of Aspergillus flavus spores exposed to 1-nonanol. Appl Microbiol Biotechnol 2022; 106:2091-2106. [PMID: 35179628 DOI: 10.1007/s00253-022-11830-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022]
Abstract
The exploitation of plant volatile organic compounds as biofumigants to control postharvest decaying of agro-products has received considerable research attention. Our previous study reported that 1-nonanol, the main constituent of cereal volatiles, can inhibit Aspergillus flavus growth and has the potential as a biofumigant to control the fungal spoilage of cereal grains. However, the antifungal mechanism of 1-nonanol against A. flavus is still unclear at the molecular level. In this study, the minimum inhibitory concentration and minimum fungicidal concentration of 1-nonanol against A. flavus spores were 2 and 4 μL/mL, respectively. Scanning electron microscopy revealed that the 1-nonanol can distort the morphology of A. flavus spore. Annexin V-FITC/PI double staining showed that 1-nonanol induced phosphatidylserine eversion and increased membrane permeability of A. flavus spores. Transcriptional profile analysis showed that 1-nonanol treatment mainly affected the expression of genes related to membrane damage, oxidative phosphorylation, blockage of DNA replication, and autophagy in A. flavus spores. Flow cytometry analysis showed that 1-nonanol treatment caused hyperpolarization of mitochondrial membrane potential and accumulation of reactive oxygen species in A. flavus spores. 4',6-diamidino-2-phenylindole staining showed that treatment with 1-nonanol destroyed the DNA. Biochemical analysis results confirmed that 1-nonanol exerted destructive effects on A. flavus spores by decreasing intracellular adenosine triphosphate content, reducing mitochondrial ATPase activity, accumulating hydrogen peroxide and superoxide anions, and increasing catalase and superoxide dismutase enzyme activities. This study provides new insights into the antifungal mechanisms of 1-nonanol against A. flavus. KEY POINTS: • 1-Nonanol treatment resulted in abnormal morphology of A. flavus spores. • 1-Nonanol affects the expression of key growth-related genes of A. flavus. • The apoptosis of A. favus spores were induced after exposed to 1-nonanol.
Collapse
|
7
|
Zhao Q, Ding Y, Song X, Liu S, Li M, Li R, Ruan H. Proteomic analysis reveals that naturally produced citral can significantly disturb physiological and metabolic processes in the rice blast fungus Magnaporthe oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104835. [PMID: 33993960 DOI: 10.1016/j.pestbp.2021.104835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Rice blast (Magnaporthe oryzae), a major fungal disease in rice producing areas all over the world as well as in China, seriously affects the safety of rice production. Citral, a mixture of Z/E and trans isomers, is a natural acycloid monoterpene compound with good bacteriostatic effect on rice blast. To further investigate the underlying molecular mechanism, a comparative proteomics analysis was conducted between citral-treated and non-treated M. oryzae spores through two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. Our analysis identified 1600-1800 proteins from M. oryzae ZB15, of which 147 were differentially expressed in 100 μg/mL citral-treated samples relative to the control group. Among these differentially expressed proteins (DEPs), 40 proteins showed significantly different expression. GO enrichment and NCBI conserved domains database analysis showed that the main groups of the cellular component were cytoplasm (23.33%), and the major molecular function categories were ion binding (31.37%), and the major categories of biological processes included small molecule metabolic process (22.22%) and transport (13.89%). Further analysis found that down-regulated proteins included the tubulin α chain, ATP synthase subunit β and malate dehydrogenase, while the tubulin β, enolase were upregulated. These DEPs could possibly limit the availability of energy required for many cellular processes and result in various physiological adaptions of M. oryzae. This study represents the first proteomic analysis of M. oryzae treated by citral and will help to uncover the mode-of-action of this biologically active compound against M. oryzae. These findings have practical implications with respect to the use of citral for fungal disease control.
Collapse
Affiliation(s)
- Qijun Zhao
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yi Ding
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xingchen Song
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Shijiang Liu
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Hongchun Ruan
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
8
|
A Yeast-Based Drug Discovery Platform To Identify Plasmodium falciparum Type II NADH Dehydrogenase Inhibitors. Antimicrob Agents Chemother 2021; 65:AAC.02470-20. [PMID: 33722883 DOI: 10.1128/aac.02470-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Conventional methods utilizing in vitro protein activity assay or in vivo parasite survival to screen for malaria inhibitors suffer from high experimental background and/or inconvenience. Here, we introduce a yeast-based system to facilitate chemical screening for specific protein or pathway inhibitors. The platform comprises several isogeneic Pichia strains that differ only in the target of interest, so that a compound which inhibits one strain but not the other is implicated in working specifically against the target. We used Plasmodium falciparum NDH2 (PfNDH2), a type II NADH dehydrogenase, as a proof of principle to show how well this works. Three isogenic Pichia strains harboring, respectively, exogeneously introduced PfNDH2, its own complex I (a type I NADH dehydrogenase), and PfNDH2 with its own complex I, were constructed. In a pilot screen of more than 2,000 compounds, we identified a highly specific inhibitor that acts on PfNDH2. This compound poorly inhibits the parasites at the asexual blood stage; however, is highly effective in repressing oocyst maturation in the mosquito stage. Our results demonstrate that the yeast cell-based screen platform is feasible, efficient, economical, and has very low background noise. Similar strategies could be extended to the functional screen for interacting molecules of other targets.
Collapse
|
9
|
Valli M, Grillitsch K, Grünwald-Gruber C, Tatto NE, Hrobath B, Klug L, Ivashov V, Hauzmayer S, Koller M, Tir N, Leisch F, Gasser B, Graf AB, Altmann F, Daum G, Mattanovich D. A subcellular proteome atlas of the yeast Komagataella phaffii. FEMS Yeast Res 2021; 20:5700286. [PMID: 31922548 PMCID: PMC6981350 DOI: 10.1093/femsyr/foaa001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The compartmentalization of metabolic and regulatory pathways is a common pattern of living organisms. Eukaryotic cells are subdivided into several organelles enclosed by lipid membranes. Organelle proteomes define their functions. Yeasts, as simple eukaryotic single cell organisms, are valuable models for higher eukaryotes and frequently used for biotechnological applications. While the subcellular distribution of proteins is well studied in Saccharomyces cerevisiae, this is not the case for other yeasts like Komagataella phaffii (syn. Pichia pastoris). Different to most well-studied yeasts, K. phaffii can grow on methanol, which provides specific features for production of heterologous proteins and as a model for peroxisome biology. We isolated microsomes, very early Golgi, early Golgi, plasma membrane, vacuole, cytosol, peroxisomes and mitochondria of K. phaffii from glucose- and methanol-grown cultures, quantified their proteomes by liquid chromatography-electrospray ionization-mass spectrometry of either unlabeled or tandem mass tag-labeled samples. Classification of the proteins by their relative enrichment, allowed the separation of enriched proteins from potential contaminants in all cellular compartments except the peroxisomes. We discuss differences to S. cerevisiae, outline organelle specific findings and the major metabolic pathways and provide an interactive map of the subcellular localization of proteins in K. phaffii.
Collapse
Affiliation(s)
- Minoska Valli
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Nadine E Tatto
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Bernhard Hrobath
- Institute of Statistics, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Lisa Klug
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Vasyl Ivashov
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Sandra Hauzmayer
- School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Martina Koller
- School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Nora Tir
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Leisch
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Statistics, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
10
|
Juergens H, Hakkaart XDV, Bras JE, Vente A, Wu L, Benjamin KR, Pronk JT, Daran-Lapujade P, Mans R. Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of Ogataea parapolymorpha. Appl Environ Microbiol 2020; 86:e00678-20. [PMID: 32471916 PMCID: PMC7376551 DOI: 10.1128/aem.00678-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
The thermotolerant yeast Ogataea parapolymorpha (formerly Hansenula polymorpha) is an industrially relevant production host that exhibits a fully respiratory sugar metabolism in aerobic batch cultures. NADH-derived electrons can enter its mitochondrial respiratory chain either via a proton-translocating complex I NADH-dehydrogenase or via three putative alternative NADH dehydrogenases. This respiratory entry point affects the amount of ATP produced per NADH/O2 consumed and therefore impacts the maximum yield of biomass and/or cellular products from a given amount of substrate. To investigate the physiological importance of complex I, a wild-type O. parapolymorpha strain and a congenic complex I-deficient mutant were grown on glucose in aerobic batch, chemostat, and retentostat cultures in bioreactors. In batch cultures, the two strains exhibited a fully respiratory metabolism and showed the same growth rates and biomass yields, indicating that, under these conditions, the contribution of NADH oxidation via complex I was negligible. Both strains also exhibited a respiratory metabolism in glucose-limited chemostat cultures, but the complex I-deficient mutant showed considerably reduced biomass yields on substrate and oxygen, consistent with a lower efficiency of respiratory energy coupling. In glucose-limited retentostat cultures at specific growth rates down to ∼0.001 h-1, both O. parapolymorpha strains showed high viability. Maintenance energy requirements at these extremely low growth rates were approximately 3-fold lower than estimated from faster-growing chemostat cultures, indicating a stringent-response-like behavior. Quantitative transcriptome and proteome analyses indicated condition-dependent expression patterns of complex I subunits and of alternative NADH dehydrogenases that were consistent with physiological observations.IMPORTANCE Since popular microbial cell factories have typically not been selected for efficient respiratory energy coupling, their ATP yields from sugar catabolism are often suboptimal. In aerobic industrial processes, suboptimal energy coupling results in reduced product yields on sugar, increased process costs for oxygen transfer, and volumetric productivity limitations due to limitations in gas transfer and cooling. This study provides insights into the contribution of mechanisms of respiratory energy coupling in the yeast cell factory Ogataea parapolymorpha under different growth conditions and provides a basis for rational improvement of energy coupling in yeast cell factories. Analysis of energy metabolism of O. parapolymorpha at extremely low specific growth rates indicated that this yeast reduces its energy requirements for cellular maintenance under extreme energy limitation. Exploration of the mechanisms for this increased energetic efficiency may contribute to an optimization of the performance of industrial processes with slow-growing eukaryotic cell factories.
Collapse
Affiliation(s)
- Hannes Juergens
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Xavier D V Hakkaart
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jildau E Bras
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - André Vente
- DSM Biotechnology Center, Delft, The Netherlands
| | - Liang Wu
- DSM Biotechnology Center, Delft, The Netherlands
| | | | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
11
|
Hu T, Tian Y, Zhu J, Wang Y, Jing R, Lei J, Sun Y, Yu Y, Li J, Chen X, Zhu X, Hao Y, Liu L, Wang Y, Wan J. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. PLANT CELL REPORTS 2018; 37:1667-1679. [PMID: 30151559 DOI: 10.1007/s00299-018-2338-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 05/23/2023]
Abstract
Loss of function of a mitochondrial complex I subunit (OsNDUFA9) causes abnormal embryo development and affects starch synthesis by altering the expression of starch synthesis-related genes and proteins. Proton-pumping NADH: ubiquinone oxidoreductase (also called complex I) is thought to be the largest and most complicated enzyme of the mitochondrial respiratory chain. Mutations of complex I subunits have been revealed to link with a number of growth inhibitions in plants. However, the function of complex I subunits in rice remains unclear. Here, we isolated a rice floury endosperm mutant (named flo13) that was embryonic lethal and failed to germinate. Semi-thin sectioning analysis showed that compound starch grain development in the mutant was greatly impaired, leading to significantly compromised starch biosynthesis and decreased 1000-grain weight relative to the wild type. Map-based cloning revealed that FLO13 encodes an accessory subunit of complex I protein (designated as OsNDUFA9). A single nucleotide substitution (G18A) occurred in the first exon of OsNDUFA9, introducing a premature stop codon in the flo13 mutant gene. OsNDUFA9 was ubiquitously expressed in various tissues and the OsNDUFA9 protein was localized to the mitochondria. Quantitative RT-PCR and protein blotting indicated loss of function of OsNDUFA9 altered gene expression and protein accumulation associated with respiratory electron chain complex in the mitochondria. Moreover, transmission electron microscopic analysis showed that the mutant lacked obvious mitochondrial cristae structure in the mitochondria of endosperm cell. Our results demonstrate that the OsNDUFA9 subunit of complex I is essential for embryo development and starch synthesis in rice endosperm.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinglun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfang Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingfang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
12
|
Valach M, Léveillé-Kunst A, Gray MW, Burger G. Respiratory chain Complex I of unparalleled divergence in diplonemids. J Biol Chem 2018; 293:16043-16056. [PMID: 30166340 DOI: 10.1074/jbc.ra118.005326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial genes of Euglenozoa (Kinetoplastida, Diplonemea, and Euglenida) are notorious for being barely recognizable, raising the question of whether such divergent genes actually code for functional proteins. Here we demonstrate the translation and identify the function of five previously unassigned y genes encoded by mitochondrial DNA (mtDNA) of diplonemids. As is the rule in diplonemid mitochondria, y genes are fragmented, with gene pieces transcribed separately and then trans-spliced to form contiguous mRNAs. Further, y transcripts undergo massive RNA editing, including uridine insertions that generate up to 16-residue-long phenylalanine tracts, a feature otherwise absent from conserved mitochondrial proteins. By protein sequence analyses, MS, and enzymatic assays in Diplonema papillatum, we show that these y genes encode the subunits Nad2, -3, -4L, -6, and -9 of the respiratory chain Complex I (CI; NADH:ubiquinone oxidoreductase). The few conserved residues of these proteins are essentially those involved in proton pumping across the inner mitochondrial membrane and in coupling ubiquinone reduction to proton pumping (Nad2, -3, -4L, and -6) and in interactions with subunits containing electron-transporting Fe-S clusters (Nad9). Thus, in diplonemids, 10 CI subunits are mtDNA-encoded. Further, MS of D. papillatum CI allowed identification of 26 conventional and 15 putative diplonemid-specific nucleus-encoded components. Most conventional accessory subunits are well-conserved but unusually long, possibly compensating for the streamlined mtDNA-encoded components and for missing, otherwise widely distributed, conventional subunits. Finally, D. papillatum CI predominantly exists as a supercomplex I:III:IV that is exceptionally stable, making this protist an organism of choice for structural studies.
Collapse
Affiliation(s)
- Matus Valach
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| | - Alexandra Léveillé-Kunst
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| | - Michael W Gray
- the Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gertraud Burger
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| |
Collapse
|
13
|
Identification and characterization two isoforms of NADH:ubiquinone oxidoreductase from the hyperthermophilic eubacterium Aquifex aeolicus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:366-373. [DOI: 10.1016/j.bbabio.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/18/2018] [Accepted: 02/24/2018] [Indexed: 12/20/2022]
|
14
|
Zahrl RJ, Peña DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res 2017; 17:4093073. [DOI: 10.1093/femsyr/fox068] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
|
15
|
Bridges HR, Mohammed K, Harbour ME, Hirst J. Subunit NDUFV3 is present in two distinct isoforms in mammalian complex I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:197-207. [PMID: 27940020 PMCID: PMC5293009 DOI: 10.1016/j.bbabio.2016.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the electron transport chain in mammalian mitochondria. Extensive proteomic and structural analyses of complex I from Bos taurus heart mitochondria have shown it comprises 45 subunits encoded on both the nuclear and mitochondrial genomes; 44 of them are different and one is present in two copies. The bovine heart enzyme has provided a model for studying the composition of complex I in other mammalian species, including humans, but the possibility of additional subunits or isoforms in other species or tissues has not been explored. Here, we describe characterization of the complexes I purified from five rat tissues and from a rat hepatoma cell line. We identify a~50kDa isoform of subunit NDUFV3, for which the canonical isoform is only ~10kDa in size. We combine LC-MS and MALDI-TOF mass spectrometry data from two different purification methods (chromatography and immuno-purification) with information from blue native PAGE analyses to show the long isoform is present in the mature complex, but at substoichiometric levels. It is also present in complex I in cultured human cells. We describe evidence that the long isoform is more abundant in both the mitochondria and purified complexes from brain (relative to in heart, liver, kidney and skeletal muscle) and more abundant still in complex I in cultured cells. We propose that the long 50kDa isoform competes with its canonical 10kDa counterpart for a common binding site on the flavoprotein domain of complex I.
Collapse
Affiliation(s)
- Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust / MRC Building, Hills Road, Cambridge, CB2 0XY, U. K
| | - Khairunnisa Mohammed
- The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust / MRC Building, Hills Road, Cambridge, CB2 0XY, U. K
| | - Michael E Harbour
- The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust / MRC Building, Hills Road, Cambridge, CB2 0XY, U. K
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust / MRC Building, Hills Road, Cambridge, CB2 0XY, U. K..
| |
Collapse
|
16
|
Abstract
Mitochondria are essential for cell growth and survival of most fungal pathogens. Energy (ATP) produced during oxidation/reduction reactions of the electron transport chain (ETC) Complexes I, III and IV (CI, CIII, CIV) fuel cell synthesis. The mitochondria of fungal pathogens are understudied even though more recent published data suggest critical functional assignments to fungal-specific proteins. Proteins of mammalian mitochondria are grouped into 16 functional categories. In this review, we focus upon 11 proteins from 5 of these categories in fungal pathogens, OXPHOS, protein import, stress response, carbon source metabolism, and fission/fusion morphology. As these proteins also are fungal-specific, we hypothesize that they may be exploited as targets in antifungal drug discovery. We also discuss published transcriptional profiling data of mitochondrial CI subunit protein mutants, in which we advance a novel concept those CI subunit proteins have both shared as well as specific responsibilities for providing ATP to cell processes.
Collapse
Affiliation(s)
- Dongmei Li
- a Department of Microbiology & Immunology , Georgetown University Medical Center , Washington , DC , USA
| | - Richard Calderone
- a Department of Microbiology & Immunology , Georgetown University Medical Center , Washington , DC , USA
| |
Collapse
|
17
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Córdoba JP, Marchetti F, Soto D, Martin MV, Pagnussat GC, Zabaleta E. The CA domain of the respiratory complex I is required for normal embryogenesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1589-603. [PMID: 26721503 PMCID: PMC5854192 DOI: 10.1093/jxb/erv556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/10/2015] [Indexed: 05/04/2023]
Abstract
The NADH-ubiquinone oxidoreductase [complex I (CI), EC 1.6.5.3] of the mitochondrial respiratory chain is the principal entry point of electrons, and vital in maintaining metabolism and the redox balance. In a variety of eukaryotic organisms, except animal and fungi (Opisthokonta), it contains an extra domain composed of putative gamma carbonic anhydrases subunits, named the CA domain, which was proposed to be essential for complex I assembly. There are two kinds of carbonic anhydrase subunits: CAs (of which there are three) and carbonic anhydrase-like proteins (CALs) (of which there are two). In plants, the CA domain has been linked to photorespiration. In this work, we report that Arabidopsis mutant plants affected in two specific CA subunits show a lethal phenotype. Double homozygous knockouts ca1ca2 embryos show a significant developmental delay compared to the non-homozygous embryos, which show a wild-type (WT) phenotype in the same silique. Mutant embryos show impaired mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS) accumulation. The characteristic embryo greening does not take place and fewer but larger oil bodies are present. Although seeds look dark brown and wrinkled, they are able to germinate 12 d later than WT seeds. However, they die immediately, most likely due to oxidative stress.Since the CA domain is required for complex I biogenesis, it is predicted that in ca1ca2 mutants no complex I could be formed, triggering the lethal phenotype. The in vivo composition of a functional CA domain is proposed.
Collapse
Affiliation(s)
- Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Fernanda Marchetti
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Débora Soto
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - María Victoria Martin
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| |
Collapse
|
19
|
Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:902-14. [PMID: 26921811 DOI: 10.1016/j.bbabio.2016.02.013] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ulrich Brandt
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany.
| |
Collapse
|
20
|
Tomàs-Gamisans M, Ferrer P, Albiol J. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism. PLoS One 2016; 11:e0148031. [PMID: 26812499 PMCID: PMC4734642 DOI: 10.1371/journal.pone.0148031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/12/2016] [Indexed: 01/21/2023] Open
Abstract
Motivation Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. Results In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the iMT1026 model has shown a better performance than the previous existing models.
Collapse
Affiliation(s)
- Màrius Tomàs-Gamisans
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Pau Ferrer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Joan Albiol
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- * E-mail:
| |
Collapse
|
21
|
Soto D, Córdoba JP, Villarreal F, Bartoli C, Schmitz J, Maurino VG, Braun HP, Pagnussat GC, Zabaleta E. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:831-844. [PMID: 26148112 DOI: 10.1111/tpj.12930] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
The NADH-ubiquinone oxidoreductase complex (complex I) (EC 1.6.5.3) is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases, named the CA domain, which has been proposed to be essential for assembly of complex I. However, its physiological role in plants is not fully understood. Here, we report that Arabidopsis mutants defective in two CA subunits show an altered photorespiratory phenotype. Mutants grown in ambient air show growth retardation compared to wild-type plants, a feature that is reversed by cultivating plants in a high-CO2 atmosphere. Moreover, under photorespiratory conditions, carbon assimilation is diminished and glycine accumulates, suggesting an imbalance with respect to photorespiration. Additionally, transcript levels of specific CA subunits are reduced in plants grown under non-photorespiratory conditions. Taken together, these results suggest that the CA domain of plant complex I contributes to sustaining efficient photosynthesis under ambient (photorespiratory) conditions.
Collapse
Affiliation(s)
- Débora Soto
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Fernando Villarreal
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Carlos Bartoli
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata/CONICET La Plata, cc 327, 1900, La Plata, Argentina
| | - Jessica Schmitz
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Cluster of Excellence on Plant Sciences, Heinrich Heine Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Cluster of Excellence on Plant Sciences, Heinrich Heine Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hans Peter Braun
- Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhäuserstraße 2, D-30419, Hannover, Germany
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| |
Collapse
|
22
|
She X, Khamooshi K, Gao Y, Shen Y, Lv Y, Calderone R, Fonzi W, Liu W, Li D. Fungal-specific subunits of the Candida albicans mitochondrial complex I drive diverse cell functions including cell wall synthesis. Cell Microbiol 2015; 17:1350-64. [PMID: 25801605 PMCID: PMC4677794 DOI: 10.1111/cmi.12438] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/05/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
Abstract
Our published research has focused on the role of Goa1p, an apparent regulator of the Candida albicans mitochondrial complex I (CI). Lack of Goa1p affects optimum cell growth, CI activity and virulence. Eukaryotic CI is composed of a core of 14 alpha-proteobacterial subunit proteins and a variable number of supernumerary subunit proteins. Of the latter group of proteins, one (NUZM) is fungal specific and the other (NUXM) is found in fungi, algae and plants, but is not a mammalian CI subunit protein. We have established that NUXM is orf19.6607 and NUZM is orf19.287 in C. albicans. Herein, we validate both subunit proteins as NADH:ubiquinone oxidoreductases (NUO) and annotate their gene functions. To accomplish these objectives, we compared null mutants of each with wild type (WT) and gene-reconstituted strains. Genetic mutants of genes NUO1 (orf19.6607) and NUO2 (orf19.287), not surprisingly, each had reduced oxygen consumption, decreased mitochondrial redox potential, decreased CI activity, increased reactive oxidant species (ROS) and decreased chronological ageing in vitro. Loss of either gene results in disassembly of CI. Transcriptional profiling of both mutants indicated significant down-regulation of genes of carbon metabolism, as well as up-regulation of mitochondrial-associated gene families that may occur to compensate for the loss of CI activity. Profiling of both mutants also demonstrated a loss of cell wall β-mannosylation but not in a conserved CI subunit (ndh51Δ). The profiling data may indicate specific functions driven by the enzymatic activity of Nuo1p and Nuo2p. Of importance, each mutant is also avirulent in a murine blood-borne, invasive model of candidiasis associated with their reduced colonization of tissues. Based on their fungal specificity and roles in virulence, we suggest both as drug targets for antifungal drug discovery.
Collapse
Affiliation(s)
- Xiaodong She
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC, 20057
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Kasra Khamooshi
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC, 20057
| | - Yin Gao
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Yongnian Shen
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Yuxia Lv
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Richard Calderone
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC, 20057
| | - William Fonzi
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC, 20057
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Dongmei Li
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC, 20057
| |
Collapse
|
23
|
Calderone R, Li D, Traven A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res 2015; 15:fov027. [PMID: 26002841 PMCID: PMC4542695 DOI: 10.1093/femsyr/fov027] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 12/23/2022] Open
Abstract
The mitochondrion plays wide-ranging roles in eukaryotic cell physiology. In pathogenic fungi, this central metabolic organelle mediates a range of functions related to disease, from fitness of the pathogen to developmental and morphogenetic transitions to antifungal drug susceptibility. In this review, we present the latest findings in this area. We focus on likely mechanisms of mitochondrial impact on fungal virulence pathways through metabolism and stress responses, but also potentially via control over signaling pathways. We highlight fungal mitochondrial proteins that lack human homologs, and which could be inhibited as a novel approach to antifungal drug strategy.
Collapse
Affiliation(s)
- Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University Clayton, 3800 VIC, Australia
| |
Collapse
|
24
|
Prielhofer R, Cartwright SP, Graf AB, Valli M, Bill RM, Mattanovich D, Gasser B. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genomics 2015; 16:167. [PMID: 25887254 PMCID: PMC4408588 DOI: 10.1186/s12864-015-1393-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Background The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1393-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roland Prielhofer
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Stephanie P Cartwright
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria. .,School of Bioengineering, University of Applied Sciences FH Campus Wien, Vienna, Austria.
| | - Minoska Valli
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Brigitte Gasser
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
25
|
Carroll J, Ding S, Fearnley IM, Walker JE. Post-translational modifications near the quinone binding site of mammalian complex I. J Biol Chem 2013; 288:24799-808. [PMID: 23836892 PMCID: PMC3750175 DOI: 10.1074/jbc.m113.488106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex I (NADH:ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 protein subunits with one arm buried in the inner membrane of the mitochondrion and the orthogonal arm protruding about 100 Å into the matrix. The protruding arm contains the binding sites for NADH, the primary acceptor of electrons flavin mononucleotide (FMN), and a chain of seven iron-sulfur clusters that carries the electrons one at a time from FMN to a coenzyme Q molecule bound in the vicinity of the junction between the two arms. In the structure of the closely related bacterial enzyme from Thermus thermophilus, the quinone is thought to bind in a tunnel that spans the interface between the two arms, with the quinone head group close to the terminal iron-sulfur cluster, N2. The tail of the bound quinone is thought to extend from the tunnel into the lipid bilayer. In the mammalian enzyme, it is likely that this tunnel involves three of the subunits of the complex, ND1, PSST, and the 49-kDa subunit. An arginine residue in the 49-kDa subunit is symmetrically dimethylated on the ω-NG and ω-NG′ nitrogen atoms of the guanidino group and is likely to be close to cluster N2 and to influence its properties. Another arginine residue in the PSST subunit is hydroxylated and probably lies near to the quinone. Both modifications are conserved in mammalian enzymes, and the former is additionally conserved in Pichia pastoris and Paracoccus denitrificans, suggesting that they are functionally significant.
Collapse
Affiliation(s)
- Joe Carroll
- Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | | | | | | |
Collapse
|
26
|
Carilla-Latorre S, Annesley SJ, Muñoz-Braceras S, Fisher PR, Escalante R. Ndufaf5 deficiency in the Dictyostelium model: new roles in autophagy and development. Mol Biol Cell 2013; 24:1519-28. [PMID: 23536703 PMCID: PMC3655813 DOI: 10.1091/mbc.e12-11-0796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ndufaf5 is a conserved protein mutated in patients with mitochondrial complex I (CI) disease. A Dictyostelium model lacking functional Ndufaf5 provides new insights into the cytopathology of the disease, including a specific CI deficiency, AMPK-independent defects in growth and development, and a connection with autophagy. Ndufaf5 (also known as C20orf7) is a mitochondrial complex I (CI) assembly factor whose mutations lead to human mitochondrial disease. Little is known about the function of the protein and the cytopathological consequences of the mutations. Disruption of Dictyostelium Ndufaf5 leads to CI deficiency and defects in growth and development. The predicted sequence of Ndufaf5 contains a putative methyltransferase domain. Site-directed mutagenesis indicates that the methyltransferase motif is essential for its function. Pathological mutations were recreated in the Dictyostelium protein and expressed in the mutant background. These proteins were unable to complement the phenotypes, which further validates Dictyostelium as a model of the disease. Chronic activation of AMP-activated protein kinase (AMPK) has been proposed to play a role in Dictyostelium and human cytopathology in mitochondrial diseases. However, inhibition of the expression of AMPK gene in the Ndufaf5-null mutant does not rescue the phenotypes associated with the lack of Ndufaf5, suggesting that novel AMPK-independent pathways are responsible for Ndufaf5 cytopathology. Of interest, the Ndufaf5-deficient strain shows an increase in autophagy. This phenomenon was also observed in a Dictyostelium mutant lacking MidA (C2orf56/PRO1853/Ndufaf7), another CI assembly factor, suggesting that autophagy activation might be a common feature in mitochondrial CI dysfunction.
Collapse
Affiliation(s)
- Sergio Carilla-Latorre
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2027-37. [PMID: 22709906 DOI: 10.1016/j.bbabio.2012.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 11/20/2022]
Abstract
The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
28
|
Meyer EH. Proteomic investigations of complex I composition: how to define a subunit? FRONTIERS IN PLANT SCIENCE 2012; 3:106. [PMID: 22654890 PMCID: PMC3359495 DOI: 10.3389/fpls.2012.00106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/07/2012] [Indexed: 05/20/2023]
Abstract
Complex I is present in almost all aerobic species. Being the largest complex of the respiratory chain, it has a central role in energizing biological membranes and is essential for many organisms. Bacterial complex I is composed of 14 subunits that are sufficient to achieve the respiratory functions. Eukaryotic enzymes contain orthologs of the 14 bacterial subunits and around 30 additional subunits. This complexity suggests either that complex I requires more stabilizing subunits in mitochondria or that it fulfills additional functions. In many organisms recent work on complex I concentrated on the determination of its exact composition. This review summarizes the work done to elucidate complex I composition in the model plant Arabidopsis and proposes a model for the organization of its 44 confirmed subunits. The comparison of the different studies investigating the composition of complex I across species identifies sample preparation for the proteomic analysis as critical to differentiate between true subunits, assembly factors, or proteins associated with complex I. Coupling comparative proteomics with biochemical or genetic studies is thus required to define a subunit and its function within the complex.
Collapse
Affiliation(s)
- Etienne H. Meyer
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de StrasbourgStrasbourg, France
- *Correspondence: Etienne H. Meyer, Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France. e-mail:
| |
Collapse
|
29
|
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) in eukaryotes: A highly conserved subunit composition highlighted by mining of protein databases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1390-7. [DOI: 10.1016/j.bbabio.2011.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/18/2011] [Accepted: 06/22/2011] [Indexed: 11/22/2022]
|
30
|
Austin RJ, Kuestner RE, Chang DK, Madden KR, Martin DB. SILAC compatible strain of Pichia pastoris for expression of isotopically labeled protein standards and quantitative proteomics. J Proteome Res 2011; 10:5251-9. [PMID: 21942632 DOI: 10.1021/pr200551e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methylotrophic yeast Pichia pastoris is a powerful eukaryotic platform for the production of heterologous protein. Recent publication of the P. pastoris genome has facilitated strain development toward biopharmaceutical and environmental science applications and has advanced the organism as a model system for the study of peroxisome biogenesis and methanol metabolism. Here we report the development of a P. pastoris arg-/lys- auxotrophic strain compatible with SILAC (stable isotope labeling by amino acids in cell culture) proteomic studies, which is capable of generating large quantities of isotopically labeled protein for mass spectrometry-based biomarker measurements. We demonstrate the utility of this strain to produce high purity human serum albumin uniformly labeled with isotopically heavy arginine and lysine. In addition, we demonstrate the first quantitative proteomic analysis of methanol metabolism in P. pastoris, reporting new evidence for a malate-aspartate NADH shuttle mechanism in the organism. This strain will be a useful model organism for the study of metabolism and peroxisome generation.
Collapse
Affiliation(s)
- Ryan J Austin
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
31
|
Barrera NP, Robinson CV. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 2011; 80:247-71. [PMID: 21548785 DOI: 10.1146/annurev-biochem-062309-093307] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rapid advances in structural genomics and in large-scale proteomic projects have yielded vast amounts of data on soluble proteins and their complexes. Despite these advances, progress in studying membrane proteins using mass spectrometry (MS) has been slow. This is due in part to the inherent solubility and dynamic properties of these proteins, but also to their low abundance and the absence of polar side chains in amino acid residues. Considerable progress in overcoming these challenges is, however, now being made for all levels of structural characterization. This progress includes MS studies of the primary structure of membrane proteins, wherein sophisticated enrichment and trapping procedures are allowing multiple posttranslational modifications to be defined through to the secondary structure level in which proteins and peptides have been probed using hydrogen exchange, covalent, or radiolytic labeling methods. Exciting possibilities now exist to go beyond primary and secondary structure to reveal the tertiary and quaternary interactions of soluble and membrane subunits within intact assemblies of more than 700 kDa.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| | | |
Collapse
|
32
|
A two-state stabilization-change mechanism for proton-pumping complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1364-9. [DOI: 10.1016/j.bbabio.2011.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/17/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022]
|
33
|
A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J 2011; 437:279-88. [PMID: 21545356 DOI: 10.1042/bj20110359] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a very large membrane protein complex with a central function in energy metabolism. Complex I from the aerobic yeast Yarrowia lipolytica comprises 14 central subunits that harbour the bioenergetic core functions and at least 28 accessory subunits. Despite progress in structure determination, the position of individual accessory subunits in the enzyme complex remains largely unknown. Proteomic analysis of subcomplex Iδ revealed that it lacked eleven subunits, including the central subunits ND1 and ND3 forming the interface between the peripheral and the membrane arm in bacterial complex I. This unexpected observation provided insight into the structural organization of the connection between the two major parts of mitochondrial complex I. Combining recent structural information, biochemical evidence on the assignment of individual subunits to the subdomains of complex I and sequence-based predictions for the targeting of subunits to different mitochondrial compartments, we derived a model for the arrangement of the subunits in the membrane arm of mitochondrial complex I.
Collapse
|
34
|
Dröse S, Krack S, Sokolova L, Zwicker K, Barth HD, Morgner N, Heide H, Steger M, Nübel E, Zickermann V, Kerscher S, Brutschy B, Radermacher M, Brandt U. Functional dissection of the proton pumping modules of mitochondrial complex I. PLoS Biol 2011; 9:e1001128. [PMID: 21886480 PMCID: PMC3160329 DOI: 10.1371/journal.pbio.1001128] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022] Open
Abstract
A catalytically active subcomplex of respiratory chain complex I lacks 14 of its 42 subunits yet retains half of its proton-pumping capacity, indicating that its membrane arm has two pump modules. Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ) is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5) of the three subunits with homology to bacterial Mrp-type Na+/H+ antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis. Mitochondria—the power plants of eukaryotic cells—produce energy in the form of ATP. More than one-third of this energy production is driven by a gradient of protons across the mitochondrial membrane created by the pumping action of a very large enzyme called complex I. Defects in complex I are implicated in numerous pathological processes like neurodegeneration and biological aging. Recent X-ray structural analyses revealed that complex I is an L-shaped molecule with one arm integrated into the membrane and the other sticking into the aqueous interior of the mitochondrion; the chemical reactions of the enzyme take place in this hydrophilic arm, clearly separated from proton pumping that must occur somewhere in the membrane arm. To assign the pump function to structural domains, we created a stable subcomplex of complex I by deleting the gene encoding one of its small subunits in a yeast called Yarrowia lipolytica. This subcomplex lacked half of the membrane arm; it was still catalytically active but it pumped only half the number of protons as the full complex. This indicates that complex I has two functionally distinct pump modules operating in its membrane arm.
Collapse
Affiliation(s)
- Stefan Dröse
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Stephanie Krack
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Lucie Sokolova
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Klaus Zwicker
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Hans-Dieter Barth
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Heinrich Heide
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Mirco Steger
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Esther Nübel
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Volker Zickermann
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Stefan Kerscher
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Bernhard Brutschy
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Michael Radermacher
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Burlington, Vermont, United States of America
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
35
|
Klodmann J, Braun HP. Proteomic approach to characterize mitochondrial complex I from plants. PHYTOCHEMISTRY 2011; 72:1071-80. [PMID: 21167537 DOI: 10.1016/j.phytochem.2010.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/04/2023]
Abstract
Mitochondrial NADH dehydrogenase complex (complex I) is by far the largest protein complex of the respiratory chain. It is best characterized for bovine mitochondria and known to consist of 45 different subunits in this species. Proteomic analyses recently allowed for the first time to systematically explore complex I from plants. The enzyme is especially large and includes numerous extra subunits. Upon subunit separation by various gel electrophoresis procedures and protein identifications by mass spectrometry, overall 47 distinct types of proteins were found to form part of Arabidopsis complex I. An additional subunit, ND4L, is present but could not be detected by the procedures employed due to its extreme biochemical properties. Seven of the 48 subunits occur in pairs of isoforms, six of which were experimentally proven. Fifteen subunits of complex I from Arabidopsis are specific for plants. Some of these resemble enzymes of known functions, e.g. carbonic anhydrases and l-galactono-1,4-lactone dehydrogenase (GLDH), which catalyzes the last step of ascorbate biosynthesis. This article aims to review proteomic data on the protein composition of complex I in plants. Furthermore, a proteomic re-evaluation on its protein constituents is presented.
Collapse
Affiliation(s)
- Jennifer Klodmann
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|