1
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
2
|
Involvement of PGC7 and UHRF1 in the regulation of DNA methylation of the IG-DMR in the imprinted Dlk1-Dio3 locus. Acta Biochim Biophys Sin (Shanghai) 2022; 54:917-930. [PMID: 35866604 PMCID: PMC9828313 DOI: 10.3724/abbs.2022080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The gene dosage at the imprinted Dlk1-Dio3 locus is critical for cell growth and development. A relatively high gene expression within the Dlk1-Dio3 region, especially the active expression of Gtl2, has been identified as the only reliable marker for cell pluripotency. The DNA methylation state of the IG-DNA methylated regions (DMR), which is located upstream of the Gtl2 gene, dominantly contributes to the control of gene expression in the Dlk1-Dio3 locus. However, the precise mechanism underlying the regulation of DNA methylation in the IG-DMR remains largely unknown. Here, we use the F9 embryonal carcinoma cell line, a low pluripotent cell model, to identify the mechanism responsible for DNA methylation in the IG-DMR, and find that the interaction of PGC7 with UHRF1 is involved in maintaining DNA methylation and inducing DNA hypermethylation in the IG-DMR region. PGC7 and UHRF1 cooperatively bind in the IG-DMR to regulate the methylation of DNA and histones in this imprinted region. PGC7 promotes the recruitment of DNMT1 by UHRF1 to maintain DNA methylation in the IG-DMR locus. The interaction between PGC7 and UHRF1 strengthens their binding to H3K9me3 and leads to further enrichment of H3K9me3 in the IG-DMR by recruiting the specific histone methyltransferase SETDB1. Consequently, the abundance of H3K9me3 promotes DNMT3A to bind to the IG-DMR and increases DNA methylation level in this region. In summary, we propose a new mechanism of DNA methylation regulation in the IG-DMR locus and provide further insight into the understanding of the difference in Gtl2 expression levels between high and low pluripotent cells.
Collapse
|
3
|
Mullin NP, Varghese J, Colby D, Richardson JM, Findlay GM, Chambers I. Phosphorylation of NANOG by casein kinase I regulates embryonic stem cell self-renewal. FEBS Lett 2021; 595:14-25. [PMID: 33107035 PMCID: PMC7839479 DOI: 10.1002/1873-3468.13969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
The self-renewal efficiency of mouse embryonic stem cells (ESCs) is determined by the concentration of the transcription factor NANOG. While NANOG binds thousands of sites in chromatin, the regulatory systems that control DNA binding are poorly characterised. Here, we show that NANOG is phosphorylated by casein kinase I, and identify target residues. Phosphomimetic substitutions at phosphorylation sites within the homeodomain (S130 and S131) have site-specific functional effects. Phosphomimetic substitution of S130 abolishes DNA binding by NANOG and eliminates LIF-independent self-renewal. In contrast, phosphomimetic substitution of S131 enhances LIF-independent self-renewal, without influencing DNA binding. Modelling the DNA-homeodomain complex explains the disparate effects of these phosphomimetic substitutions. These results indicate how phosphorylation may influence NANOG homeodomain interactions that underpin ESC self-renewal.
Collapse
Affiliation(s)
- Nicholas P. Mullin
- Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesUniversity of EdinburghUK
| | - Joby Varghese
- Protein Phosphorylation and Ubiquitylation UnitJames Black CentreSchool of Life SciencesDundeeUK
| | - Douglas Colby
- Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesUniversity of EdinburghUK
| | - Julia M. Richardson
- Institute of Quantitative Biology, Biochemistry and BiotechnologyEdinburghUK
| | - Greg M. Findlay
- Protein Phosphorylation and Ubiquitylation UnitJames Black CentreSchool of Life SciencesDundeeUK
| | - Ian Chambers
- Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesUniversity of EdinburghUK
| |
Collapse
|
4
|
Next-generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nat Commun 2019; 10:4065. [PMID: 31492838 PMCID: PMC6731260 DOI: 10.1038/s41467-019-11942-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Unnatural monosaccharides such as azidosugars that can be metabolically incorporated into cellular glycans are currently used as a major tool for glycan imaging and glycoproteomic profiling. As a common practice to enhance membrane permeability and cellular uptake, the unnatural sugars are per-O-acetylated, which, however, can induce a long-overlooked side reaction, non-enzymatic S-glycosylation. Herein, we develop 1,3-di-esterified N-azidoacetylgalactosamine (GalNAz) as next-generation chemical reporters for metabolic glycan labeling. Both 1,3-di-O-acetylated GalNAz (1,3-Ac2GalNAz) and 1,3-di-O-propionylated GalNAz (1,3-Pr2GalNAz) exhibit high efficiency for labeling protein O-GlcNAcylation with no artificial S-glycosylation. Applying 1,3-Pr2GalNAz in mouse embryonic stem cells (mESCs), we identify ESRRB, a critical transcription factor for pluripotency, as an O-GlcNAcylated protein. We show that ESRRB O-GlcNAcylation is important for mESC self-renewal and pluripotency. Mechanistically, ESRRB is O-GlcNAcylated by O-GlcNAc transferase at serine 25, which stabilizes ESRRB, promotes its transcription activity and facilitates its interactions with two master pluripotency regulators, OCT4 and NANOG. Per-O-acetylated unnatural monosaccharides are popular tools for glycan labeling in live cells but can undergo unwanted side reactions with cysteines. Here, the authors develop unnatural sugars in a partially esterified form that are inert towards cysteines, and use them to probe O-GlcNAcylation in mESCs.
Collapse
|
5
|
Yang P, Humphrey SJ, Cinghu S, Pathania R, Oldfield AJ, Kumar D, Perera D, Yang JYH, James DE, Mann M, Jothi R. Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Syst 2019; 8:427-445.e10. [PMID: 31078527 DOI: 10.1016/j.cels.2019.03.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
Pluripotency is highly dynamic and progresses through a continuum of pluripotent stem cell states. The two states that bookend the pluripotency continuum, naive and primed, are well characterized, but our understanding of the intermediate states and transitions between them remains incomplete. Here, we dissect the dynamics of pluripotent state transitions underlying pre- to post-implantation epiblast differentiation. Through comprehensive mapping of the proteome, phosphoproteome, transcriptome, and epigenome of embryonic stem cells transitioning from naive to primed pluripotency, we find that rapid, acute, and widespread changes to the phosphoproteome precede ordered changes to the epigenome, transcriptome, and proteome. Reconstruction of the kinase-substrate networks reveals signaling cascades, dynamics, and crosstalk. Distinct waves of global proteomic changes mark discrete phases of pluripotency, with cell-state-specific surface markers tracking pluripotent state transitions. Our data provide new insights into multi-layered control of the phased progression of pluripotency and a foundation for modeling mechanisms regulating pluripotent state transitions (www.stemcellatlas.org).
Collapse
Affiliation(s)
- Pengyi Yang
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA; Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.
| | - Sean J Humphrey
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Senthilkumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Rajneesh Pathania
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Andrew J Oldfield
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dhirendra Kumar
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dinuka Perera
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Y H Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Raja Jothi
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Saunders A, Li D, Faiola F, Huang X, Fidalgo M, Guallar D, Ding J, Yang F, Xu Y, Zhou H, Wang J. Context-Dependent Functions of NANOG Phosphorylation in Pluripotency and Reprogramming. Stem Cell Reports 2017; 8:1115-1123. [PMID: 28457890 PMCID: PMC5425684 DOI: 10.1016/j.stemcr.2017.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 01/19/2023] Open
Abstract
The core pluripotency transcription factor NANOG is critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Although NANOG is phosphorylated at multiple residues, the role of NANOG phosphorylation in ESC self-renewal is incompletely understood, and no information exists regarding its functions during reprogramming. Here we report our findings that NANOG phosphorylation is beneficial, although nonessential, for ESC self-renewal, and that loss of phosphorylation enhances NANOG activity in reprogramming. Mutation of serine 65 in NANOG to alanine (S65A) alone has the most significant impact on increasing NANOG reprogramming capacity. Mechanistically, we find that pluripotency regulators (ESRRB, OCT4, SALL4, DAX1, and TET1) are transcriptionally primed and preferentially associated with NANOG S65A at the protein level due to presumed structural alterations in the N-terminal domain of NANOG. These results demonstrate that a single phosphorylation site serves as a critical interface for controlling context-dependent NANOG functions in pluripotency and reprogramming. NANOG phospho-residues are evolutionarily conserved in mammals Phosphorylation promotes NANOG function in sustaining ESC self-renewal Loss of phosphorylation improves NANOG function in reprogramming Pluripotency regulators are preferentially associated with NANOG S65A in pre-iPSCs
Collapse
Affiliation(s)
- Arven Saunders
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fan Yang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Xu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Wang S, Li Z, Shen H, Zhang Z, Yin Y, Wang Q, Zhao X, Ji J. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β. Stem Cells 2016; 34:2090-101. [PMID: 27097102 DOI: 10.1002/stem.2387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/26/2016] [Indexed: 01/05/2023]
Abstract
Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101.
Collapse
Affiliation(s)
- Shuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Beijing, Peoples' Republic of China
| | - Zheyi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Beijing, Peoples' Republic of China
| | - Hongyan Shen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Beijing, Peoples' Republic of China
| | - Zhong Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Beijing, Peoples' Republic of China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, Peoples' Republic of China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Beijing, Peoples' Republic of China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, Peoples' Republic of China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Beijing, Peoples' Republic of China
| |
Collapse
|
8
|
Yeo JC, Jiang J, Tan ZY, Yim GR, Ng JH, Göke J, Kraus P, Liang H, Gonzales KAU, Chong HC, Tan CP, Lim YS, Tan NS, Lufkin T, Ng HH. Klf2 is an essential factor that sustains ground state pluripotency. Cell Stem Cell 2015; 14:864-72. [PMID: 24905170 DOI: 10.1016/j.stem.2014.04.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/14/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
The maintenance of mouse embryonic stem cells (mESCs) requires LIF and serum. However, a pluripotent "ground state," bearing resemblance to preimplantation mouse epiblasts, can be established through dual inhibition (2i) of both prodifferentiation Mek/Erk and Gsk3/Tcf3 pathways. While Gsk3 inhibition has been attributed to the transcriptional derepression of Esrrb, the molecular mechanism mediated by Mek inhibition remains unclear. In this study, we show that Krüppel-like factor 2 (Klf2) is phosphorylated by Erk2 and that phospho-Klf2 is proteosomally degraded. Mek inhibition hence prevents Klf2 protein phosphodegradation to sustain pluripotency. Indeed, while Klf2-null mESCs can survive under LIF/Serum, they are not viable under 2i, demonstrating that Klf2 is essential for ground state pluripotency. Importantly, we also show that ectopic Klf2 expression can replace Mek inhibition in mESCs, allowing the culture of Klf2-null mESCs under Gsk3 inhibition alone. Collectively, our study defines the Mek/Erk/Klf2 axis that cooperates with the Gsk3/Tcf3/Esrrb pathway in mediating ground state pluripotency.
Collapse
Affiliation(s)
- Jia-Chi Yeo
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jianming Jiang
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Zi-Ying Tan
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Guo-Rong Yim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Jia-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Petra Kraus
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Hongqing Liang
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Kevin Andrew Uy Gonzales
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Han-Chung Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Cheng-Peow Tan
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Yee-Siang Lim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Nguan-Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, A(∗)STAR, Singapore 138673, Singapore
| | - Thomas Lufkin
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Huck-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive #14-01T, Singapore 117599, Singapore.
| |
Collapse
|
9
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
10
|
Gupta P, Leahul L, Wang X, Wang C, Bakos B, Jasper K, Hansen D. Proteasome regulation of the chromodomain protein MRG-1 controls the balance between proliferative fate and differentiation in the C. elegans germ line. Development 2015; 142:291-302. [PMID: 25564623 DOI: 10.1242/dev.115147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The level of stem cell proliferation must be tightly controlled for proper development and tissue homeostasis. Multiple levels of gene regulation are often employed to regulate stem cell proliferation to ensure that the amount of proliferation is aligned with the needs of the tissue. Here we focus on proteasome-mediated protein degradation as a means of regulating the activities of proteins involved in controlling the stem cell proliferative fate in the C. elegans germ line. We identify five potential E3 ubiquitin ligases, including the RFP-1 RING finger protein, as being involved in regulating proliferative fate. RFP-1 binds to MRG-1, a homologue of the mammalian chromodomain-containing protein MRG15 (MORF4L1), which has been implicated in promoting the proliferation of neural precursor cells. We find that C. elegans with reduced proteasome activity, or that lack RFP-1 expression, have increased levels of MRG-1 and a shift towards increased proliferation in sensitized genetic backgrounds. Likewise, reduction of MRG-1 partially suppresses stem cell overproliferation. MRG-1 levels are controlled independently of the spatially regulated GLP-1/Notch signalling pathway, which is the primary signal controlling the extent of stem cell proliferation in the C. elegans germ line. We propose a model in which MRG-1 levels are controlled, at least in part, by the proteasome, and that the levels of MRG-1 set a threshold upon which other spatially regulated factors act in order to control the balance between the proliferative fate and differentiation in the C. elegans germ line.
Collapse
Affiliation(s)
- Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Lindsay Leahul
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Brendan Bakos
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Katie Jasper
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
11
|
Murtaza M, Jolly LA, Gecz J, Wood SA. La FAM fatale: USP9X in development and disease. Cell Mol Life Sci 2015; 72:2075-89. [PMID: 25672900 PMCID: PMC4427618 DOI: 10.1007/s00018-015-1851-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 11/12/2022]
Abstract
Deubiquitylating enzymes (DUBs), act downstream of ubiquitylation. As such, these post-post-translational modifiers function as the final arbitrators of a protein substrate’s ubiquitylation status, thus regulating its fate. In most instances, DUBs moderate the absolute level of a substrate, its locality or activity, rather than being an “all-or-none” phenomenon. Yet, disruption of this quantitative regulation can produce dramatic qualitative differences. The ubiquitin-specific protease 9X (USP9X/FAM) is a substrate-specific DUB, which displays an extraordinarily high level of sequence conservation from Drosophila to mammals. It is primarily the recent revelations of USP9X’s pivotal role in human cancers, both as oncogene or tumour suppressor, in developmental disorders including intellectual disability, epilepsy, autism and developmental delay that has led to a subsequent re-examination of its molecular and cellular functions. Results from experimental animal models have implicated USP9X in neurodegeneration, including Parkinson’s and Alzheimer’s disease, as well as autoimmune diseases. In this review, we describe the current and accumulated knowledge on the molecular, cellular and developmental aspects of USP9X function within the context of the biological consequences during normal development and disease.
Collapse
Affiliation(s)
- Mariyam Murtaza
- The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
12
|
Li J, Jia J, Li H, Yu J, Sun H, He Y, Lv D, Yang X, Glocker MO, Ma L, Yang J, Li L, Li W, Zhang G, Liu Q, Li Y, Xie L. SysPTM 2.0: an updated systematic resource for post-translational modification. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau025. [PMID: 24705204 PMCID: PMC3975108 DOI: 10.1093/database/bau025] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-translational modifications (PTMs) of proteins play essential roles in almost all cellular processes, and are closely related to physiological activity and disease development of living organisms. The development of tandem mass spectrometry (MS/MS) has resulted in a rapid increase of PTMs identified on proteins from different species. The collection and systematic ordering of PTM data should provide invaluable information for understanding cellular processes and signaling pathways regulated by PTMs. For this original purpose we developed SysPTM, a systematic resource installed with comprehensive PTM data and a suite of web tools for annotation of PTMs in 2009. Four years later, there has been a significant advance with the generation of PTM data and, consequently, more sophisticated analysis requirements have to be met. Here we submit an updated version of SysPTM 2.0 (http://lifecenter.sgst.cn/SysPTM/), with almost doubled data content, enhanced web-based analysis tools of PTMBlast, PTMPathway, PTMPhylog, PTMCluster. Moreover, a new session SysPTM-H is constructed to graphically represent the combinatorial histone PTMs and dynamic regulation of histone modifying enzymes, and a new tool PTMGO is added for functional annotation and enrichment analysis. SysPTM 2.0 not only facilitates resourceful annotation of PTM sites but allows systematic investigation of PTM functions by the user. Database URL: http://lifecenter.sgst.cn/SysPTM/.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China, Shanghai Center for Bioinformation Technology, Shanghai Institutes of Biomedicine, Shanghai Academy of Science and Technology, Shanghai 201203, P. R. China, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China, Department of Bioinformatics and Biostatistics, Shanghai Jiaotong University, Shanghai 200240, P. R. China, Key Laboratory of Systems Biology, Chinese Academy of Sciences, Shanghai 200031, P. R. China and Proteome Center Rostock, Department for Proteome Research, Institute of Immunology, University of Rostock, Rostock 18055, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhou F, Lu Y, Ficarro SB, Adelmant G, Jiang W, Luckey CJ, Marto JA. Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nat Commun 2014; 4:2171. [PMID: 23863870 PMCID: PMC3770533 DOI: 10.1038/ncomms3171] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/19/2013] [Indexed: 12/15/2022] Open
Abstract
Advances in chemistry and massively parallel detection underlie DNA sequencing platforms that are poised for application in personalized medicine. In stark contrast, systematic generation of protein-level data lags well-behind genomics in virtually every aspect: depth of coverage, throughput, ease of sample preparation, and experimental time. Here, to bridge this gap, we develop an approach based on simple detergent lysis and single-enzyme digest, extreme, orthogonal separation of peptides, and true nanoflow LC-MS/MS that provides high peak capacity and ionization efficiency. This automated, deep efficient peptide sequencing and quantification (DEEP SEQ) mass spectrometry platform provides genome-scale proteome coverage equivalent to RNA-seq ribosomal profiling and accurate quantification for multiplexed isotope labels. In a model of the embryonic to epiblast transition in murine stem cells, we unambiguously quantify 11,352 gene products that span 70% of Swiss-Prot and capture protein regulation across the full detectable range of high-throughput gene expression and protein translation.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215-5450, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Brumbaugh J, Russell JD, Yu P, Westphall MS, Coon JJ, Thomson JA. NANOG is multiply phosphorylated and directly modified by ERK2 and CDK1 in vitro. Stem Cell Reports 2014; 2:18-25. [PMID: 24678451 PMCID: PMC3966117 DOI: 10.1016/j.stemcr.2013.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/28/2022] Open
Abstract
NANOG is a divergent homeobox protein and a core component of the transcriptional circuitry that sustains pluripotency and self-renewal. Although NANOG has been extensively studied on the transcriptional level, little is known regarding its posttranslational regulation, likely due to its low abundance and challenging physical properties. Here, we identify eleven phosphorylation sites on endogenous human NANOG, nine of which mapped to single amino acids. To screen for the signaling molecules that impart these modifications, we developed the multiplexed assay for kinase specificity (MAKS). MAKS simultaneously tests activity for up to ten kinases while directly identifying the substrate and exact site of phosphorylation. Using MAKS, we discovered site-specific phosphorylation by ERK2 and CDK1/CyclinA2, providing a putative link between key signaling pathways and NANOG.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Stem Cells and Regenerative Medicine, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jason D Russell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pengzhi Yu
- Stem Cells and Regenerative Medicine, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Michael S Westphall
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA ; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA ; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James A Thomson
- Stem Cells and Regenerative Medicine, Morgridge Institute for Research, Madison, WI 53715, USA ; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA ; Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
15
|
Hansson J, Krijgsveld J. Proteomic analysis of cell fate decision. Curr Opin Genet Dev 2013; 23:540-7. [PMID: 23942315 DOI: 10.1016/j.gde.2013.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/05/2013] [Accepted: 06/23/2013] [Indexed: 02/08/2023]
|
16
|
Jünger MA, Aebersold R. Mass spectrometry-driven phosphoproteomics: patterning the systems biology mosaic. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:83-112. [PMID: 24902836 DOI: 10.1002/wdev.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is the best-studied posttranslational modification and plays a role in virtually every biological process. Phosphoproteomics is the analysis of protein phosphorylation on a proteome-wide scale, and mainly uses the same instrumentation and analogous strategies as conventional mass spectrometry (MS)-based proteomics. Measurements can be performed either in a discovery-type, also known as shotgun mode, or in a targeted manner which monitors a set of a priori known phosphopeptides, such as members of a signal transduction pathway, across biological samples. Here, we delineate the different experimental levels at which measures can be taken to optimize the scope, reliability, and information content of phosphoproteomic analyses. Various chromatographic and chemical protocols exist to physically enrich phosphopeptides from proteolytic digests of biological samples. Subsequent mass spectrometric analysis revolves around peptide ion fragmentation to generate sequence information and identify the backbone sequence of phosphopeptides as well as the phosphate group attachment site(s), and different modes of fragmentation like collision-induced dissociation (CID), electron transfer dissociation (ETD), and higher energy collisional dissociation (HCD) have been established for phosphopeptide analysis. Computational tools are important for the identification and quantification of phosphopeptides and mapping of phosphorylation sites, the deposition of large-scale phosphoproteome datasets in public databases, and the extraction of biologically meaningful information by data mining, integration with other data types, and descriptive or predictive modeling. Finally, we discuss how orthogonal experimental approaches can be employed to validate newly identified phosphorylation sites on a biochemical, mechanistic, and physiological level.
Collapse
Affiliation(s)
- Martin A Jünger
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | | |
Collapse
|
17
|
Sun B, Ma L, Yan X, Lee D, Alexander V, Hohmann LJ, Lorang C, Chandrasena L, Tian Q, Hood L. N-glycoproteome of E14.Tg2a mouse embryonic stem cells. PLoS One 2013; 8:e55722. [PMID: 23405203 PMCID: PMC3565968 DOI: 10.1371/journal.pone.0055722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
E14.Tg2a mouse embryonic stem (mES) cells are a widely used host in gene trap and gene targeting techniques. Molecular characterization of host cells will provide background information for a better understanding of functions of the knockout genes. Using a highly selective glycopeptide-capture approach but ordinary liquid chromatography coupled mass spectrometry (LC-MS), we characterized the N-glycoproteins of E14.Tg2a cells and analyzed the close relationship between the obtained N-glycoproteome and cell-surface proteomes. Our results provide a global view of cell surface protein molecular properties, in which receptors seem to be much more diverse but lower in abundance than transporters on average. In addition, our results provide a systematic view of the E14.Tg2a N-glycosylation, from which we discovered some striking patterns, including an evolutionarily preserved and maybe functionally selected complementarity between N-glycosylation and the transmembrane structure in protein sequences. We also observed an environmentally influenced N-glycosylation pattern among glycoenzymes and extracellular matrix proteins. We hope that the acquired information enhances our molecular understanding of mES E14.Tg2a as well as the biological roles played by N-glycosylation in cell biology in general.
Collapse
Affiliation(s)
- Bingyun Sun
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (LH); (BS)
| | - Li Ma
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Xiaowei Yan
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Denis Lee
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Vinita Alexander
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Laura J. Hohmann
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Cynthia Lorang
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Lalangi Chandrasena
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Qiang Tian
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (LH); (BS)
| |
Collapse
|
18
|
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 2012; 11:783-98. [PMID: 23103054 DOI: 10.1016/j.stem.2012.09.011] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/13/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022]
Abstract
Although transcriptional regulation of stem cell pluripotency and differentiation has been extensively studied, only a small number of studies have addressed the roles for posttranslational modifications in these processes. A key mechanism of posttranslational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Here, using shotgun proteomics, we map the ubiquitinated protein landscape during embryonic stem cell (ESC) differentiation and induced pluripotency. Moreover, using UPS-targeted RNAi screens, we identify additional regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme Psmd14 and the E3 ligase Fbxw7, and characterize their importance in ESC pluripotency and cellular reprogramming. This global characterization of the UPS as a key regulator of stem cell pluripotency opens the way for future studies that focus on specific UPS enzymes or ubiquitinated substrates.
Collapse
|
19
|
Makeyev AV, Enkhmandakh B, Hong SH, Joshi P, Shin DG, Bayarsaihan D. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues. PLoS One 2012; 7:e44443. [PMID: 22970219 PMCID: PMC3438194 DOI: 10.1371/journal.pone.0044443] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/02/2012] [Indexed: 11/18/2022] Open
Abstract
GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a “feed-forward model” of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells.
Collapse
Affiliation(s)
- Aleksandr V. Makeyev
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, School of Dentistry, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Badam Enkhmandakh
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, School of Dentistry, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Seung-Hyun Hong
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Pujan Joshi
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Dong-Guk Shin
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Dashzeveg Bayarsaihan
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, School of Dentistry, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
20
|
Zhou F, Lu Y, Ficarro SB, Webber JT, Marto JA. Nanoflow low pressure high peak capacity single dimension LC-MS/MS platform for high-throughput, in-depth analysis of mammalian proteomes. Anal Chem 2012; 84:5133-9. [PMID: 22519751 PMCID: PMC3416051 DOI: 10.1021/ac2031404] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of narrow bore LC capillaries operated at ultralow flow rates coupled with mass spectrometry provides a desirable convergence of figures of merit to support high-performance LC-MS/MS analysis. This configuration provides a viable means to achieve in-depth protein sequence coverage while maintaining a high rate of data production. Here we explore potential performance improvements afforded by use of 25 μm × 100 cm columns fabricated with 5 μm diameter reversed phase particles and integrated electrospray emitter tips. These columns achieve a separation peak capacity of ≈750 in a 600-min gradient, with average chromatographic peak widths of less than 1 min. At room temperature, a pressure drop of only ≈1500 psi is sufficient to maintain an effluent flow rate of ≤10 nL/min. Using mouse embryonic stem cells as a model for complex mammalian proteomes, we reproducibly identify over 4000 proteins across duplicate 600 min LC-MS/MS analyses.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02215-5450
| | - Yu Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02215-5450
| | - Scott B. Ficarro
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA02215-5450
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02215-5450
| | - James T. Webber
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA02215-5450
| | - Jarrod A. Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA02215-5450
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02215-5450
| |
Collapse
|
21
|
Mallanna SK, Rizzino A. Systems biology provides new insights into the molecular mechanisms that control the fate of embryonic stem cells. J Cell Physiol 2011; 227:27-34. [PMID: 21412766 DOI: 10.1002/jcp.22721] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During the last 5 years there has been enormous progress in developing a deeper understanding of the molecular mechanisms that control the self-renewal and pluripotency of embryonic stem cells (ESC). Early progress resulted from studying individual transcription factors and signaling pathways. Unexpectedly, these studies demonstrated that small changes in the levels of master regulators, such as Oct4 and Sox2, promote the differentiation of ESC. More recently, impressive progress has been made using technologies that provide a global view of the signaling pathways and the gene regulatory networks that control the fate of ESC. This review provides an overview of the progress made using several different high-throughput technologies and focuses on proteomic studies, which provide the first glimpse of the protein-protein interaction networks used by ESC. The latter studies indicate that transcription factors required for the self-renewal of ESC are part of a large, highly integrated protein-protein interaction landscape, which helps explain why the levels of master regulators need to be regulated precisely in ESC.
Collapse
Affiliation(s)
- Sunil K Mallanna
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | | |
Collapse
|
22
|
Brumbaugh J, Rose CM, Phanstiel DH, Thomson JA, Coon JJ. Proteomics and pluripotency. Crit Rev Biochem Mol Biol 2011; 46:493-506. [PMID: 21999516 DOI: 10.3109/10409238.2011.624491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The fields of mass spectrometry (MS) and stem cell biology have expanded greatly in the past twenty years. Taken alone, these fields occupy entirely different branches of science; however, the points where they overlap provide valuable insight, both in the biological and technical arenas. From a biological perspective, MS-based proteomics offers the capacity to follow post-transcriptional regulation and signaling that are (1) fundamental to pluripotency and differentiation, (2) largely beyond the reach of genomic technologies, and (3) otherwise difficult or impossible to examine on a large scale. At the same time, addressing questions fundamental to stem cell biology has compelled proteomic researchers to pursue more sensitive and creative ways to probe the proteome, both in a targeted and high-throughput manner. Here, we highlight experiments that straddle proteomics and stem cell biology, with an emphasis on studies that apply mass spectrometry to dissect pluripotency and differentiation.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, USA
| | | | | | | | | |
Collapse
|
23
|
Gundry RL, Burridge PW, Boheler KR. Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics 2011; 11:3947-61. [PMID: 21834136 DOI: 10.1002/pmic.201100100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022]
Abstract
Stem cells represent obvious choices for regenerative medicine and are invaluable for studies of human development and drug testing. The proteomic landscape of pluripotent stem cells (PSCs), in particular, is not yet clearly defined; consequently, this field of research would greatly benefit from concerted efforts designed to better characterize these cells. In this concise review, we provide an overview of stem cell potency, highlight the types and practical implications of heterogeneity in PSCs and provide a detailed analysis of the current view of the pluripotent proteome in a unique resource for this rapidly evolving field. Our goal in this review is to provide specific insights into the current status of the known proteome of both mouse and human PSCs. This has been accomplished by integrating published data into a unified PSC proteome to facilitate the identification of proteins, which may be informative for the stem cell state as well as to reveal areas where our current view is limited. These analyses provide insight into the challenges faced in the proteomic analysis of PSCs and reveal one area--the cell surface subproteome--that would especially benefit from enhanced research efforts.
Collapse
Affiliation(s)
- Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
24
|
Xing XB, Li QR, Sun H, Fu X, Zhan F, Huang X, Li J, Chen CL, Shyr Y, Zeng R, Li YX, Xie L. The discovery of novel protein-coding features in mouse genome based on mass spectrometry data. Genomics 2011; 98:343-51. [PMID: 21840390 DOI: 10.1016/j.ygeno.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 01/07/2023]
Abstract
Identifying protein-coding genes in eukaryotic genomes remains a challenge in post-genome era due to the complex gene models. We applied a proteogenomics strategy to detect un-annotated protein-coding regions in mouse genome. High-accuracy tandem mass spectrometry (MS/MS) data from diverse mouse samples were generated by LTQ-Orbitrap mass spectrometer in house. Two searchable diagnostic proteomic datasets were constructed, one with all possible encoding exon junctions, and the other with all putative encoding exons, for the discovery of novel exon splicing events and novel uninterrupted protein-coding regions. Altogether 29,586 unique peptides were identified. Aligning backwards to the mouse genome, the translation of 4471 annotated genes was validated by the known peptides; and 172 genic events were defined in mouse genome by the novel peptides. The approach in the current work can provide substantial evidences for eukaryote genome annotation in encoding genes.
Collapse
Affiliation(s)
- Xiao-Bin Xing
- Shanghai Center for Bioinformation Technology, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Ning Z, Zhou H, Wang F, Abu-Farha M, Figeys D. Analytical Aspects of Proteomics: 2009–2010. Anal Chem 2011; 83:4407-26. [DOI: 10.1021/ac200857t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Hu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China 201203
| | - Fangjun Wang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China 116023
| | | | | |
Collapse
|
27
|
Abstract
Improvements in speed and mass accuracy of mass spectrometers revolutionized proteomics, with high-throughput proteomics enabling the profiling of complete proteomes and thousands of posttranslational modification sites. The limits of high-throughput proteomics are constantly pushed to new frontiers, and mass spectrometry-based proteomics may eventually permit the analysis of protein expression profiles in less than a day. Increased data acquisition speed has led to a dramatic increase in the total number of tandem mass spectrometry (MS/MS) spectra, such that millions of MS/MS spectra are now acquired in a given set of analyses. Many of these spectra are insufficiently validated; instead, statistical tools are commonly used to estimate false-positive or false-discovery rates for these data sets. Many laboratories may not realize the costs associated with using these widely available, but minimally validated, data sets. The costs associated with use of these data can include missed opportunities for biological insight, the pollution of databases with increasing numbers of false-positive identifications, and time spent by biologists investigating false leads, resulting in a lack of faith in proteomics data. Improved strategies for data validation need to be implemented, along with a change in the culture of high-throughput proteomics, linking proteomics closer to biology.
Collapse
Affiliation(s)
- Forest M White
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|