1
|
Pathophysiology and Clinical Biomarkers in Interstitial Cystitis. Urol Clin North Am 2023; 50:39-52. [DOI: 10.1016/j.ucl.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Panunzio A, Tafuri A, Princiotta A, Gentile I, Mazzucato G, Trabacchin N, Antonelli A, Cerruto MA. Omics in urology: An overview on concepts, current status and future perspectives. Urologia 2021; 88:270-279. [PMID: 34169788 DOI: 10.1177/03915603211022960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent technological advances in molecular biology have led to great progress in the knowledge of structure and function of cells and their main constituents. In this setting, 'omics' is standing out in order to significantly improve the understanding of etiopathogenetic mechanisms of disease and contribute to the development of new biochemical diagnostics and therapeutic tools. 'Omics' indicates the scientific branches investigating every aspect of cell's biology, including structures, functions and dynamics pathways. The main 'omics' are genomics, epigenomics, proteomics, transcriptomics, metabolomics and radiomics. Their diffusion, success and proliferation, addressed to many research fields, has led to many important acquisitions, even in Urology. Aim of this narrative review is to define the state of art of 'omics' application in Urology, describing the most recent and relevant findings, in both oncological and non-oncological diseases, focusing the attention on urinary tract infectious, interstitial cystitis, urolithiasis, prostate cancer, bladder cancer and renal cell carcinoma. In Urology the majority of 'omics' applications regard the pathogenesis and diagnosis of the investigated diseases. In future, its role should be implemented in order to develop specific predictors and tailored treatments.
Collapse
Affiliation(s)
- Andrea Panunzio
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Alessandro Tafuri
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.,Department of Neuroscience, Imaging and Clinical Science, Physiology and Physiopathology division, "G. D'Annunzio" University, Chieti, Italy
| | - Alessandro Princiotta
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Ilaria Gentile
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giovanni Mazzucato
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Nicolò Trabacchin
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Alessandro Antonelli
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria Angela Cerruto
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
3
|
Nounu A, Greenhough A, Heesom KJ, Richmond RC, Zheng J, Weinstein SJ, Albanes D, Baron JA, Hopper JL, Figueiredo JC, Newcomb PA, Lindor NM, Casey G, Platz EA, Le Marchand L, Ulrich CM, Li CI, van Duijnhoven FJB, Gsur A, Campbell PT, Moreno V, Vodicka P, Vodickova L, Brenner H, Chang-Claude J, Hoffmeister M, Sakoda LC, Slattery ML, Schoen RE, Gunter MJ, Castellví-Bel S, Kim HR, Kweon SS, Chan AT, Li L, Zheng W, Bishop DT, Buchanan DD, Giles GG, Gruber SB, Rennert G, Stadler ZK, Harrison TA, Lin Y, Keku TO, Woods MO, Schafmayer C, Van Guelpen B, Gallinger S, Hampel H, Berndt SI, Pharoah PDP, Lindblom A, Wolk A, Wu AH, White E, Peters U, Drew DA, Scherer D, Bermejo JL, Williams AC, Relton CL. A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:564-575. [PMID: 33318029 PMCID: PMC8086774 DOI: 10.1158/1055-9965.epi-20-1176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Evidence for aspirin's chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk. METHODS Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N = 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N = 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). RESULTS Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03-1.13; OR: 3.33, 95% CI, 2.46-4.50; and OR: 1.15, 95% CI, 1.02-1.29, respectively). CONCLUSIONS MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin's reduction of metastasis. IMPACT Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.
Collapse
Affiliation(s)
- Aayah Nounu
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Alexander Greenhough
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Centre for Research in Biosciences, The Faculty of Health and Applied Sciences, The University of the West of England, Bristol, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Rebecca C Richmond
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, Arizona
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Víctor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Canada
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, California
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - David A Drew
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, Boston, Massachusetts
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Ann C Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Caroline L Relton
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Hashemi Gheinani A, Bigger-Allen A, Wacker A, Adam RM. Systems analysis of benign bladder disorders: insights from omics analysis. Am J Physiol Renal Physiol 2020; 318:F901-F910. [PMID: 32116016 DOI: 10.1152/ajprenal.00496.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The signaling pathways and effectors that drive the response of the bladder to nonmalignant insults or injury are incompletely defined. Interrogation of biological systems has been revolutionized by the ability to generate high-content data sets that capture information on a variety of biomolecules in cells and tissues, from DNA to RNA to proteins. In oncology, such an approach has led to the identification of cancer subtypes, improved prognostic capability, and has provided a basis for precision treatment of patients. In contrast, systematic molecular characterization of benign bladder disorders has lagged behind, such that our ability to uncover novel therapeutic interventions or increase our mechanistic understanding of such conditions is limited. Here, we discuss existing literature on the application of omics approaches, including transcriptomics and proteomics, to urinary tract conditions characterized by pathological tissue remodeling. We discuss molecular pathways implicated in remodeling, challenges in the field, and aspirations for omics-based research in the future.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Alexander Bigger-Allen
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Biological and Biomedical Sciences PhD Program, Harvard Medical School, Boston, Massachusetts
| | - Amanda Wacker
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Florida State University, Tallahassee, Florida
| | - Rosalyn M Adam
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Zhou B, Wang Y, Yan Y, Mariscal J, Di Vizio D, Freeman MR, Yang W. Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non- S-Acylated Proteins and Enables Deep S-Acylproteomic Analysis. Anal Chem 2019; 91:9858-9866. [PMID: 31251020 PMCID: PMC7451198 DOI: 10.1021/acs.analchem.9b01520] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein S-acylation (also called palmitoylation) is a common post-translational modification whose deregulation plays a key role in the pathogenesis of many diseases. Acyl-biotinyl exchange (ABE), a widely used method for the enrichment of S-acylated proteins, has the potential of capturing the entire S-acylproteome in any type of biological sample. Here, we showed that current ABE methods suffer from a high background arising from the coisolation of non-S-acylated proteins. The background can be substantially reduced by an additional blockage of residual free cysteine residues with 2,2'-dithiodipyridine prior to the biotin-HPDP reaction. Coupling the low-background ABE (LB-ABE) method with label-free proteomics, 2 895 high-confidence candidate S-acylated proteins (including 1 591 known S-acylated proteins) were identified from human prostate cancer LNCaP cells, representing so-far the largest S-acylproteome data set identified in a single study. Immunoblotting analysis confirmed the S-acylation of five known and five novel prostate cancer-related S-acylated proteins in LNCaP cells and suggested that their S-acylation levels were about 0.6-1.8%. In summary, the LB-ABE method largely eliminates the coisolation of non-S-acylated proteins and enables deep S-acylproteomic analysis. It is expected to facilitate a much more comprehensive and accurate quantification of S-acylproteomes than previous ABE methods.
Collapse
Affiliation(s)
- Bo Zhou
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Yang Wang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Yiwu Yan
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Javier Mariscal
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael R. Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Scarpa ES, Emanuelli M, Frati A, Pozzi V, Antonini E, Diamantini G, Di Ruscio G, Sartini D, Armeni T, Palma F, Ninfali P. Betacyanins enhance vitexin-2-O-xyloside mediated inhibition of proliferation of T24 bladder cancer cells. Food Funct 2018; 7:4772-4780. [PMID: 27812566 DOI: 10.1039/c6fo01130f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Betacyanins (BC) were purified from beetroot (Beta vulgaris var. rubra L.) and tested, alone or in combination with vitexin-2-O-xyloside (XVX) from Beta vulgaris var. cicla L., for their ability to reduce the proliferation rate in T24 bladder cancer cells. Combination of BC and XVX exhibited a synergistic effect concerning the inhibition of proliferation in T24 cancer cells at 24 and 48 h but not after 72 h of incubation. The induction of apoptosis was evidenced by means of fluorescence activated cell sorting (FACS) analysis, as well as through the increase in caspase 3 and 8 activities. Using RTqPCR experiments, it was shown that the combination of XVX + BC was able to enhance the expression levels of pro-apoptotic BAX and downregulate anti-apoptotic BIRC5 (survivin), as well as pro-survival CTNNB1 (β-catenin). The most evident effect of BC was the increase of the activity of caspase 8, leading to induction of extrinsic apoptosis. Moreover, XVX, BC and their combination showed no cytotoxic effect on normal human skin NCTC 2544 keratinocytes. These results demonstrated the efficacy and the mechanisms of the action of BC and XVX, extracted from edible plants, and suggested that a diet or a nutrition supplement, enriched with these bioactive molecules, could be used in the prevention of human bladder cancer.
Collapse
Affiliation(s)
- E S Scarpa
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| | - M Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy and New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - A Frati
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| | - V Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy and New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - E Antonini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| | - G Diamantini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| | - G Di Ruscio
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - D Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - T Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - F Palma
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| | - P Ninfali
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| |
Collapse
|
7
|
Reviewing Interstitial Cystitis Models and Treatments: A Focus on the Urothelium. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2017. [DOI: 10.5812/rijm.64551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Ninfali P, Antonini E, Frati A, Scarpa ES. C-Glycosyl Flavonoids from Beta vulgaris Cicla and Betalains from Beta vulgaris rubra: Antioxidant, Anticancer and Antiinflammatory Activities-A Review. Phytother Res 2017; 31:871-884. [PMID: 28464411 DOI: 10.1002/ptr.5819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/07/2022]
Abstract
The green beet (Beta vulgaris var. cicla L.) and red beetroot (B. vulgaris var. rubra L.) contain phytochemicals that have beneficial effects on human health. Specifically, the green beet contains apigenin, vitexin, vitexin-2-O-xyloside and vitexin-2-O-rhamnoside, while the red beetroot is a source of betaxanthins and betacyanins. These phytochemicals show considerable antioxidant activity, as well as antiinflammatory and antiproliferative activities. Vitexin-2-O-xyloside, in combination with betaxanthins and betacyanins, exerts antiproliferative activity in breast, liver, colon and bladder cancer cell lines, through the induction of both intrinsic and extrinsic apoptotic pathways. A significant body of evidence also points to the role of these phytochemicals in the downregulation of the pro-survival genes, baculoviral inhibitor of apoptosis repeat-containing 5 and catenin beta-1, as well as the genes controlling angiogenesis, hypoxia inducible factor 1A and vascular endothelial growth factor A. The multi-target action of these phytochemicals enhances their anticancer activity. Vitexin-2-O-xyloside, betaxanthins and betacyanins can be used in combination with conventional anticancer drugs to reduce their toxicity and overcome the multidrug resistance of cancer cells. In this review, we describe the molecular mechanisms that enable these dietary phytochemicals to block the proliferation of tumor cells and inhibit their pro-survival pathways. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Paolino Ninfali
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Elena Antonini
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Alessandra Frati
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Emanuele-Salvatore Scarpa
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| |
Collapse
|
9
|
Keay SK, Zhang CO. Abnormal Akt signalling in bladder epithelial cell explants from patients with interstitial cystitis/bladder pain syndrome can be induced by antiproliferative factor treatment of normal bladder cells. BJU Int 2016; 118:161-72. [PMID: 26919663 DOI: 10.1111/bju.13457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To determine whether protein kinase B (Akt) signalling and secretion of specific downstream effector proteins are abnormal in specific cell fractions of bladder epithelial cells from patients with interstitial cystitis/bladder pain syndrome (IC/BPS), as explanted bladder epithelial cells from patients with IC/BPS produce a frizzled 8-related glycopeptide antiproliferative factor (APF) that inhibits normal bladder epithelial cell proliferation and expression of several proteins known to be regulated by Akt signalling. A related secondary objective was to determine whether treatment of normal bladder epithelial cells with active synthetic asialo-antiproliferative factor (as-APF) induces similar changes in Akt signalling and specific downstream effector proteins/mRNAs. PATIENTS AND METHODS Cell proteins were extracted into four subcellular fractions from primary bladder epithelial explants of six patients who fulfilled modified National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) criteria for IC/BPS and six age- and gender-matched controls. Total and/or phosphorylated cellular Akt, glycogen synthase kinase 3β (GSK3β), and β-catenin; total cellular JunB; and secreted matrix metalloproteinase 2 (MMP2) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) levels were determined by Western blot. MMP2, JunB, p53, uroplakin 3 (UPK3), and β-actin mRNAs were quantified by quantitative reverse transcriptase-polymerase chain reaction. Akt activity was determined by nonradioactive assay. RESULTS IC/BPS cells had lower Akt activity, along with lower Akt ser473- and GSK3β ser9-phosphorylation and higher β-catenin ser33,37/thr41-phosphorylation in specific fractions as compared with matched control cells. IC/BPS explants also had evidence of additional downstream abnormalities compared with control cells, including lower nuclear JunB; lower secreted MMP2 and HB-EGF; plus lower MMP2, JunB, and UPK3 mRNAs but higher p53 mRNA relative to β-actin. Each of these IC/BPS cell abnormalities was also induced in normal cells by as-APF. CONCLUSION These findings indicate that IC/BPS cells have abnormal Akt activity with downstream protein expression abnormalities including decreased MMP2 and HB-EGF secretion. They also support the hypothesis that APF plays a role in the pathogenesis of IC/BPS via its effects on cell Akt signalling and HB-EGF production.
Collapse
Affiliation(s)
- Susan K Keay
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Veterans Affairs Medical Center, Medical Service, Baltimore, MD, USA
| | - Chen-Ou Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Chen Z, Kim J. Urinary proteomics and metabolomics studies to monitor bladder health and urological diseases. BMC Urol 2016; 16:11. [PMID: 27000794 PMCID: PMC4802825 DOI: 10.1186/s12894-016-0129-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
Background Assays of molecular biomarkers in urine are non-invasive compared to other body fluids and can be easily repeated. Based on the hypothesis that the secreted markers from the diseased organs may locally release into the body fluid in the vicinity of the injury, urine-based assays have been considered beneficial to monitoring bladder health and urological diseases. The urine proteome is much less complex than the serum and tissues, but nevertheless can contain biomarkers for diagnosis and prognosis of diseases. The urine metabolome has a much higher number and concentration of low-molecular metabolites than the serum or tissues, with a far lower lipid concentration, yet informs directly about dietary and microbial metabolism. Discussion We here discuss the use of mass spectrometry-based proteomics and metabolomics for urine biomarker assays, specifically with respect to the underlying mechanisms that trigger the pathological condition. Conclusion Molecular biomarker profiles, based on proteomics and metabolomics studies, reliably distinguish patients from healthy controls, stratify sub-populations with respect to treatment options, and predict therapeutic response of patients with urological disease.
Collapse
Affiliation(s)
- Zhaohui Chen
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria PJ, Cavallini L, Ciardiello C, Reis Sobreiro M, Morello M, Kharmate G, Jang SC, Kim DK, Hosseini-Beheshti E, Tomlinson Guns E, Gleave M, Gho YS, Mathivanan S, Yang W, Freeman MR, Di Vizio D. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 2016; 6:11327-41. [PMID: 25857301 PMCID: PMC4484459 DOI: 10.18632/oncotarget.3598] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/22/2015] [Indexed: 01/06/2023] Open
Abstract
Large oncosomes (LO) are atypically large (1-10μm diameter) cancer-derived extracellular vesicles (EVs), originating from the shedding of membrane blebs and associated with advanced disease. We report that 25% of the proteins, identified by a quantitative proteomics analysis, are differentially represented in large and nano-sized EVs from prostate cancer cells. Proteins enriched in large EVs included enzymes involved in glucose, glutamine and amino acid metabolism, all metabolic processes relevant to cancer. Glutamine metabolism was altered in cancer cells exposed to large EVs, an effect that was not observed upon treatment with exosomes. Large EVs exhibited discrete buoyant densities in iodixanol (OptiPrepTM) gradients. Fluorescent microscopy of large EVs revealed an appearance consistent with LO morphology, indicating that these structures can be categorized as LO. Among the proteins enriched in LO, cytokeratin 18 (CK18) was one of the most abundant (within the top 5th percentile) and was used to develop an assay to detect LO in the circulation and tissues of mice and patients with prostate cancer. These observations indicate that LO represent a discrete EV type that may play a distinct role in tumor progression and that may be a source of cancer-specific markers.
Collapse
Affiliation(s)
- Valentina R Minciacchi
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cristiana Spinelli
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samantha Morley
- The Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Mandana Zandian
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Lorenzo Cavallini
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Chiara Ciardiello
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Experimental Pharmacology Unit, Department of Research, IRCCS-Istituto Nazionale Tumori G. Pascale, Naples, Italy
| | - Mariana Reis Sobreiro
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matteo Morello
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geetanjali Kharmate
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Su Chul Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Elham Hosseini-Beheshti
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Emma Tomlinson Guns
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Marentette JO, Hurst RE, McHowat J. Impaired Expression of Prostaglandin E2 (PGE2) Synthesis and Degradation Enzymes during Differentiation of Immortalized Urothelial Cells from Patients with Interstitial Cystitis/Painful Bladder Syndrome. PLoS One 2015; 10:e0129466. [PMID: 26057882 PMCID: PMC4461170 DOI: 10.1371/journal.pone.0129466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Purpose The differentiated superficial cells of the urothelium restrict urine flow into the bladder wall. We have demonstrated that urothelial cells isolated from bladders of patients with interstitial cystitis/painful bladder syndrome (IC/PBS) fail to release PGE2 in response to tryptase. This study examines the expression of PGE2 synthesis and degradation enzymes in urothelial cells during differentiation. Materials and Methods We measured immunoprotein expression of cyclooxygenase-2 (COX-2), prostaglandin E2 synthase (PGES) and 15-hydroxyprostaglandin dehydrogenase (PGDH) in human urothelial cells and in immortalized urothelial cells isolated from the bladders of IC/PBS patients or normal subjects during stratification and differentiation produced by increased calcium and fetal bovine serum (Ca/FBS) in the culture medium for 1, 3 and 7 days. Results PGES immunoprotein expression increased during differentiation in normal and IC/PBS urothelial cells. COX-2 expression also increased in cells from normal patients following differentiation. Remarkably, no COX-2 expression was detectable in urothelial cells isolated from 3 out of 4 IC/PBS patients. PGDH immunoprotein expression decreased in normal cells after 1 and 3 days of Ca/FBS addition, but returned to normal after 7 days. PGDH expression was unchanged during differentiation at 1 and 3 days, but was more than 2-fold higher at 7 days compared to day 0 in the IC/PBS cells. Urothelial cells isolated from IC/PBS patients demonstrated no PGE2 release in response to tryptase under any of the experimental conditions studied. Conclusions Taken together, our results indicate that PGE2 release is compromised during stratification and differentiation in IC/PBS urothelium and may contribute to impaired barrier function.
Collapse
Affiliation(s)
- John O. Marentette
- Department of Pathology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, United States of America
| | - Robert E. Hurst
- Department of Urology, Oklahoma University Health Sciences Center, 940 S. L. Young Blvd., Oklahoma City, OK, 73104, United States of America
| | - Jane McHowat
- Department of Pathology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kuo HC. Potential urine and serum biomarkers for patients with bladder pain syndrome/interstitial cystitis. Int J Urol 2015; 21 Suppl 1:34-41. [PMID: 24807491 DOI: 10.1111/iju.12311] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/13/2013] [Indexed: 11/30/2022]
Abstract
There is a lack of consensus on the pathophysiology of bladder pain syndrome/interstitial cystitis. The chronic pain symptoms of bladder pain syndrome/interstitial cystitis refractory to local treatment could be a result of central nervous system sensitization and persisting abnormalities in the bladder wall, which activate the afferent sensory system. Evidence also shows that bladder pain syndrome/interstitial cystitis is a heterogeneous syndrome and that the two subtypes, the ulcerative (classic) and non-ulcerative types, represent different disease entities. There is a need for non-invasive markers for the differential diagnoses of the subtypes of bladder pain syndrome/interstitial cystitis, and between bladder pain syndrome/interstitial cystitis and bladder sensory disorders, such as hypersensitive bladder syndrome or overactive bladder. Bladder pain syndrome/interstitial cystitis, but not overactive bladder, involves an aberrant differentiation program in the bladder urothelium that leads to altered synthesis of several proteoglycans, cell adhesion and tight junction proteins, and bacterial defense molecules. These findings have led to the rationale for identifying urinary biomarkers to detect bladder pain syndrome/interstitial cystitis in patients with frequency urgency syndrome. Recently, the markers that have been the focus of the most research are antiproliferative factor, epidermal growth factor, heparin-binding epidermal growth factor, glycosaminoglycans and bladder nitric oxide. In addition, inflammatory proteins in the urine and serum play important roles in the pathogenesis of bladder pain syndrome/interstitial cystitis. The urinary proteome is an easily accessible source of biomarkers for differentiation between inflammatory bladder disorders. Analysis of multiple urinary proteins and serum cytokines could provide a diagnostic basis for bladder pain syndrome/interstitial cystitis, and could be a tool for the differential diagnosis of bladder pain syndrome/interstitial cystitis and other sensory bladder disorders.
Collapse
Affiliation(s)
- Hann-Chorng Kuo
- Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
14
|
Li LY, Zhang K, Jiang H, Xie YM, Liao LD, Chen B, Du ZP, Zhang PX, Chen H, Huang W, Jia W, Cao HH, Zheng W, Li EM, Xu LY. Quantitative proteomics reveals the downregulation of GRB2 as a prominent node of F806-targeted cell proliferation network. J Proteomics 2015; 117:145-55. [PMID: 25659534 DOI: 10.1016/j.jprot.2015.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 12/15/2014] [Accepted: 01/18/2015] [Indexed: 02/05/2023]
Abstract
UNLABELLED High-throughput proteomics has successfully identified thousands of proteins as potential therapeutic targets during investigations into mechanisms of drug action. A novel macrolide analog, denoted F806, is a potential antitumor drug. Here, using the quantitative proteomic approach of stable isotope labeling with amino acids in cell culture (SILAC) coupled to high-resolution mass spectrometry (MS), we characterize the F806-regulating protein profiles and identify the potential target molecules or pathways of F806 in esophageal squamous cell carcinoma (ESCC) cells. From a total of 1931 quantified proteins, 181 proteins were found to be down-regulated (FDR p-value<0.1, H/L ratio<0.738), and 119 proteins were up-regulated (FDR p-value<0.1, H/L ratio>1.156). Among the down-regulated proteins, we uncovered the over- and under-represented protein clusters in biological process and molecular function respectively by Gene Ontology analysis. Furthermore, down-regulated and up-regulated proteins were significantly enriched in 37 pathways and 60 sub-pathways by bioinformatic analysis (FDR p-value<0.1), while a down-regulated molecule growth factor receptor-bound protein 2 (GRB2) was a prominent node in fourteen cell proliferation-related sub-pathways. We concluded that GRB2 downregulation would be a potential target of F806 in ESCC cells. BIOLOGICAL SIGNIFICANCE This study used SILAC-based quantitative proteomics screen to systematically characterize molecular changes induced by a novel macrolide analog F806 in esophageal squamous cell carcinoma (ESCC) cells. Followed by bioinformatic analyses, signal pathway networks generated from the quantified proteins, would facilitate future investigation into the further mechanisms of F806 in ESCC cells. Notably, it provided information that growth factor receptor-bound protein 2 (GRB2) would be a prominent node in the F806-targeted cell proliferation network.
Collapse
Affiliation(s)
- Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Kai Zhang
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, PR China
| | - Hong Jiang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, PR China
| | - Yang-Min Xie
- Experimental Animal Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Bo Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Ze-Peng Du
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Pi-Xian Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Hong Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, PR China
| | - Wei Huang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, PR China
| | - Wei Jia
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, PR China
| | - Hui-Hui Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Wei Zheng
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, PR China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China.
| |
Collapse
|
15
|
Metabolomics insights into pathophysiological mechanisms of interstitial cystitis. Int Neurourol J 2014; 18:106-14. [PMID: 25279237 PMCID: PMC4180160 DOI: 10.5213/inj.2014.18.3.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/06/2014] [Indexed: 12/20/2022] Open
Abstract
Interstitial cystitis (IC), also known as painful bladder syndrome or bladder pain syndrome, is a chronic lower urinary tract syndrome characterized by pelvic pain, urinary urgency, and increased urinary frequency in the absence of bacterial infection or identifiable clinicopathology. IC can lead to long-term adverse effects on the patient's quality of life. Therefore, early diagnosis and better understanding of the mechanisms underlying IC are needed. Metabolomic studies of biofluids have become a powerful method for assessing disease mechanisms and biomarker discovery, which potentially address these important clinical needs. However, limited intensive metabolic profiles have been elucidated in IC. The article is a short review on metabolomic analyses that provide a unique fingerprint of IC with a focus on its use in determining a potential diagnostic biomarker associated with symptoms, a response predictor of therapy, and a prognostic marker.
Collapse
|
16
|
Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells. Cell Commun Signal 2014; 12:44. [PMID: 25080971 PMCID: PMC4422302 DOI: 10.1186/s12964-014-0044-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022] Open
Abstract
Background Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the proliferation, migration and synthetic activities of smooth muscle cells that characterize physiologic and pathologic tissue remodeling in hollow organs. However, neither the molecular basis of PDGFR-regulated signaling webs, nor the extent to which specific components within these networks could be exploited for therapeutic benefit has been fully elucidated. Results Expression profiling and quantitative proteomics analysis of PDGF-treated primary human bladder smooth muscle cells identified 1,695 genes and 241 proteins as differentially expressed versus non-treated cells. Analysis of gene expression data revealed MYC, JUN, EGR1, MYB, RUNX1, as the transcription factors most significantly networked with up-regulated genes. Forty targets were significantly altered at both the mRNA and protein levels. Proliferation, migration and angiogenesis were the biological processes most significantly associated with this signature, and MYC was the most highly networked master regulator. Alterations in master regulators and gene targets were validated in PDGF-stimulated smooth muscle cells in vitro and in a model of bladder injury in vivo. Pharmacologic inhibition of MYC and JUN confirmed their role in SMC proliferation and migration. Network analysis identified the diaphanous-related formin 3 as a novel PDGF target regulated by MYC and JUN, which was necessary for PDGF-stimulated lamellipodium formation. Conclusions These findings provide the first systems-level analysis of the PDGF-regulated transcriptome and proteome in normal smooth muscle cells. The analyses revealed an extensive cohort of PDGF-dependent biological processes and connected key transcriptional effectors to their regulation, significantly expanding current knowledge of PDGF-stimulated signaling cascades. These observations also implicate MYC as a novel target for pharmacological intervention in fibroproliferative expansion of smooth muscle, and potentially in cancers in which PDGFR-dependent signaling or MYC activation promote tumor progression.
Collapse
|
17
|
Evidence for bladder urothelial pathophysiology in functional bladder disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:865463. [PMID: 24900993 PMCID: PMC4034482 DOI: 10.1155/2014/865463] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/27/2014] [Indexed: 12/22/2022]
Abstract
Understanding of the role of urothelium in regulating bladder function is continuing to evolve. While the urothelium is thought to function primarily as a barrier for preventing injurious substances and microorganisms from gaining access to bladder stroma and upper urinary tract, studies indicate it may also function in cell signaling events relating to voiding function. This review highlights urothelial abnormalities in bladder pain syndrome/interstitial cystitis (BPS/IC), feline interstitial cystitis (FIC), and nonneurogenic idiopathic overactive bladder (OAB). These bladder conditions are typified by lower urinary tract symptoms including urinary frequency, urgency, urgency incontinence, nocturia, and bladder discomfort or pain. Urothelial tissues and cells from affected clinical subjects and asymptomatic controls have been compared for expression of proteins and mRNA. Animal models have also been used to probe urothelial responses to injuries of the urothelium, urethra, or central nervous system, and transgenic techniques are being used to test specific urothelial abnormalities on bladder function. BPS/IC, FIC, and OAB appear to share some common pathophysiology including increased purinergic, TRPV1, and muscarinic signaling, increased urothelial permeability, and aberrant urothelial differentiation. One challenge is to determine which of several abnormally regulated signaling pathways is most important for mediating bladder dysfunction in these syndromes, with a goal of treating these conditions by targeting specific pathophysiology.
Collapse
|
18
|
'Omics' approaches to understanding interstitial cystitis/painful bladder syndrome/bladder pain syndrome. Int Neurourol J 2012; 16:159-68. [PMID: 23346481 PMCID: PMC3547176 DOI: 10.5213/inj.2012.16.4.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/08/2022] Open
Abstract
Recent efforts in the generation of large genomics, transcriptomics, proteomics, metabolomics and other types of 'omics' data sets have provided an unprecedentedly detailed view of certain diseases, however to date most of this literature has been focused on malignancy and other lethal pathological conditions. Very little intensive work on global profiles has been performed to understand the molecular mechanism of interstitial cystitis/painful bladder syndrome/bladder pain syndrome (IC/PBS/BPS), a chronic lower urinary tract disorder characterized by pelvic pain, urinary urgency and frequency, which can lead to long lasting adverse effects on quality of life. A lack of understanding of molecular mechanism has been a challenge and dilemma for diagnosis and treatment, and has also led to a delay in basic and translational research focused on biomarker and drug discovery, clinical therapy, and preventive strategies against IC/PBS/BPS. This review describes the current state of 'omics' studies and available data sets relevant to IC/PBS/BPS, and presents opportunities for new research directed at understanding the pathogenesis of this complex condition.
Collapse
|
19
|
Kim J, Keay SK, You S, Loda M, Freeman MR. A synthetic form of frizzled 8-associated antiproliferative factor enhances p53 stability through USP2a and MDM2. PLoS One 2012; 7:e50392. [PMID: 23236372 PMCID: PMC3516501 DOI: 10.1371/journal.pone.0050392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 10/23/2012] [Indexed: 01/22/2023] Open
Abstract
Frizzled 8-associated Antiproliferative Factor (APF) is a sialoglycopeptide urinary biomarker of interstitial cystitis/painful bladder syndrome (IC/PBS), a chronic condition of unknown etiology with variable symptoms that generally include pelvic and/or perineal pain, urinary frequency, and urgency. We previously reported that native human APF suppresses the proliferation of normal bladder epithelial cells through a mechanism that involves increased levels of p53. The goal of this study was to delineate the regulatory mechanism whereby p53 expression is regulated by APF. Two APF-responsive cell lines (T24 bladder carcinoma cells and the immortalized human bladder epithelial cell line, TRT-HU1) were treated with asialo-APF (as-APF), a chemically synthesized form of APF. Biochemical analysis revealed that as-APF increased p53 levels in two ways: by decreasing ubiquitin specific protease 2a (USP2a) expression leading to enhanced ubiquitination of murine double minute 2 E3 ubiquitin ligase (MDM2), and by suppressing association of p53 with MDM2, thus impairing p53 ubiquitination. Biological responses to as-APF were suppressed by increased expression of wild type, but not mutant USP2a, which enhanced cell growth via upregulation of a cell cycle mediator, cyclin D1, at both transcription and protein levels. Consistent with this, gene silencing of USP2a with siRNA arrested cell proliferation. Our findings suggest that APF upregulates cellular p53 levels via functional attenuation of the USP2a-MDM2 pathway, resulting in p53 accumulation and growth arrest. These data also imply that targeting USP2a, MDM2, p53 and/or complex formation by these molecules may be relevant in the development of novel therapeutic approaches to IC/PBS.
Collapse
Affiliation(s)
- Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
20
|
Yang W, Kim Y, Kim TK, Keay SK, Kim KP, Steen H, Freeman MR, Hwang D, Kim J. Integration analysis of quantitative proteomics and transcriptomics data identifies potential targets of frizzled-8 protein-related antiproliferative factor in vivo. BJU Int 2012; 110:E1138-46. [PMID: 22738385 DOI: 10.1111/j.1464-410x.2012.11299.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED What's known on the subject? and What does the study add? Interstitial cystitis (IC) is a prevalent and debilitating pelvic disorder generally accompanied by chronic pain combined with chronic urinating problems. Over one million Americans are affected, especially middle-aged women. However, its aetiology or mechanism remains unclear. No efficient drug has been provided to patients. Several urinary biomarker candidates have been identified for IC; among the most promising is antiproliferative factor (APF), whose biological activity is detectable in urine specimens from >94% of patients with both ulcerative and non-ulcerative IC. The present study identified several important mediators of the effect of APF on bladder cell physiology, suggesting several candidate drug targets against IC. In an attempt to identify potential proteins and genes regulated by APF in vivo, and to possibly expand the APF-regulated network identified by stable isotope labelling by amino acids in cell culture (SILAC), we performed an integration analysis of our own SILAC data and the microarray data of Gamper et al. (2009) BMC Genomics 10: 199. Notably, two of the proteins (i.e. MAPKSP1 and GSPT1) that are down-regulated by APF are involved in the activation of mTORC1, suggesting that the mammalian target of rapamycin (mTOR) pathway is potentially a critical pathway regulated by APF in vivo. Several components of the mTOR pathway are currently being studied as potential therapeutic targets in other diseases. Our analysis suggests that this pathway might also be relevant in the design of diagnostic tools and medications targeting IC. OBJECTIVE • To enhance our understanding of the interstitial cystitis urine biomarker antiproliferative factor (APF), as well as interstitial cystitis biology more generally at the systems level, we reanalyzed recently published large-scale quantitative proteomics and in vivo transcriptomics data sets using an integration analysis tool that we have developed. MATERIALS AND METHODS • To identify more differentially expressed genes with a lower false discovery rate from a previously published microarray data set, an integrative hypothesis-testing statistical approach was applied. • For validation experiments, expression and phosphorylation levels of select proteins were evaluated by western blotting. RESULTS • Integration analysis of this transcriptomics data set with our own quantitative proteomics data set identified 10 genes that are potentially regulated by APF in vivo from 4140 differentially expressed genes identified with a false discovery rate of 1%. • Of these, five (i.e. JUP, MAPKSP1, GSPT1, PTGS2/COX-2 and XPOT) were found to be prominent after network modelling of the common genes identified in the proteomics and microarray studies. • This molecular signature reflects the biological processes of cell adhesion, cell proliferation and inflammation, which is consistent with the known physiological effects of APF. • Lastly, we found the mammalian target of rapamycin pathway was down-regulated in response to APF. CONCLUSION • This unbiased integration analysis of in vitro quantitative proteomics data with in vivo quantitative transcriptomics data led to the identification of potential downstream mediators of the APF signal transduction pathway.
Collapse
Affiliation(s)
- Wei Yang
- The Urological Diseases Research Center, Children's Hospital Boston, Boston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Matika CA, Wasilewski M, Arnott JA, Planey SL. Antiproliferative factor regulates connective tissue growth factor (CTGF/CCN2) expression in T24 bladder carcinoma cells. Mol Biol Cell 2012; 23:1976-85. [PMID: 22438586 PMCID: PMC3350560 DOI: 10.1091/mbc.e11-08-0714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Connective tissue growth factor (CTGF/CNN2) is a novel APF target gene. A novel mechanism is described by which the APF cellular receptor, cytoskeleton-associated protein 4 (CKAP4), mediates APF-induced CTGF transcription. Antiproliferative factor (APF) is a sialoglycopeptide elevated in the urine of patients with interstitial cystitis (IC)—a chronic, painful bladder disease of unknown etiology. APF inhibits the proliferation of normal bladder epithelial and T24 bladder carcinoma cells in vitro by binding to cytoskeleton-associated protein 4 (CKAP4) and altering the transcription of genes involved in proliferation, cellular adhesion, and tumorigenesis; however, specific molecular mechanisms and effector genes that control APF's antiproliferative effects are unknown. In this study, we found that there was a 7.5-fold up-regulation of connective tissue growth factor (CTGF/CCN2) expression in T24 bladder carcinoma cells treated with APF. Western blot revealed a dose-dependent increase in CCN2 protein levels, with secretion into the culture medium after APF treatment. CCN2 overexpression enhanced APF's antiproliferative activity, whereas CCN2 knockdown diminished APF-induced p53 expression. Using a luciferase reporter construct, we found that APF treatment resulted in fivefold activation of the CCN2 proximal promoter and, of importance, that small interfering RNA–mediated knockdown of CKAP4 inhibited CCN2 upregulation. In addition, we demonstrate that CKAP4 translocates to the nucleus and binds to the CCN2 proximal promoter in an APF-dependent manner, providing evidence that CCN2 regulation by APF involves CKAP4 nuclear translocation and binding to the CCN2 promoter.
Collapse
Affiliation(s)
- Christina A Matika
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18509, USA
| | | | | | | |
Collapse
|
22
|
Kim J, Kim WJ, Liu Z, Loda M, Freeman MR. The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer. Cell Cycle 2012; 11:1123-30. [PMID: 22370483 DOI: 10.4161/cc.11.6.19550] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The deubiquitinating enzyme USP2a has shown oncogenic properties in many cancer types by impairing ubiquitination of FASN, MDM2, MDMX or Aurora A. Aberrant expression of USP2a has been linked to progression of human tumors, particularly prostate cancer. However, little is known about the role of USP2a or its mechanism of action in bladder cancer. Here, we provide evidence that USP2a is an oncoprotein in bladder cancer cells. Enforced expression of USP2a caused enhanced proliferation, invasion, migration and resistance to several chemotherapeutic reagents, while USP2a loss resulted in slower proliferation, greater chemosensitivity and reduced migratory/invasive capability compared with control cells. USP2a, but not a catalytically inactive mutant, enhanced proliferation in immortalized TRT-HU1 normal human bladder epithelial cells. USP2a bound to cyclin A1 and prevented cyclin A1 ubiquitination, leading to accumulation of cyclin A1 by a block in degradation. Enforced expression of wild type USP2a, but not an inactive USP2a mutant, resulted in cyclin A1 accumulation and increased cell proliferation. We conclude that USP2a impairs ubiquitination and stabilizes an important cell cycle regulator, cyclin A1, raising the possibility of USP2a targeting as a therapeutic strategy against bladder tumors in combination with chemotherapy.
Collapse
Affiliation(s)
- Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
23
|
Chai TC. Coining a new term-Urovesicology: advancing towards a mechanistic understanding of bladder symptoms. Transl Androl Urol 2012; 1:50-7. [PMID: 26816687 PMCID: PMC4713223 DOI: 10.3978/j.issn.2223-4683.2011.12.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Toby C Chai
- University of Maryland School of Medicine, Division of Urology, 29 S. Greene St., Suite 500, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Antiproliferative factor signaling and interstitial cystitis/painful bladder syndrome. Int Neurourol J 2011; 15:184-91. [PMID: 22259731 PMCID: PMC3256302 DOI: 10.5213/inj.2011.15.4.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022] Open
Abstract
A unique glycopeptide, antiproliferative factor (APF), has been suggested as a urinary biomarker and potential mediator of long-term bladder disorder Interstitial Cystitis/Painful Bladder Syndrome. There is no known cause for this disease. Several mechanistic approaches have been employed to address the underlying mechanism whereby APF regulates cellular responses in the bladder epithelium. A summary of recent literature is provided, and is focused on signal transduction pathways and networks that are responsive to APF.
Collapse
|