1
|
Kang S, Yoo J, Myung K. PCNA cycling dynamics during DNA replication and repair in mammals. Trends Genet 2024; 40:526-539. [PMID: 38485608 DOI: 10.1016/j.tig.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is a eukaryotic replicative DNA clamp. Furthermore, DNA-loaded PCNA functions as a molecular hub during DNA replication and repair. PCNA forms a closed homotrimeric ring that encircles the DNA, and association and dissociation of PCNA from DNA are mediated by clamp-loader complexes. PCNA must be actively released from DNA after completion of its function. If it is not released, abnormal accumulation of PCNA on chromatin will interfere with DNA metabolism. ATAD5 containing replication factor C-like complex (RLC) is a PCNA-unloading clamp-loader complex. ATAD5 deficiency causes various DNA replication and repair problems, leading to genome instability. Here, we review recent progress regarding the understanding of the action mechanisms of PCNA unloading complex in DNA replication/repair pathways.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Choudhry SK, Neal ML, Li S, Navare AT, Van Eeuwen T, Wozniak RW, Mast FD, Rout MP, Aitchison JD. Nuclear pore complexes mediate subtelomeric gene silencing by regulating PCNA levels on chromatin. J Cell Biol 2023; 222:e202207060. [PMID: 37358474 PMCID: PMC10292210 DOI: 10.1083/jcb.202207060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/02/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
The nuclear pore complex (NPC) physically interacts with chromatin and regulates gene expression. The Saccharomyces cerevisiae inner ring nucleoporin Nup170 has been implicated in chromatin organization and the maintenance of gene silencing in subtelomeric regions. To gain insight into how Nup170 regulates this process, we used protein-protein interactions, genetic interactions, and transcriptome correlation analyses to identify the Ctf18-RFC complex, an alternative proliferating cell nuclear antigen (PCNA) loader, as a facilitator of the gene regulatory functions of Nup170. The Ctf18-RFC complex is recruited to a subpopulation of NPCs that lack the nuclear basket proteins Mlp1 and Mlp2. In the absence of Nup170, PCNA levels on DNA are reduced, resulting in the loss of silencing of subtelomeric genes. Increasing PCNA levels on DNA by removing Elg1, which is required for PCNA unloading, rescues subtelomeric silencing defects in nup170Δ. The NPC, therefore, mediates subtelomeric gene silencing by regulating PCNA levels on DNA.
Collapse
Affiliation(s)
- Sanjeev Kumar Choudhry
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Song Li
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Arti T. Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Trevor Van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | | | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Departments of Pediatrics and Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Kubota T. Use of Nuclear and Chromatin Enrichment Procedures for Quantitation of Yeast DNA Replication Proteins Using SILAC. Methods Mol Biol 2023; 2603:209-218. [PMID: 36370282 DOI: 10.1007/978-1-0716-2863-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA replication is a highly complex process that achieves the faithful transmission of genetic information from parent to progeny. Recruitment of DNA replication proteins to DNA is dynamically regulated during the cell cycle and in response to replication stresses. For a large-scale analysis of DNA replication proteins, I established a method for analysis of chromatin-bound proteins by SILAC (stable isotope labeling by amino acids in cell culture)-based quantitative proteomics. Here I describe a detailed methodology for SILAC labeling of budding yeast Saccharomyces cerevisiae, then nuclear isolation and chromatin preparation from synchronized yeast cells, prior to quantitative proteomic analysis of DNA replication proteins.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, Scotland, UK.
| |
Collapse
|
4
|
Li H, O'Donnell M, Kelch B. Unexpected new insights into DNA clamp loaders: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage. Bioessays 2022; 44:e2200154. [PMID: 36116108 PMCID: PMC9927785 DOI: 10.1002/bies.202200154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Clamp loaders are pentameric AAA+ assemblies that use ATP to open and close circular DNA sliding clamps around DNA. Clamp loaders show homology in all organisms, from bacteria to human. The eukaryotic PCNA clamp is loaded onto 3' primed DNA by the replication factor C (RFC) hetero-pentameric clamp loader. Eukaryotes also have three alternative RFC-like clamp loaders (RLCs) in which the Rfc1 subunit is substituted by another protein. One of these is the yeast Rad24-RFC (Rad17-RFC in human) that loads a 9-1-1 heterotrimer clamp onto a recessed 5' end of DNA. Recent structural studies of Rad24-RFC have discovered an unexpected 5' DNA binding site on the outside of the clamp loader and reveal how a 5' end can be utilized for loading the 9-1-1 clamp onto DNA. In light of these results, new studies reveal that RFC also contains a 5' DNA binding site, which functions in gap repair. These studies also reveal many new features of clamp loaders. As reviewed herein, these recent studies together have transformed our view of the clamp loader mechanism.
Collapse
Affiliation(s)
- Huilin Li
- Department of Structural BiologyVan Andel InstituteGrand RapidsMichiganUSA
| | - Mike O'Donnell
- DNA Replication LaboratoryThe Rockefeller UniversityNew YorkNew YorkUSA,Howard Hughes Medical InstituteThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Brian Kelch
- Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
5
|
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J Fungi (Basel) 2022; 8:jof8060621. [PMID: 35736104 PMCID: PMC9225081 DOI: 10.3390/jof8060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.
Collapse
|
6
|
Nikolov VN, Malavia D, Kubota T. SWI/SNF and the histone chaperone Rtt106 drive expression of the Pleiotropic Drug Resistance network genes. Nat Commun 2022; 13:1968. [PMID: 35413952 PMCID: PMC9005695 DOI: 10.1038/s41467-022-29591-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
The Pleiotropic Drug Resistance (PDR) network is central to the drug response in fungi, and its overactivation is associated with drug resistance. However, gene regulation of the PDR network is not well understood. Here, we show that the histone chaperone Rtt106 and the chromatin remodeller SWI/SNF control expression of the PDR network genes and confer drug resistance. In Saccharomyces cerevisiae, Rtt106 specifically localises to PDR network gene promoters dependent on transcription factor Pdr3, but not Pdr1, and is essential for Pdr3-mediated basal expression of the PDR network genes, while SWI/SNF is essential for both basal and drug-induced expression. Also in the pathogenic fungus Candida glabrata, Rtt106 and SWI/SNF regulate drug-induced PDR gene expression. Consistently, loss of Rtt106 or SWI/SNF sensitises drug-resistant S. cerevisiae mutants and C. glabrata to antifungal drugs. Since they cooperatively drive PDR network gene expression, Rtt106 and SWI/SNF represent potential therapeutic targets to combat antifungal resistance.
Collapse
Affiliation(s)
- Vladislav N Nikolov
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Dhara Malavia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Takashi Kubota
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
7
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
PCNA Loaders and Unloaders-One Ring That Rules Them All. Genes (Basel) 2021; 12:genes12111812. [PMID: 34828416 PMCID: PMC8618651 DOI: 10.3390/genes12111812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
During each cell duplication, the entirety of the genomic DNA in every cell must be accurately and quickly copied. Given the short time available for the chore, the requirement of many proteins, and the daunting amount of DNA present, DNA replication poses a serious challenge to the cell. A high level of coordination between polymerases and other DNA and chromatin-interacting proteins is vital to complete this task. One of the most important proteins for maintaining such coordination is PCNA. PCNA is a multitasking protein that forms a homotrimeric ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and acts as a landing platform for different proteins interacting with DNA and chromatin. Therefore, PCNA is a signaling hub that influences the rate and accuracy of DNA replication, regulates DNA damage repair, controls chromatin formation during the replication, and the proper segregation of the sister chromatids. With so many essential roles, PCNA recruitment and turnover on the chromatin is of utmost importance. Three different, conserved protein complexes are in charge of loading/unloading PCNA onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA during the S-phase. The Ctf18 and Elg1 (ATAD5 in mammalian) proteins form complexes similar to RFC, with particular functions in the cell’s nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast and mammals.
Collapse
|
9
|
Kawasumi R, Abe T, Psakhye I, Miyata K, Hirota K, Branzei D. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release. Genes Dev 2021; 35:1368-1382. [PMID: 34503989 PMCID: PMC8494208 DOI: 10.1101/gad.348581.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.
Collapse
Affiliation(s)
- Ryotaro Kawasumi
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Takuya Abe
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ivan Psakhye
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Keiji Miyata
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Dana Branzei
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| |
Collapse
|
10
|
A novel role for Dun1 in the regulation of origin firing upon hyper-acetylation of H3K56. PLoS Genet 2021; 17:e1009391. [PMID: 33600490 PMCID: PMC7924802 DOI: 10.1371/journal.pgen.1009391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/02/2021] [Accepted: 02/01/2021] [Indexed: 01/27/2023] Open
Abstract
During DNA replication newly synthesized histones are incorporated into the chromatin of the replicating sister chromatids. In the yeast Saccharomyces cerevisiae new histone H3 molecules are acetylated at lysine 56. This modification is carefully regulated during the cell cycle, and any disruption of this process is a source of genomic instability. Here we show that the protein kinase Dun1 is necessary in order to maintain viability in the absence of the histone deacetylases Hst3 and Hst4, which remove the acetyl moiety from histone H3. This lethality is not due to the well-characterized role of Dun1 in upregulating dNTPs, but rather because Dun1 is needed in order to counteract the checkpoint kinase Rad53 (human CHK2) that represses the activity of late firing origins. Deletion of CTF18, encoding the large subunit of an alternative RFC-like complex (RLC), but not of components of the Elg1 or Rad24 RLCs, is enough to overcome the dependency of cells with hyper-acetylated histones on Dun1. We show that the detrimental function of Ctf18 depends on its interaction with the leading strand polymerase, Polε. Our results thus show that the main problem of cells with hyper-acetylated histones is the regulation of their temporal and replication programs, and uncover novel functions for the Dun1 protein kinase and the Ctf18 clamp loader. Within the cell’s nucleus the DNA is wrapped around proteins called histones. Upon DNA replication, newly synthesized H3 histones are acetylated at lysine 56. This acetylation is significant for the cell because when it is not removed in a timely manner it leads to genomic instability. We have investigated the source of this instability and discovered that the kinase Dun1, usually implicated in the regulation of dNTPs, the building blocks of DNA, has a novel, dNTP-independent, essential role when histones are hyper-acetylated. The essential role of Dun1 is in the regulation of the temporal program of DNA replication. Thus, our results uncover what the main defect is in cells unable to regulate the acetylation of histones, while revealing new functions for well-characterized proteins with roles in genome stability maintenance.
Collapse
|
11
|
Lee KY, Park SH. Eukaryotic clamp loaders and unloaders in the maintenance of genome stability. Exp Mol Med 2020; 52:1948-1958. [PMID: 33339954 PMCID: PMC8080817 DOI: 10.1038/s12276-020-00533-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic sliding clamp proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity factor for DNA polymerases and as a binding and acting platform for many proteins. The ring-shaped PCNA homotrimer and the DNA damage checkpoint clamp 9-1-1 are loaded onto DNA by clamp loaders. PCNA can be loaded by the pentameric replication factor C (RFC) complex and the CTF18-RFC-like complex (RLC) in vitro. In cells, each complex loads PCNA for different purposes; RFC-loaded PCNA is essential for DNA replication, while CTF18-RLC-loaded PCNA participates in cohesion establishment and checkpoint activation. After completing its tasks, PCNA is unloaded by ATAD5 (Elg1 in yeast)-RLC. The 9-1-1 clamp is loaded at DNA damage sites by RAD17 (Rad24 in yeast)-RLC. All five RFC complex components, but none of the three large subunits of RLC, CTF18, ATAD5, or RAD17, are essential for cell survival; however, deficiency of the three RLC proteins leads to genomic instability. In this review, we describe recent findings that contribute to the understanding of the basic roles of the RFC complex and RLCs and how genomic instability due to deficiency of the three RLCs is linked to the molecular and cellular activity of RLC, particularly focusing on ATAD5 (Elg1). The attachment and removal of clamp proteins that encircle DNA as it is copied and assist its replication and maintenance is mediated by DNA clamp loader and unloader proteins; defects in loading and unloading can increase the rate of damaging mutations. Kyoo-young Lee and Su Hyung Park at the Institute for Basic Science in Ulsan, South Korea, review current understanding of the activity of clamp loading and unloading proteins. They examine research on the proteins in eukaryotic cells, those containing a cell nucleus, making their discussion relevant to understanding the stability of the human genome. They focus particular attention on a protein called ATAD5, which is involved in unloading the clamp proteins. Deficiencies in ATAD5 function have been implicated in genetic instability that might lead to several different types of cancer.
Collapse
Affiliation(s)
- Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| |
Collapse
|
12
|
Stokes K, Winczura A, Song B, Piccoli GD, Grabarczyk DB. Ctf18-RFC and DNA Pol ϵ form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication. Nucleic Acids Res 2020; 48:8128-8145. [PMID: 32585006 PMCID: PMC7641331 DOI: 10.1093/nar/gkaa541] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
The eukaryotic replisome must faithfully replicate DNA and cope with replication fork blocks and stalling, while simultaneously promoting sister chromatid cohesion. Ctf18-RFC is an alternative PCNA loader that links all these processes together by an unknown mechanism. Here, we use integrative structural biology combined with yeast genetics and biochemistry to highlight the specific functions that Ctf18-RFC plays within the leading strand machinery via an interaction with the catalytic domain of DNA Pol ϵ. We show that a large and unusually flexible interface enables this interaction to occur constitutively throughout the cell cycle and regardless of whether forks are replicating or stalled. We reveal that, by being anchored to the leading strand polymerase, Ctf18-RFC can rapidly signal fork stalling to activate the S phase checkpoint. Moreover, we demonstrate that, independently of checkpoint signaling or chromosome cohesion, Ctf18-RFC functions in parallel to Chl1 and Mrc1 to protect replication forks and cell viability.
Collapse
Affiliation(s)
- Katy Stokes
- University of Warwick, Warwick Medical School, Coventry, UK
| | | | - Boyuan Song
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Str. 2, Würzburg 97080, Germany.,Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | | | - Daniel B Grabarczyk
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Str. 2, Würzburg 97080, Germany
| |
Collapse
|
13
|
Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020; 477:3499-3525. [PMID: 32970141 PMCID: PMC7574821 DOI: 10.1042/bcj20200065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| |
Collapse
|
14
|
Paul Solomon Devakumar LJ, Gaubitz C, Lundblad V, Kelch BA, Kubota T. Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex. Nucleic Acids Res 2020; 47:6826-6841. [PMID: 31114918 PMCID: PMC6648347 DOI: 10.1093/nar/gkz441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/14/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a sliding clamp that acts as a central co-ordinator for mismatch repair (MMR) as well as DNA replication. Loss of Elg1, the major subunit of the PCNA unloader complex, causes over-accumulation of PCNA on DNA and also increases mutation rate, but it has been unclear if the two effects are linked. Here we show that timely removal of PCNA from DNA by the Elg1 complex is important to prevent mutations. Although premature unloading of PCNA generally increases mutation rate, the mutator phenotype of elg1Δ is attenuated by PCNA mutants PCNA-R14E and PCNA-D150E that spontaneously fall off DNA. In contrast, the elg1Δ mutator phenotype is exacerbated by PCNA mutants that accumulate on DNA due to enhanced electrostatic PCNA–DNA interactions. Epistasis analysis suggests that PCNA over-accumulation on DNA interferes with both MMR and MMR-independent process(es). In elg1Δ, over-retained PCNA hyper-recruits the Msh2–Msh6 mismatch recognition complex through its PCNA-interacting peptide motif, causing accumulation of MMR intermediates. Our results suggest that PCNA retention controlled by the Elg1 complex is critical for efficient MMR: PCNA needs to be on DNA long enough to enable MMR, but if it is retained too long it interferes with downstream repair steps.
Collapse
Affiliation(s)
- Lovely Jael Paul Solomon Devakumar
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Christl Gaubitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Takashi Kubota
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
15
|
Cuevas-Bermúdez A, Garrido-Godino AI, Gutiérrez-Santiago F, Navarro F. A Yeast Chromatin-enriched Fractions Purification Approach, yChEFs, from Saccharomyces cerevisiae. Bio Protoc 2020; 10:e3471. [PMID: 33654706 DOI: 10.21769/bioprotoc.3471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/02/2022] Open
Abstract
We have adapted a previous procedure and improved an approach that we named yChEFs (yeast Chromatin Enriched Fractions) for purifying chromatin fractions. This methodology allows the easy, reproducible and scalable recovery of proteins associated with chromatin. By using yChEFs, we bypass subcellular fractionation requirements involved when using zymolyase to obtain the spheroplast, which is employed in many other procedures. Employing small amount of culture cells and small volumes of solutions during the yChEFs procedure is very useful to allow many samples to be handled at the same time, and also reduces costs and efforts. The purified proteins associated with chromatin fractions obtained by yChEFs can be analyzed by Western blot (Figure 1) or combined with mass spectrometry for proteomic analyses.
Collapse
Affiliation(s)
- Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | | | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar. Universidad de Jaén, Paraje de las Lagunillas, s/n, E23071, Jaén, Spain
| |
Collapse
|
16
|
Kim JT, Cho HJ, Park SY, Oh BM, Hwang YS, Baek KE, Lee YH, Kim HC, Lee HG. DNA Replication and Sister Chromatid Cohesion 1 (DSCC1) of the Replication Factor Complex CTF18-RFC is Critical for Colon Cancer Cell Growth. J Cancer 2019; 10:6142-6153. [PMID: 31762824 PMCID: PMC6856584 DOI: 10.7150/jca.32339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
DNA replication and sister chromatid cohesion 1 (DSCC1) combines with chromosome transmission-fidelity protein 18 (CTF18) to form a CTF18-DSCC1-CTF8 (CTF18-1-8) module, which in combination with CTF18-replication factor C (RFC) acts as a proliferating cell nuclear antigen (PCNA) loader during DNA replication-associated processes. It was found that DSCC1 was overexpressed in tumor tissues from patients with colon cancer and that the survival probability of patients with colon cancer was lower when the expression of cytosolic DSCC1 was higher in tumor regions (P=0.047). By using DSCC1- or CTF18-knockdown cell lines (HCT116-shDSCC1 or HCT116-shCTF18, respectively), it was confirmed that DSCC1-knockdown inhibits cell proliferation and invasion, but that CTF18-knockdown does not. Tumors in mice xenografted with shDSCC1 cells were significantly smaller compared with those in mice in the mock group or those xenografted with shCTF18 cells. The shDSCC1 cells were highly sensitive to γ-irradiation and other DNA replication inhibitory treatments, resulting in low cell viability. The present results suggested that DSCC1 is the most important component in the CTF18-1-8 module for CTF18-RFC and is highly relevant to the growth and metastasis of colon cancer cells, and, therefore, it may be a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Yoon Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Byung Moo Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yo Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Ha Lee
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
17
|
Winczura A, Appanah R, Tatham MH, Hay RT, De Piccoli G. The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε. PLoS Genet 2019; 15:e1008427. [PMID: 31765407 PMCID: PMC6876773 DOI: 10.1371/journal.pgen.1008427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε, principally following replication forks stalling induced by nucleotide depletion. Pol2 is the main target of SUMOylation within the replisome and its modification requires the SUMO-ligase Mms21, a subunit of the Smc5/6 complex. Moreover, the Smc5/6 complex co-purifies with Pol ε, independently of other replisome components. Finally, we map Pol2 SUMOylation to a single site within the N-terminal catalytic domain and identify a SUMO-interacting motif at the C-terminus of Pol2. These data suggest that the S phase checkpoint regulate Pol ε during replication stress through Pol2 SUMOylation and SUMO-binding ability.
Collapse
Affiliation(s)
- Alicja Winczura
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rowin Appanah
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
| | | |
Collapse
|
18
|
Cuevas-Bermúdez A, Garrido-Godino AI, Navarro F. A novel yeast chromatin-enriched fractions purification approach, yChEFs, for the chromatin-associated protein analysis used for chromatin-associated and RNA-dependent chromatin-associated proteome studies from Saccharomyces cerevisiae. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
DDR Inc., one business, two associates. Curr Genet 2018; 65:445-451. [DOI: 10.1007/s00294-018-0908-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/03/2023]
|
20
|
Bacal J, Moriel-Carretero M, Pardo B, Barthe A, Sharma S, Chabes A, Lengronne A, Pasero P. Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage. EMBO J 2018; 37:e99319. [PMID: 30158111 PMCID: PMC6213276 DOI: 10.15252/embj.201899319] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023] Open
Abstract
The S-phase checkpoint maintains the integrity of the genome in response to DNA replication stress. In budding yeast, this pathway is initiated by Mec1 and is amplified through the activation of Rad53 by two checkpoint mediators: Mrc1 promotes Rad53 activation at stalled forks, and Rad9 is a general mediator of the DNA damage response. Here, we have investigated the interplay between Mrc1 and Rad9 in response to DNA damage and found that they control DNA replication through two distinct but complementary mechanisms. Mrc1 rapidly activates Rad53 at stalled forks and represses late-firing origins but is unable to maintain this repression over time. Rad9 takes over Mrc1 to maintain a continuous checkpoint signaling. Importantly, the Rad9-mediated activation of Rad53 slows down fork progression, supporting the view that the S-phase checkpoint controls both the initiation and the elongation of DNA replication in response to DNA damage. Together, these data indicate that Mrc1 and Rad9 play distinct functions that are important to ensure an optimal completion of S phase under replication stress conditions.
Collapse
Affiliation(s)
- Julien Bacal
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - María Moriel-Carretero
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Benjamin Pardo
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Antoine Barthe
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| |
Collapse
|
21
|
Gali VK, Dickerson D, Katou Y, Fujiki K, Shirahige K, Owen-Hughes T, Kubota T, Donaldson AD. Identification of Elg1 interaction partners and effects on post-replication chromatin re-formation. PLoS Genet 2018; 14:e1007783. [PMID: 30418970 PMCID: PMC6258251 DOI: 10.1371/journal.pgen.1007783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/26/2018] [Accepted: 10/23/2018] [Indexed: 12/04/2022] Open
Abstract
Elg1, the major subunit of a Replication Factor C-like complex, is critical to ensure genomic stability during DNA replication, and is implicated in controlling chromatin structure. We investigated the consequences of Elg1 loss for the dynamics of chromatin re-formation following DNA replication. Measurement of Okazaki fragment length and the micrococcal nuclease sensitivity of newly replicated DNA revealed a defect in nucleosome organization in the absence of Elg1. Using a proteomic approach to identify Elg1 binding partners, we discovered that Elg1 interacts with Rtt106, a histone chaperone implicated in replication-coupled nucleosome assembly that also regulates transcription. A central role for Elg1 is the unloading of PCNA from chromatin following DNA replication, so we examined the relative importance of Rtt106 and PCNA unloading for chromatin reassembly following DNA replication. We find that the major cause of the chromatin organization defects of an ELG1 mutant is PCNA retention on DNA following replication, with Rtt106-Elg1 interaction potentially playing a contributory role.
Collapse
Affiliation(s)
- Vamsi K. Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - David Dickerson
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Katsunori Fujiki
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom
| | - Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Anne D. Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
22
|
Bellelli R, Borel V, Logan C, Svendsen J, Cox DE, Nye E, Metcalfe K, O'Connell SM, Stamp G, Flynn HR, Snijders AP, Lassailly F, Jackson A, Boulton SJ. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell 2018; 70:707-721.e7. [PMID: 29754823 PMCID: PMC5972231 DOI: 10.1016/j.molcel.2018.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.
Collapse
Affiliation(s)
| | - Valerie Borel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Clare Logan
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | - Danielle E Cox
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kay Metcalfe
- Department of Genetic Medicine, St Mary's Hospital, Oxford Road, Manchester, M13 OJH, UK
| | - Susan M O'Connell
- Department of Paediatrics, Cork University Hospital, Wilton, Cork T12 DC4A, Ireland
| | - Gordon Stamp
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Helen R Flynn
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | | | - Andrew Jackson
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
23
|
Grabarczyk DB, Silkenat S, Kisker C. Structural Basis for the Recruitment of Ctf18-RFC to the Replisome. Structure 2017; 26:137-144.e3. [PMID: 29225079 DOI: 10.1016/j.str.2017.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022]
Abstract
Ctf18-RFC is an alternative PCNA loader which plays important but poorly understood roles in multiple DNA replication-associated processes. To fulfill its specialist roles, the Ctf18-RFC clamp loader contains a unique module in which the Dcc1-Ctf8 complex is bound to the C terminus of Ctf18 (the Ctf18-1-8 module). Here, we report the structural and functional characterization of the heterotetrameric complex formed between Ctf18-1-8 and a 63 kDa fragment of DNA polymerase ɛ. Our data reveal that Ctf18-1-8 binds stably to the polymerase and far from its other functional sites, suggesting that Ctf18-RFC could be associated with Pol ɛ throughout normal replication as the leading strand clamp loader. We also show that Pol ɛ and double-stranded DNA compete to bind the same winged-helix domain on Dcc1, with Pol ɛ being the preferred binding partner, thus suggesting that there are two alternative pathways to recruit Ctf18-RFC to sites of replication.
Collapse
Affiliation(s)
- Daniel B Grabarczyk
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | - Sabrina Silkenat
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
24
|
Fujisawa R, Ohashi E, Hirota K, Tsurimoto T. Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase ε efficiently loads the PCNA sliding clamp. Nucleic Acids Res 2017; 45:4550-4563. [PMID: 28199690 PMCID: PMC5416766 DOI: 10.1093/nar/gkx096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/08/2017] [Indexed: 12/26/2022] Open
Abstract
The alternative proliferating-cell nuclear antigen (PCNA)-loader CTF18-RFC forms a stable complex with DNA polymerase ε (Polε). We observed that, under near-physiological conditions, CTF18-RFC alone loaded PCNA inefficiently, but loaded it efficiently when complexed with Polε. During efficient PCNA loading, CTF18-RFC and Polε assembled at a 3΄ primer–template junction cooperatively, and directed PCNA to the loading site. Site-specific photo-crosslinking of directly interacting proteins at the primer–template junction showed similar cooperative binding, in which the catalytic N-terminal portion of Polε acted as the major docking protein. In the PCNA-loading intermediate with ATPγS, binding of CTF18 to the DNA structures increased, suggesting transient access of CTF18-RFC to the primer terminus. Polε placed in DNA synthesis mode using a substrate DNA with a deoxidised 3΄ primer end did not stimulate PCNA loading, suggesting that DNA synthesis and PCNA loading are mutually exclusive at the 3΄ primer–template junction. Furthermore, PCNA and CTF18-RFC–Polε complex engaged in stable trimeric assembly on the template DNA and synthesised DNA efficiently. Thus, CTF18-RFC appears to be involved in leading-strand DNA synthesis through its interaction with Polε, and can load PCNA onto DNA when Polε is not in DNA synthesis mode to restore DNA synthesis.
Collapse
Affiliation(s)
- Ryo Fujisawa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
26
|
Wade BO, Liu HW, Samora CP, Uhlmann F, Singleton MR. Structural studies of RFC Ctf18 reveal a novel chromatin recruitment role for Dcc1. EMBO Rep 2017; 18:558-568. [PMID: 28188145 PMCID: PMC5376975 DOI: 10.15252/embr.201642825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/10/2022] Open
Abstract
Replication factor C complexes load and unload processivity clamps from DNA and are involved in multiple DNA replication and repair pathways. The RFCCtf18 variant complex is required for activation of the intra-S-phase checkpoint at stalled replication forks and aids the establishment of sister chromatid cohesion. Unlike other RFC complexes, RFCCtf18 contains two non-Rfc subunits, Dcc1 and Ctf8. Here, we present the crystal structure of the Dcc1-Ctf8 heterodimer bound to the C-terminus of Ctf18. We find that the C-terminus of Dcc1 contains three-winged helix domains, which bind to both ssDNA and dsDNA We further show that these domains are required for full recruitment of the complex to chromatin, and correct activation of the replication checkpoint. These findings provide the first structural data on a eukaryotic seven-subunit clamp loader and define a new biochemical activity for Dcc1.
Collapse
Affiliation(s)
- Benjamin O Wade
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Hon Wing Liu
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Catarina P Samora
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Martin R Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
27
|
Kelch BA. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Biopolymers 2017; 105:532-46. [PMID: 26918303 DOI: 10.1002/bip.22827] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/15/2022]
Abstract
Sliding clamps are ring-shaped polymerase processivity factors that act as master regulators of cellular replication by coordinating multiple functions on DNA to ensure faithful transmission of genetic and epigenetic information. Dedicated AAA+ ATPase machines called clamp loaders actively place clamps on DNA, thereby governing clamp function by controlling when and where clamps are used. Clamp loaders are also important model systems for understanding the basic principles of AAA+ mechanism and function. After nearly 30 years of study, the ATP-dependent mechanism of opening and loading of clamps is now becoming clear. Here I review the structural and mechanistic aspects of the clamp loading process, as well as comment on questions that will be addressed by future studies. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 532-546, 2016.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
28
|
Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication. Genes (Basel) 2017; 8:genes8020052. [PMID: 28134787 PMCID: PMC5333041 DOI: 10.3390/genes8020052] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/21/2017] [Indexed: 11/23/2022] Open
Abstract
During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA), acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC) complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.
Collapse
|
29
|
Ranatunga NS, Forsburg SL. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4. G3 (BETHESDA, MD.) 2016; 6:3049-3063. [PMID: 27473316 PMCID: PMC5068930 DOI: 10.1534/g3.116.033571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure.
Collapse
Affiliation(s)
- Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
30
|
Abstract
Each time a cell duplicates, the whole genome must be accurately copied and distributed. The enormous amount of DNA in eukaryotic cells requires a high level of coordination between polymerases and other DNA and chromatin-interacting proteins to ensure timely and accurate DNA replication and chromatin formation. PCNA forms a ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and as a landing platform for different proteins that interact with DNA and chromatin. It thus serves as a signaling hub and influences the rate and accuracy of DNA replication, the r-formation of chromatin in the wake of the moving fork and the proper segregation of the sister chromatids. Four different, conserved, protein complexes are in charge of loading/unloading PCNA and similar molecules onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA, the replication clamp, during S-phase. The Rad24, Ctf18 and Elg1 proteins form complexes similar to RFC, with particular functions in the cell's nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast.
Collapse
Affiliation(s)
- Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
31
|
Johnson C, Gali VK, Takahashi TS, Kubota T. PCNA Retention on DNA into G2/M Phase Causes Genome Instability in Cells Lacking Elg1. Cell Rep 2016; 16:684-95. [PMID: 27373149 PMCID: PMC4956615 DOI: 10.1016/j.celrep.2016.06.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/28/2016] [Accepted: 06/03/2016] [Indexed: 12/05/2022] Open
Abstract
Loss of the genome maintenance factor Elg1 causes serious genome instability that leads to cancer, but the underlying mechanism is unknown. Elg1 forms the major subunit of a replication factor C-like complex, Elg1-RLC, which unloads the ring-shaped polymerase clamp PCNA from DNA during replication. Here, we show that prolonged retention of PCNA on DNA into G2/M phase is the major cause of genome instability in elg1Δ yeast. Overexpression-induced accumulation of PCNA on DNA causes genome instability. Conversely, disassembly-prone PCNA mutants that relieve PCNA accumulation rescue the genome instability of elg1Δ cells. Covalent modifications to the retained PCNA make only a minor contribution to elg1Δ genome instability. By engineering cell-cycle-regulated ELG1 alleles, we show that abnormal accumulation of PCNA on DNA during S phase causes moderate genome instability and its retention through G2/M phase exacerbates genome instability. Our results reveal that PCNA unloading by Elg1-RLC is critical for genome maintenance.
Collapse
Affiliation(s)
- Catherine Johnson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Vamsi K Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Tatsuro S Takahashi
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
32
|
Wierer M, Mann M. Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Hum Mol Genet 2016; 25:R106-R114. [PMID: 27402878 PMCID: PMC5036873 DOI: 10.1093/hmg/ddw208] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/24/2016] [Indexed: 01/30/2023] Open
Abstract
High-resolution mass spectrometry (MS)-based proteomics is a powerful method for the identification of soluble protein complexes and large-scale affinity purification screens can decode entire protein interaction networks. In contrast, protein complexes residing on chromatin have been much more challenging, because they are difficult to purify and often of very low abundance. However, this is changing due to recent methodological and technological advances in proteomics. Proteins interacting with chromatin marks can directly be identified by pulldowns with synthesized histone tails containing posttranslational modifications (PTMs). Similarly, pulldowns with DNA baits harbouring single nucleotide polymorphisms or DNA modifications reveal the impact of those DNA alterations on the recruitment of transcription factors. Accurate quantitation – either isotope-based or label free – unambiguously pinpoints proteins that are significantly enriched over control pulldowns. In addition, protocols that combine classical chromatin immunoprecipitation (ChIP) methods with mass spectrometry (ChIP-MS) target gene regulatory complexes in their in-vivo context. Similar to classical ChIP, cells are crosslinked with formaldehyde and chromatin sheared by sonication or nuclease digested. ChIP-MS baits can be proteins in tagged or endogenous form, histone PTMs, or lncRNAs. Locus-specific ChIP-MS methods would allow direct purification of a single genomic locus and the proteins associated with it. There, loci can be targeted either by artificial DNA-binding sites and corresponding binding proteins or via proteins with sequence specificity such as TAL or nuclease deficient Cas9 in combination with a specific guide RNA. We predict that advances in MS technology will soon make such approaches generally applicable tools in epigenetics.
Collapse
Affiliation(s)
- Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
33
|
Kaneko Y, Daitoku H, Komeno C, Fukamizu A. CTF18 interacts with replication protein A in response to replication stress. Mol Med Rep 2016; 14:367-72. [PMID: 27175616 DOI: 10.3892/mmr.2016.5262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
Replication stress response is a protective mechanism against defects in chromosome replication for maintaining genome integrity in eukaryotic cells. An alternative clamp loader complex termed chromosome transmission fidelity protein 18 and replication factor C (CTF18‑RFC) has been shown to act as a positive regulator of two types of replication stress response: S‑phase checkpoint signaling and translesion DNA synthesis. However, it remains largely unknown how CTF18‑RFC responds to replication stress and is recruited to stalled replication forks. The present study demonstrated that endogenous CTF18 forms a physical complex with a single‑stranded DNA‑binding protein replication protein A (RPA) in mammalian cells. Using an in situ proximity ligation assay (PLA), it was demonstrated that the interaction between CTF18 and RPA occurs in chromatin when replication stress is elicited by treatment with hydroxyurea during S phase. Similar results were obtained after exposure to ultraviolet irradiation, which triggers translesion DNA synthesis. Furthermore, the PLA demonstrated that the kinetics of the interaction between CTF18 and RPA was positively correlated with that of checkpoint kinase 1 phosphorylation, which is an indicator of activation of the ATM and Rad3‑related pathway. These findings provide novel insights into the molecular mechanism underlying the participation of CTF18‑RFC in the regulation of replication stress response.
Collapse
Affiliation(s)
- Yuta Kaneko
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Hiroaki Daitoku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Chihiro Komeno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| |
Collapse
|
34
|
Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 2016; 8:429-45. [DOI: 10.2217/epi.15.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an overview of the applications of MS-based proteomics in various areas of chromatin biology.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, via Adamello 16, Milano, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| |
Collapse
|
35
|
García-Rodríguez LJ, De Piccoli G, Marchesi V, Jones RC, Edmondson RD, Labib K. A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1. Nucleic Acids Res 2015; 43:8830-8. [PMID: 26250113 PMCID: PMC4605302 DOI: 10.1093/nar/gkv799] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022] Open
Abstract
Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the 'alternative clamp loader' known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved 'Pol ϵ binding module' in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint.
Collapse
Affiliation(s)
- Luis J García-Rodríguez
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Giacomo De Piccoli
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Vanessa Marchesi
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | - Ricky D Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 W Markham #776, Little Rock, AR 72205, USA
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
36
|
Kubota T, Katou Y, Nakato R, Shirahige K, Donaldson AD. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Cell Rep 2015. [PMID: 26212319 PMCID: PMC4534484 DOI: 10.1016/j.celrep.2015.06.066] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
37
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
38
|
Chromatin remodeling factors Isw2 and Ino80 regulate checkpoint activity and chromatin structure in S phase. Genetics 2015; 199:1077-91. [PMID: 25701287 DOI: 10.1534/genetics.115.174730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/13/2015] [Indexed: 12/19/2022] Open
Abstract
When cells undergo replication stress, proper checkpoint activation and deactivation are critical for genomic stability and cell survival and therefore must be highly regulated. Although mechanisms of checkpoint activation are well studied, mechanisms of checkpoint deactivation are far less understood. Previously, we reported that chromatin remodeling factors Isw2 and Ino80 attenuate the S-phase checkpoint activity in Saccharomyces cerevisiae, especially during recovery from hydroxyurea. In this study, we found that Isw2 and Ino80 have a more pronounced role in attenuating checkpoint activity during late S phase in the presence of methyl methanesulfonate (MMS). We therefore screened for checkpoint factors required for Isw2 and Ino80 checkpoint attenuation in the presence of MMS. Here we demonstrate that Isw2 and Ino80 antagonize checkpoint activators and attenuate checkpoint activity in S phase in MMS either through a currently unknown pathway or through RPA. Unexpectedly, we found that Isw2 and Ino80 increase chromatin accessibility around replicating regions in the presence of MMS through a novel mechanism. Furthermore, through growth assays, we provide additional evidence that Isw2 and Ino80 partially counteract checkpoint activators specifically in the presence of MMS. Based on these results, we propose that Isw2 and Ino80 attenuate S-phase checkpoint activity through a novel mechanism.
Collapse
|
39
|
Elg1, a central player in genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:267-79. [PMID: 25795125 DOI: 10.1016/j.mrrev.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022]
Abstract
ELG1 is a conserved gene uncovered in a number of genetic screens in yeast aimed at identifying factors important in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice, acts as a tumor suppressor in mice and humans, exhibits physical interactions with components of the human Fanconi Anemia pathway and may be responsible for some of the phenotypes associated with neurofibromatosis. In this review, we summarize the information available on Elg1-related activities in yeast and mammals, and present models to explain how the different phenotypes observed in the absence of Elg1 activity are related.
Collapse
|
40
|
Sridhar A, Kedziora S, Donaldson AD. At short telomeres Tel1 directs early replication and phosphorylates Rif1. PLoS Genet 2014; 10:e1004691. [PMID: 25329891 PMCID: PMC4199499 DOI: 10.1371/journal.pgen.1004691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/20/2014] [Indexed: 11/19/2022] Open
Abstract
The replication time of Saccharomyces cerevisiae telomeres responds to TG1-3 repeat length, with telomeres of normal length replicating late during S phase and short telomeres replicating early. Here we show that Tel1 kinase, which is recruited to short telomeres, specifies their early replication, because we find a tel1Δ mutant has short telomeres that nonetheless replicate late. Consistent with a role for Tel1 in driving early telomere replication, initiation at a replication origin close to an induced short telomere was reduced in tel1Δ cells, in an S phase blocked by hydroxyurea. The telomeric chromatin component Rif1 mediates late replication of normal telomeres and is a potential substrate of Tel1 phosphorylation, so we tested whether Tel1 directs early replication of short telomeres by inactivating Rif1. A strain lacking both Rif1 and Tel1 behaves like a rif1Δ mutant by replicating its telomeres early, implying that Tel1 can counteract the delaying effect of Rif1 to control telomere replication time. Proteomic analyses reveals that in yku70Δ cells that have short telomeres, Rif1 is phosphorylated at Tel1 consensus sequences (S/TQ sites), with phosphorylation of Serine-1308 being completely dependent on Tel1. Replication timing analysis of a strain mutated at these phosphorylation sites, however, suggested that Tel1-mediated phosphorylation of Rif1 is not the sole mechanism of replication timing control at telomeres. Overall, our results reveal two new functions of Tel1 at shortened telomeres: phosphorylation of Rif1, and specification of early replication by counteracting the Rif1-mediated delay in initiation at nearby replication origins.
Collapse
Affiliation(s)
- Akila Sridhar
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Sylwia Kedziora
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Anne D. Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Abstract
During interphase, chromatin hosts fundamental cellular processes, such as gene expression, DNA replication and DNA damage repair. To analyze chromatin on a proteomic scale, we have developed chromatin enrichment for proteomics (ChEP), which is a simple biochemical procedure that enriches interphase chromatin in all its complexity. It enables researchers to take a 'snapshot' of chromatin and to isolate and identify even transiently bound factors. In ChEP, cells are fixed with formaldehyde; subsequently, DNA together with all cross-linked proteins is isolated by centrifugation under denaturing conditions. This approach enables the analysis of global chromatin composition and its changes, which is in contrast with existing chromatin enrichment procedures, which either focus on specific chromatin loci (e.g., affinity purification) or are limited in specificity, such as the analysis of the chromatin pellet (i.e., analysis of all insoluble nuclear material). ChEP takes half a day to complete and requires no specialized laboratory skills or equipment. ChEP enables the characterization of chromatin response to drug treatment or physiological processes. Beyond proteomics, ChEP may preclear chromatin for chromatin immunoprecipitation (ChIP) analyses.
Collapse
Affiliation(s)
- Georg Kustatscher
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Karen L H Wills
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cristina Furlan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- 1] Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK. [2] Department of Biotechnology, Institute of Bioanalytics, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
42
|
Shiomi Y, Nishitani H. Alternative replication factor C protein, Elg1, maintains chromosome stability by regulating PCNA levels on chromatin. Genes Cells 2013; 18:946-59. [PMID: 23937667 DOI: 10.1111/gtc.12087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) is loaded on chromatin upon initiation of the S phase and acts as a platform for a large number of proteins involved in chromosome duplication at the replication fork. As duplication is completed, PCNA dissociates from chromatin, and thus, chromatin-bound PCNA levels are regulated during the cell cycle. Although the mechanism of PCNA loading has been extensively investigated, the unloading mechanism has remained unclear. Here, we show that Elg1, an alternative replication factor C protein, is required for the regulation of chromatin-bound PCNA levels. When Elg1 was depleted by small interfering RNA, chromatin-bound PCNA levels were extremely increased during the S phase. The number of PCNA foci, regions in the nucleus normally representing DNA replication sites, was increased and PCNA remained on chromatin after DNA replication. Various chromatin-associated protein levels on chromatin were affected, and chromatin loop size was increased. During mitosis, cells with aberrant chromosomes and lagging chromosomes were frequently detected. Our findings suggest that Elg1 has an important role in maintaining chromosome integrity by regulating PCNA levels on chromatin, thereby acting as a PCNA unloading factor.
Collapse
Affiliation(s)
- Yasushi Shiomi
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, 678-1297, Japan
| | | |
Collapse
|
43
|
Kubota T, Myung K, Donaldson AD. Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex? Cell Cycle 2013; 12:2570-9. [PMID: 23907118 PMCID: PMC3865047 DOI: 10.4161/cc.25626] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maintaining genome stability is crucial for all cells. The budding yeast Elg1 protein, the major subunit of a replication factor C-like complex, is important for genome stability, since cells lacking Elg1 exhibit increased recombination and chromosomal rearrangements. This genome maintenance function of Elg1 seems to be conserved in higher eukaryotes, since removal of the human Elg1 homolog, encoded by the ATAD5 gene, also causes genome instability leading to tumorigenesis. The fundamental molecular function of the Elg1/ATAD5-replication factor C-like complex (RLC) was, until recently, elusive, although Elg1/ATAD5-RLC was known to interact with the replication sliding clamp PCNA. Two papers have now reported that following DNA replication, the Elg1/ATAD5-RLC is required to remove PCNA from chromatin in yeast and human cells. In this Review, we summarize the evidence that Elg1/ATAD5-RLC acts as a PCNA unloader and discuss the still enigmatic relationship between the function of Elg1/ATAD5-RLC in PCNA unloading and the role of Elg1/ATAD5 in maintaining genomic stability.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | |
Collapse
|
44
|
Ulrich HD. New insights into replication clamp unloading. J Mol Biol 2013; 425:4727-32. [PMID: 23688817 DOI: 10.1016/j.jmb.2013.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 12/31/2022]
Abstract
The sliding clamp protein proliferating cell nuclear antigen (PCNA) is situated at the core of the eukaryotic replisome, where it acts as an interaction scaffold for numerous replication and repair factors and coordinates DNA transactions ranging from Okazaki fragment maturation to chromatin assembly and mismatch repair. PCNA is loaded onto DNA by a dedicated complex, the replication factor C, whose mechanism has been studied in detail. Until recently, however, it was unclear how PCNA is removed from DNA upon completion of DNA synthesis. Two complementary studies now present data strongly implicating the replication factor C-like complex, Elg1/ATAD5-RLC, in the unloading of PCNA during replication in yeast and human cells. They indicate that an appropriate control over PCNA's residence on the chromatin is important for maintaining genome stability. At the same time, they suggest that the interaction of Elg1/ATAD5 with SUMO, which was also reported to contribute to its role in genome maintenance, affects aspects of its function distinct from its unloading activity.
Collapse
Affiliation(s)
- Helle D Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, United Kingdom; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
45
|
O'Neil NJ, van Pel DM, Hieter P. Synthetic lethality and cancer: cohesin and PARP at the replication fork. Trends Genet 2013; 29:290-7. [PMID: 23333522 PMCID: PMC3868440 DOI: 10.1016/j.tig.2012.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 01/19/2023]
Abstract
Cohesins are mutated in a significant number of tumors of various types making them attractive targets for chemotherapeutic intervention. However, cohesins have a spectrum of cellular roles including sister chromatid cohesion, transcription, replication, and repair. Which of these roles are central to cancer biology and which roles can be exploited for therapeutic intervention? Genetic interaction networks in yeast have identified synthetic lethal interactions between mutations in cohesin and replication fork mediators. These interactions are conserved in worms and in human cells suggesting that inhibition of replication fork stability mediators such as poly (ADP-ribose) polymerase (PARP) could result in the specific killing of tumors with cohesin mutations. These findings also highlight the utility of genetic interaction networks in model organisms for the identification of clinically relevant interactions. Here, we review this type of approach, emphasizing the power of synthetic lethal interactions to reveal new avenues for developing cancer therapeutics.
Collapse
Affiliation(s)
- Nigel J O'Neil
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | |
Collapse
|
46
|
Kubota T, Nishimura K, Kanemaki MT, Donaldson AD. The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol Cell 2013; 50:273-80. [PMID: 23499004 DOI: 10.1016/j.molcel.2013.02.012] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/02/2013] [Accepted: 02/06/2013] [Indexed: 12/15/2022]
Abstract
The ring-shaped complex PCNA coordinates DNA replication, encircling DNA to act as a polymerase clamp and a sliding platform to recruit other replication proteins. PCNA is loaded onto DNA by replication factor C, but it has been unknown how PCNA is removed from DNA when Okazaki fragments are completed or the replication fork terminates. Here we show that the Elg1 replication factor C-like complex (Elg1-RLC) functions in PCNA unloading. Using an improved degron system we show that without Elg1, PCNA accumulates on Saccharomyces cerevisiae chromatin during replication. The accumulated PCNA can be removed from chromatin in vivo by switching on Elg1 expression. We find moreover that treating chromatin with purified Elg1-RLC causes PCNA unloading in vitro. Our results demonstrate that Elg1-RLC functions in unloading of both unmodified and SUMOylated PCNA during DNA replication, while the genome instability of an elg1Δ mutant suggests timely PCNA unloading is critical for chromosome maintenance.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | |
Collapse
|
47
|
Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 2013; 3:892-904. [PMID: 23499444 DOI: 10.1016/j.celrep.2013.02.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/30/2012] [Accepted: 02/28/2013] [Indexed: 11/30/2022] Open
Abstract
DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription) complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.
Collapse
Affiliation(s)
- Magdalena Foltman
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bartke T, Borgel J, DiMaggio PA. Proteomics in epigenetics: new perspectives for cancer research. Brief Funct Genomics 2013; 12:205-18. [PMID: 23401080 PMCID: PMC3662889 DOI: 10.1093/bfgp/elt002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The involvement of epigenetic processes in the origin and progression of cancer is now widely appreciated. Consequently, targeting the enzymatic machinery that controls the epigenetic regulation of the genome has emerged as an attractive new strategy for therapeutic intervention. The development of epigenetic drugs requires a detailed knowledge of the processes that govern chromatin regulation. Over the recent years, mass spectrometry (MS) has become an indispensable tool in epigenetics research. In this review, we will give an overview of the applications of MS-based proteomics in studying various aspects of chromatin biology. We will focus on the use of MS in the discovery and mapping of histone modifications and how novel proteomic approaches are being utilized to identify and study chromatin-associated proteins and multi-subunit complexes. Finally, we will discuss the application of proteomic methods in the diagnosis and prognosis of cancer based on epigenetic biomarkers and comment on their future impact on cancer epigenetics.
Collapse
Affiliation(s)
- Till Bartke
- MRC Clinical Sciences Centre, Imperial College London Faculty of Medicine, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | | | |
Collapse
|
49
|
Lee KY, Fu H, Aladjem MI, Myung K. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. ACTA ACUST UNITED AC 2012; 200:31-44. [PMID: 23277426 PMCID: PMC3542800 DOI: 10.1083/jcb.201206084] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reduction of ATAD5 extends the lifespan of replication factories by retaining PCNA and other replisome proteins on chromatin, leading to an increase in inactive replication factories and reduced overall replication rate. Temporal and spatial regulation of the replication factory is important for efficient DNA replication. However, the underlying molecular mechanisms are not well understood. Here, we report that ATAD5 regulates the lifespan of replication factories. Reduced expression of ATAD5 extended the lifespan of replication factories by retaining proliferating cell nuclear antigen (PCNA) and other replisome proteins on the chromatin during and even after DNA synthesis. This led to an increase of inactive replication factories with an accumulation of replisome proteins. Consequently, the overall replication rate was decreased, which resulted in the delay of S-phase progression. Prevalent detection of PCNA foci in G2 phase cells after ATAD5 depletion suggests that defects in the disassembly of replication factories persist after S phase is complete. ATAD5-mediated regulation of the replication factory and PCNA required an intact ATAD5 ATPase domain. Taken together, our data imply that ATAD5 regulates the cycle of DNA replication factories, probably through its PCNA-unloading activity.
Collapse
Affiliation(s)
- Kyoo-young Lee
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
50
|
Lambert JP, Pawson T, Gingras AC. Mapping physical interactions within chromatin by proteomic approaches. Proteomics 2012; 12:1609-22. [PMID: 22611019 DOI: 10.1002/pmic.201100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our ability to study protein-protein interactions has grown by leaps and bounds in recent years, enabling numerous large-scale studies to be performed in a variety of organisms. Despite this success, some classes of proteins, including those bound to chromatin, remain difficult to characterize through proteomic approaches. Some of the problems faced by researchers studying chromatin-bound proteins include low complex solubility, heterogeneous sample composition, and numerous transient interactions, which can be further complicated by the presence of DNA itself. To tackle these issues, a number of innovative protocols have been developed to better study the various facets of chromatin biology. In this review, we will discuss novel approaches to study protein-DNA interactions as well as protein complexes affecting chromatin.
Collapse
|