1
|
Braxton JR, Altobelli CR, Tucker MR, Tse E, Thwin AC, Arkin MR, Southworth DR. The p97/VCP adaptor UBXD1 drives AAA+ remodeling and ring opening through multi-domain tethered interactions. Nat Struct Mol Biol 2023; 30:2009-2019. [PMID: 37945741 PMCID: PMC10716044 DOI: 10.1038/s41594-023-01126-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
p97, also known as valosin-containing protein, is an essential cytosolic AAA+ (ATPases associated with diverse cellular activities) hexamer that unfolds substrate polypeptides to support protein homeostasis and macromolecular disassembly. Distinct sets of p97 adaptors guide cellular functions but their roles in direct control of the hexamer are unclear. The UBXD1 adaptor localizes with p97 in critical mitochondria and lysosome clearance pathways and contains multiple p97-interacting domains. Here we identify UBXD1 as a potent p97 ATPase inhibitor and report structures of intact human p97-UBXD1 complexes that reveal extensive UBXD1 contacts across p97 and an asymmetric remodeling of the hexamer. Conserved VIM, UBX and PUB domains tether adjacent protomers while a connecting strand forms an N-terminal domain lariat with a helix wedged at the interprotomer interface. An additional VIM-connecting helix binds along the second (D2) AAA+ domain. Together, these contacts split the hexamer into a ring-open conformation. Structures, mutagenesis and comparisons to other adaptors further reveal how adaptors containing conserved p97-remodeling motifs regulate p97 ATPase activity and structure.
Collapse
Affiliation(s)
- Julian R Braxton
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chad R Altobelli
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA
| | - Maxwell R Tucker
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Graduate Program in Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Aye C Thwin
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Braxton JR, Southworth DR. Structural insights of the p97/VCP AAA+ ATPase: How adapter interactions coordinate diverse cellular functionality. J Biol Chem 2023; 299:105182. [PMID: 37611827 PMCID: PMC10641518 DOI: 10.1016/j.jbc.2023.105182] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
p97/valosin-containing protein is an essential eukaryotic AAA+ ATPase with diverse functions including protein homeostasis, membrane remodeling, and chromatin regulation. Dysregulation of p97 function causes severe neurodegenerative disease and is associated with cancer, making this protein a significant therapeutic target. p97 extracts polypeptide substrates from macromolecular assemblies by hydrolysis-driven translocation through its central pore. Growing evidence indicates that this activity is highly coordinated by "adapter" partner proteins, of which more than 30 have been identified and are commonly described to facilitate translocation through substrate recruitment or modification. In so doing, these adapters enable critical p97-dependent functions such as extraction of misfolded proteins from the endoplasmic reticulum or mitochondria, and are likely the reason for the extreme functional diversity of p97 relative to other AAA+ translocases. Here, we review the known functions of adapter proteins and highlight recent structural and biochemical advances that have begun to reveal the diverse molecular bases for adapter-mediated regulation of p97 function. These studies suggest that the range of mechanisms by which p97 activity is controlled is vastly underexplored with significant advances possible for understanding p97 regulation by the most known adapters.
Collapse
Affiliation(s)
- Julian R Braxton
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
3
|
Fang H, Liu Y, Yang Q, Han S, Zhang H. Prognostic Biomarkers Based on Proteomic Technology in COPD: A Recent Review. Int J Chron Obstruct Pulmon Dis 2023; 18:1353-1365. [PMID: 37408604 PMCID: PMC10319291 DOI: 10.2147/copd.s410387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common heterogeneous respiratory disease which is characterized by persistent and incompletely reversible airflow limitation. Due to the heterogeneity and phenotypic complexity of COPD, traditional diagnostic methods provide limited information and pose a great challenge to clinical management. In recent years, with the development of omics technologies, proteomics, metabolomics, transcriptomics, etc., have been widely used in the study of COPD, providing great help to discover new biomarkers and elucidate the complex mechanisms of COPD. In this review, we summarize the prognostic biomarkers of COPD based on proteomic studies in recent years and evaluate their association with COPD prognosis. Finally, we present the prospects and challenges of COPD prognostic-related studies. This review is expected to provide cutting-edge evidence in prognostic evaluation of clinical patients with COPD and to inform future proteomic studies on prognostic biomarkers of COPD.
Collapse
Affiliation(s)
- Hanyu Fang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ying Liu
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Qiwen Yang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Siyu Han
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hongchun Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
4
|
Blueggel M, Kroening A, Kracht M, van den Boom J, Dabisch M, Goehring A, Kaschani F, Kaiser M, Bayer P, Meyer H, Beuck C. The UBX domain in UBXD1 organizes ubiquitin binding at the C-terminus of the VCP/p97 AAA-ATPase. Nat Commun 2023; 14:3258. [PMID: 37277335 DOI: 10.1038/s41467-023-38604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.
Collapse
Affiliation(s)
- Mike Blueggel
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Kroening
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Kracht
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Dabisch
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Goehring
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Braxton JR, Altobelli CR, Tucker MR, Tse E, Thwin AC, Arkin MR, Southworth DR. The p97/VCP adapter UBXD1 drives AAA+ remodeling and ring opening through multi-domain tethered interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540864. [PMID: 37292947 PMCID: PMC10245715 DOI: 10.1101/2023.05.15.540864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
p97/VCP is an essential cytosolic AAA+ ATPase hexamer that extracts and unfolds substrate polypeptides during protein homeostasis and degradation. Distinct sets of p97 adapters guide cellular functions but their roles in direct control of the hexamer are unclear. The UBXD1 adapter localizes with p97 in critical mitochondria and lysosome clearance pathways and contains multiple p97-interacting domains. We identify UBXD1 as a potent p97 ATPase inhibitor and report structures of intact p97:UBXD1 complexes that reveal extensive UBXD1 contacts across p97 and an asymmetric remodeling of the hexamer. Conserved VIM, UBX, and PUB domains tether adjacent protomers while a connecting strand forms an N-terminal domain lariat with a helix wedged at the interprotomer interface. An additional VIM-connecting helix binds along the second AAA+ domain. Together these contacts split the hexamer into a ring-open conformation. Structures, mutagenesis, and comparisons to other adapters further reveal how adapters containing conserved p97-remodeling motifs regulate p97 ATPase activity and structure.
Collapse
Affiliation(s)
- Julian R. Braxton
- Graduate Program in Chemistry and Chemical Biology; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Chad R. Altobelli
- Graduate Program in Chemistry and Chemical Biology; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Maxwell R. Tucker
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Graduate Program in Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Aye C. Thwin
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| |
Collapse
|
6
|
St Paul A, Corbett C, Peluzzo A, Kelemen S, Okune R, Haines DS, Preston K, Eguchi S, Autieri MV. FXR1 regulates vascular smooth muscle cell cytoskeleton, VSMC contractility, and blood pressure by multiple mechanisms. Cell Rep 2023; 42:112381. [PMID: 37043351 PMCID: PMC10564969 DOI: 10.1016/j.celrep.2023.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Appropriate cytoskeletal organization is essential for vascular smooth muscle cell (VSMC) conditions such as hypertension. This study identifies FXR1 as a key protein linking cytoskeletal dynamics with mRNA stability. RNA immunoprecipitation sequencing (RIP-seq) in human VSMCs identifies that FXR1 binds to mRNA associated with cytoskeletal dynamics, and FXR1 depletion decreases their mRNA stability. FXR1 binds and regulates actin polymerization. Mass spectrometry identifies that FXR1 interacts with cytoskeletal proteins, particularly Arp2, a protein crucial for VSMC contraction, and CYFIP1, a WASP family verprolin-homologous protein (WAVE) regulatory complex (WRC) protein that links mRNA processing with actin polymerization. Depletion of FXR1 decreases the cytoskeletal processes of adhesion, migration, contraction, and GTPase activation. Using telemetry, conditional FXR1SMC/SMC mice have decreased blood pressure and an abundance of cytoskeletal-associated transcripts. This indicates that FXR1 is a muscle-enhanced WRC modulatory protein that regulates VSMC cytoskeletal dynamics by regulation of cytoskeletal mRNA stability and actin polymerization and cytoskeletal protein-protein interactions, which can regulate blood pressure.
Collapse
Affiliation(s)
- Amanda St Paul
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Cali Corbett
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Amanda Peluzzo
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sheri Kelemen
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rachael Okune
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dale S Haines
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kyle Preston
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
7
|
Miller MH, Swaby LG, Vailoces VS, LaFratta M, Zhang Y, Zhu X, Hitchcock DJ, Jewett TJ, Zhang B, Tigno-Aranjuez JT. LMAN1 is a receptor for house dust mite allergens. Cell Rep 2023; 42:112208. [PMID: 36870056 PMCID: PMC10105285 DOI: 10.1016/j.celrep.2023.112208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/01/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Development of therapies with the potential to change the allergic asthmatic disease course will require the discovery of targets that play a central role during the initiation of an allergic response, such as those involved in the process of allergen recognition. We use a receptor glycocapture technique to screen for house dust mite (HDM) receptors and identify LMAN1 as a candidate. We verify the ability of LMAN1 to directly bind HDM allergens and demonstrate that LMAN1 is expressed on the surface of dendritic cells (DCs) and airway epithelial cells (AECs) in vivo. Overexpression of LMAN1 downregulates NF-κB signaling in response to inflammatory cytokines or HDM. HDM promotes binding of LMAN1 to the FcRγ and recruitment of SHP1. Last, peripheral DCs of asthmatic individuals show a significant reduction in the expression of LMAN1 compared with healthy controls. These findings have potential implications for the development of therapeutic interventions for atopic disease.
Collapse
Affiliation(s)
- Madelyn H Miller
- Biotechnology and Immunology Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Lindsay G Swaby
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vanessa S Vailoces
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Maggie LaFratta
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yuan Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Xiang Zhu
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Dorilyn J Hitchcock
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Travis J Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Justine T Tigno-Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
8
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Prophet SM, Naughton BS, Schlieker C. p97/UBXD1 Generate Ubiquitylated Proteins That Are Sequestered into Nuclear Envelope Herniations in Torsin-Deficient Cells. Int J Mol Sci 2022; 23:4627. [PMID: 35563018 PMCID: PMC9100061 DOI: 10.3390/ijms23094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.
Collapse
Affiliation(s)
- Sarah M. Prophet
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
| | - Brigitte S. Naughton
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Ketkar H, Harrison AG, Graziano VR, Geng T, Yang L, Vella AT, Wang P. UBX Domain Protein 6 Positively Regulates JAK-STAT1/2 Signaling. THE JOURNAL OF IMMUNOLOGY 2021; 206:2682-2691. [PMID: 34021047 DOI: 10.4049/jimmunol.1901337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/24/2021] [Indexed: 01/03/2023]
Abstract
Type I/III IFNs induce expression of hundreds of IFN-stimulated genes through the JAK/STAT pathway to combat viral infections. Although JAK/STAT signaling is seemingly straightforward, it is nevertheless subjected to complex cellular regulation. In this study, we show that an ubiquitination regulatory X (UBX) domain-containing protein, UBXN6, positively regulates JAK-STAT1/2 signaling. Overexpression of UBXN6 enhanced type I/III IFNs-induced expression of IFN-stimulated genes, whereas deletion of UBXN6 inhibited their expression. RNA viral replication was increased in human UBXN6-deficient cells, accompanied by a reduction in both type I/III IFN expression, when compared with UBXN6-sufficient cells. Mechanistically, UBXN6 interacted with tyrosine kinase 2 (TYK2) and inhibited IFN-β-induced degradation of both TYK2 and type I IFNR. These results suggest that UBXN6 maintains normal JAK-STAT1/2 signaling by stabilizing key signaling components during viral infection.
Collapse
Affiliation(s)
- Harshada Ketkar
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT.,Department of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY; and
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Vincent R Graziano
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT; .,Department of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY; and
| |
Collapse
|
11
|
Wu X, Spence JS, Das T, Yuan X, Chen C, Zhang Y, Li Y, Sun Y, Chandran K, Hang HC, Peng T. Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/p97 ATPase. Cell Chem Biol 2020; 27:571-585.e6. [PMID: 32243810 PMCID: PMC7194980 DOI: 10.1016/j.chembiol.2020.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a key interferon effector that broadly prevents infection by diverse viruses. However, the cellular factors that control IFITM3 homeostasis and antiviral activity have not been fully elucidated. Using site-specific photo-crosslinking and quantitative proteomic analysis, here we present the identification and functional characterization of VCP/p97 AAA-ATPase as a primary interaction partner of IFITM3. We show that IFITM3 ubiquitination at lysine 24 is crucial for VCP binding, trafficking, turnover, and engagement with incoming virus particles. Consistently, pharmacological inhibition of VCP/p97 ATPase activity leads to defective IFITM3 lysosomal sorting, turnover, and co-trafficking with virus particles. Our results showcase the utility of site-specific protein photo-crosslinking in mammalian cells and reveal VCP/p97 as a key cellular factor involved in IFITM3 trafficking and homeostasis. Photo-crosslinking proteomics identify VCP/p97 as an IFITM3-interacting protein Ubiquitination of IFITM3 is crucial for interaction with VCP Lysine 24 ubiquitination regulates IFITM3 trafficking and turnover Depletion or inhibition of VCP leads to delayed turnover and accumulation of IFITM3
Collapse
Affiliation(s)
- Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Xiaoqiu Yuan
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yumeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
12
|
Hedl TJ, San Gil R, Cheng F, Rayner SL, Davidson JM, De Luca A, Villalva MD, Ecroyd H, Walker AK, Lee A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front Neurosci 2019; 13:548. [PMID: 31244593 PMCID: PMC6579929 DOI: 10.3389/fnins.2019.00548] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases. Proteomics methods are being increasingly applied to better understand disease-related mechanisms and to identify biomarkers of disease, using model systems as well as human samples. Proteomics-based approaches offer unbiased, high-throughput, and quantitative results with numerous applications for investigating proteins of interest. Here, we review recent advances in the understanding of ALS and FTD pathophysiology obtained using proteomics approaches, and we assess technical and experimental limitations. We compare findings from various mass spectrometry (MS) approaches including quantitative proteomics methods such as stable isotope labeling by amino acids in cell culture (SILAC) and tandem mass tagging (TMT) to approaches such as label-free quantitation (LFQ) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) in studies of ALS and FTD. Similarly, we describe disease-related protein-protein interaction (PPI) studies using approaches including immunoprecipitation mass spectrometry (IP-MS) and proximity-dependent biotin identification (BioID) and discuss future application of new techniques including proximity-dependent ascorbic acid peroxidase labeling (APEX), and biotinylation by antibody recognition (BAR). Furthermore, we explore the use of MS to detect post-translational modifications (PTMs), such as ubiquitination and phosphorylation, of disease-relevant proteins in ALS and FTD. We also discuss upstream technologies that enable enrichment of proteins of interest, highlighting the contributions of new techniques to isolate disease-relevant protein inclusions including flow cytometric analysis of inclusions and trafficking (FloIT). These recently developed approaches, as well as related advances yet to be applied to studies of these neurodegenerative diseases, offer numerous opportunities for discovery of potential therapeutic targets and biomarkers for ALS and FTD.
Collapse
Affiliation(s)
- Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
13
|
Dejgaard SY, Presley JF. Rab18: new insights into the function of an essential protein. Cell Mol Life Sci 2019; 76:1935-1945. [PMID: 30830238 PMCID: PMC11105521 DOI: 10.1007/s00018-019-03050-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Rab18 is one of the small number of conserved Rab proteins which have been traced to the last eukaryotic common ancestor. It is found in organisms ranging from humans to trypanosomes, and localizes to multiple organelles, including most notably endoplasmic reticulum and lipid droplets. In humans, absence of Rab18 leads to a severe illness known as Warburg-Micro syndrome. Despite this evidence that Rab18 is essential, its role in cells remains mysterious. However, recent studies identifying effectors and interactors of Rab18, are now shedding light on its mechanism of action, suggesting functions related to organelle tethering and to autophagy. In this review, we examine the variety of roles proposed for Rab18 with a focus on new evidence giving insights into the molecular mechanisms it utilizes. Based on this summary of our current understanding, we identify priority areas for further research.
Collapse
Affiliation(s)
- Selma Yilmaz Dejgaard
- Department of Medical Biology, Near East University, Nicosia, Cyprus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
14
|
Mojumder S, Sawamura R, Murayama Y, Ogura T, Yamanaka K. Functional characterization of UBXN-6, a C-terminal cofactor of CDC-48, in C. elegans. Biochem Biophys Res Commun 2019; 509:462-468. [PMID: 30595383 DOI: 10.1016/j.bbrc.2018.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022]
Abstract
CDC-48 is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities. Its functional diversity is determined by differential binding of a variety of cofactors. In this study, we analyzed the physiological role of a CDC-48 cofactor UBXN-6 in Caenorhabditis elegans. The amount of UBXN-6 was markedly increased upon starvation, but not with the treatment of tunicamycin and rapamycin. The induction upon starvation is a unique characteristic for UBXN-6 among C-terminal cofactors of CDC-48. During starvation, lysosomal activity is triggered for rapid clearance of cellular materials. We observed the lysosomal activity by monitoring GLO-1::GFP, a marker for lysosome-related organelles. We found that more puncta of GLO-1::GFP were observed in the ubxn-6 deletion mutant after 12 h starvation compared with the wild-type strain. Taken together, we propose that UBXN-6 is involved in clearance of cellular materials upon starvation in C. elegans.
Collapse
Affiliation(s)
- Suman Mojumder
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Rie Sawamura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Yuki Murayama
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
15
|
Jo S, Fonseca TL, Bocco BMLC, Fernandes GW, McAninch EA, Bolin AP, Da Conceição RR, Werneck-de-Castro JP, Ignacio DL, Egri P, Németh D, Fekete C, Bernardi MM, Leitch VD, Mannan NS, Curry KF, Butterfield NC, Bassett JD, Williams GR, Gereben B, Ribeiro MO, Bianco AC. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J Clin Invest 2019; 129:230-245. [PMID: 30352046 PMCID: PMC6307951 DOI: 10.1172/jci123176] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022] Open
Abstract
Levothyroxine (LT4) is a form of thyroid hormone used to treat hypothyroidism. In the brain, T4 is converted to the active form T3 by type 2 deiodinase (D2). Thus, it is intriguing that carriers of the Thr92Ala polymorphism in the D2 gene (DIO2) exhibit clinical improvement when liothyronine (LT3) is added to LT4 therapy. Here, we report that D2 is a cargo protein in ER Golgi intermediary compartment (ERGIC) vesicles, recycling between ER and Golgi. The Thr92-to-Ala substitution (Ala92-D2) caused ER stress and activated the unfolded protein response (UPR). Ala92-D2 accumulated in the trans-Golgi and generated less T3, which was restored by eliminating ER stress with the chemical chaperone 4-phenyl butyric acid (4-PBA). An Ala92-Dio2 polymorphism-carrying mouse exhibited UPR and hypothyroidism in distinct brain areas. The mouse refrained from physical activity, slept more, and required additional time to memorize objects. Enhancing T3 signaling in the brain with LT3 improved cognition, whereas restoring proteostasis with 4-PBA eliminated the Ala92-Dio2 phenotype. In contrast, primary hypothyroidism intensified the Ala92-Dio2 phenotype, with only partial response to LT4 therapy. Disruption of cellular proteostasis and reduced Ala92-D2 activity may explain the failure of LT4 therapy in carriers of Thr92Ala-DIO2.
Collapse
Affiliation(s)
- Sungro Jo
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Tatiana L. Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Barbara M. L. C. Bocco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Gustavo W. Fernandes
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Elizabeth A. McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Anaysa P. Bolin
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, and
| | - Rodrigo R. Da Conceição
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - Daniele L. Ignacio
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Péter Egri
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dorottya Németh
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Maria Martha Bernardi
- Graduate Program of Environmental and Experimental Pathology, Graduate Program of Dentistry, Universidade Paulista, São Paulo, SP, Brazil
| | - Victoria D. Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Naila S. Mannan
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Katharine F. Curry
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Natalie C. Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O. Ribeiro
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
UBXD1 is a mitochondrial recruitment factor for p97/VCP and promotes mitophagy. Sci Rep 2018; 8:12415. [PMID: 30120381 PMCID: PMC6098094 DOI: 10.1038/s41598-018-30963-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Clearance of damaged mitochondria through mitophagy is critical for maintaining mitochondrial fidelity and the prevention of neurodegeneration. Here, we report on the UBX domain-containing, p97/VCP cofactor UBXD1/UBXN6/UBXDC2 and its role in mitophagy. Recognizing depolarized mitochondria via its C-terminal UBX domain, UBXD1 translocates to mitochondria in a Parkin-dependent manner. During Parkin-independent mitophagy, UBXD1 shows no mitochondrial translocation. Once translocated, UBXD1 recruits p97 to mitochondria via a bipartite binding motif consisting of its N-terminal VIM and PUB domains. Recruitment of p97 by UBXD1 only depends on the presence of UBXD1 on mitochondria without the need for further mitochondrial signals. Following translocation of UBXD1 to CCCP-depolarized mitochondria and p97 recruitment, formation of LC3-positive autolysosomes is strongly enhanced and autophagic degradation of mitochondria is significantly accelerated. Diminished levels of UBXD1 negatively impact mitophagic flux in Parkin-expressing cells after CCCP treatment. Thus, our data supports a model, whereby the p97 cofactor UBXD1 promotes Parkin-dependent mitophagy by specifically recognizing damaged mitochondria undergoing autophagic clearance.
Collapse
|
17
|
Herman AB, Vrakas CN, Ray M, Kelemen SE, Sweredoski MJ, Moradian A, Haines DS, Autieri MV. FXR1 Is an IL-19-Responsive RNA-Binding Protein that Destabilizes Pro-inflammatory Transcripts in Vascular Smooth Muscle Cells. Cell Rep 2018; 24:1176-1189. [PMID: 30067974 PMCID: PMC11004729 DOI: 10.1016/j.celrep.2018.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/18/2018] [Accepted: 07/01/2018] [Indexed: 12/22/2022] Open
Abstract
This work identifies the fragile-X-related protein (FXR1) as a reciprocal regulator of HuR target transcripts in vascular smooth muscle cells (VSMCs). FXR1 was identified as an HuR-interacting protein by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The HuR-FXR1 interaction is abrogated in RNase-treated extracts, indicating that their association is tethered by mRNAs. FXR1 expression is induced in diseased but not normal arteries. siRNA knockdown of FXR1 increases the abundance and stability of inflammatory mRNAs, while overexpression of FXR1 reduces their abundance and stability. Conditioned media from FXR1 siRNA-treated VSMCs enhance activation of naive VSMCs. RNA EMSA and RIP demonstrate that FXR1 interacts with an ARE and an element in the 3' UTR of TNFα. FXR1 expression is increased in VSMCs challenged with the anti-inflammatory cytokine IL-19, and FXR1 is required for IL-19 reduction of HuR. This suggests that FXR1 is an anti-inflammation responsive, HuR counter-regulatory protein that reduces abundance of pro-inflammatory transcripts.
Collapse
Affiliation(s)
- Allison B Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Christine N Vrakas
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Sheri E Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
18
|
Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017; 4:39. [PMID: 28660197 PMCID: PMC5468458 DOI: 10.3389/fmolb.2017.00039] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to segregation of polypeptides from immobile cellular structures such as protein assemblies, membranes, ribosome, and chromatin. This often results in proteasomal degradation of extracted polypeptides. Given the diversity of p97 substrates, this "segregase" activity has profound influence on cellular physiology ranging from protein homeostasis to DNA lesion sensing, and mutations in p97 have been linked to several human diseases. Here we summarize our current understanding of the structure and function of this important cellular machinery and discuss the relevant clinical implications.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
19
|
Abstract
Macroautophagy is a conserved degradative pathway in which a double-membrane compartment sequesters cytoplasmic cargo and delivers the contents to lysosomes for degradation. Efficient formation and maturation of autophagic vesicles, so-called phagophores that are precursors to autophagosomes, and their subsequent trafficking to lysosomes relies on the activity of small RAB GTPases, which are essential factors of cellular vesicle transport systems. The activity of RAB GTPases is coordinated by upstream factors, which include guanine nucleotide exchange factors (RAB GEFs) and RAB GTPase activating proteins (RAB GAPs). A role in macroautophagy regulation for different TRE2-BUB2-CDC16 (TBC) domain-containing RAB GAPs has been established. Recently, however, a positive modulation of macroautophagy has also been demonstrated for the TBC domain-free RAB3GAP1/2, adding to the family of RAB GAPs that coordinate macroautophagy and additional cellular trafficking pathways.
Collapse
Affiliation(s)
- Andreas Kern
- a Institute for Pathobiochemistry; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| | - Ivan Dikic
- b Buchmann Institute for Molecular Life Sciences; Goethe University Frankfurt ; Frankfurt am Main , Germany
| | - Christian Behl
- a Institute for Pathobiochemistry; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| |
Collapse
|
20
|
Papadopoulos C, Kirchner P, Bug M, Grum D, Koerver L, Schulze N, Poehler R, Dressler A, Fengler S, Arhzaouy K, Lux V, Ehrmann M, Weihl CC, Meyer H. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 2016; 36:135-150. [PMID: 27753622 DOI: 10.15252/embj.201695148] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/05/2023] Open
Abstract
Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin-directed AAA-ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo-Lysosomal Damage Response. Together, they act downstream of K63-linked ubiquitination and p62 recruitment, and selectively remove K48-linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases.
Collapse
Affiliation(s)
- Chrisovalantis Papadopoulos
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Philipp Kirchner
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Monika Bug
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Grum
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Lisa Koerver
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Nina Schulze
- Imaging Center Campus Essen, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Robert Poehler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alina Dressler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Sven Fengler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Khalid Arhzaouy
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vanda Lux
- Microbiology, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Michael Ehrmann
- Microbiology, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hemmo Meyer
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Vekaria PH, Home T, Weir S, Schoenen FJ, Rao R. Targeting p97 to Disrupt Protein Homeostasis in Cancer. Front Oncol 2016; 6:181. [PMID: 27536557 PMCID: PMC4971439 DOI: 10.3389/fonc.2016.00181] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are addicted to numerous non-oncogenic traits that enable them to thrive. Proteotoxic stress is one such non-oncogenic trait that is experienced by all tumor cells owing to increased genomic abnormalities and the resulting synthesis and accumulation of non-stoichiometric amounts of cellular proteins. This imbalance in the amounts of proteins ultimately culminates in proteotoxic stress. p97, or valosin-containing protein (VCP), is an ATPase whose function is essential to restore protein homeostasis in the cells. Working in concert with the ubiquitin proteasome system, p97 promotes the retrotranslocation from cellular organelles and/or degradation of misfolded proteins. Consequently, p97 inhibition has emerged as a novel therapeutic target in cancer cells, especially those that have a highly secretory phenotype. This review summarizes our current understanding of the function of p97 in maintaining protein homeostasis and its inhibition with small molecule inhibitors as an emerging strategy to target cancer cells.
Collapse
Affiliation(s)
| | - Trisha Home
- Division of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center , Kansas City, KS , USA
| | - Scott Weir
- The University of Kansas Cancer Center, University of Kansas , Kansas City, KS , USA
| | - Frank J Schoenen
- Specialized Chemistry Center, University of Kansas , Lawrence, KS , USA
| | - Rekha Rao
- Division of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center , Kansas City, KS , USA
| |
Collapse
|
22
|
Spang N, Feldmann A, Huesmann H, Bekbulat F, Schmitt V, Hiebel C, Koziollek-Drechsler I, Clement AM, Moosmann B, Jung J, Behrends C, Dikic I, Kern A, Behl C. RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy 2015; 10:2297-309. [PMID: 25495476 PMCID: PMC4502700 DOI: 10.4161/15548627.2014.994359] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.
Collapse
Key Words
- ATG, autophagy-related
- ATG16L1
- ATG3
- BSA, bovine serum albumin
- Bafi, bafilomycin A1
- C. elegans, Caenorhabditis elegans
- CALCOCO2, calcium binding and coiled-coil domain 2
- DAPI, 4’, 6-diamidino-2-phenylindole
- DMSO, dimethyl sulfoxide
- DPH, 1, 6-diphenyl-1, 3, 5-hexatriene
- FEZ, fasciculation and elongation protein zeta
- FEZ1
- FEZ2
- GABARAP, GABA(A) receptor-associated protein
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- MAP1LC3, microtubule-associated protein 1 light chain 3
- NBR1, neighbor of BRCA1 gene 1
- PBS, phosphate-buffered saline
- PE, phosphatidylethanolamine
- RAB3GAP1
- RAB3GAP2
- RABGAP, RAB GTPase activating protein
- SQSTM1, sequestosome 1
- TBC domain, TRE2-BUB2-CDC16 domain
- autophagy
- eV, empty vector
- lipid droplets
- proteostasis
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Natalie Spang
- a Institute for Pathobiochemistry ; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ramkumar P, Lee CM, Moradian A, Sweredoski MJ, Hess S, Sharrocks AD, Haines DS, Reddy EP. JNK-associated Leucine Zipper Protein Functions as a Docking Platform for Polo-like Kinase 1 and Regulation of the Associating Transcription Factor Forkhead Box Protein K1. J Biol Chem 2015; 290:29617-28. [PMID: 26468278 PMCID: PMC4705960 DOI: 10.1074/jbc.m115.664649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/04/2015] [Indexed: 11/06/2022] Open
Abstract
JLP (JNK-associated leucine zipper protein) is a scaffolding protein that interacts with various signaling proteins associated with coordinated regulation of cellular process such as endocytosis, motility, neurite outgrowth, cell proliferation, and apoptosis. Here we identified PLK1 (Polo-like kinase 1) as a novel interaction partner of JLP through mass spectrometric approaches. Our results indicate that JLP is phospho-primed by PLK1 on Thr-351, which is recognized by the Polo box domain of PLK1 leading to phosphorylation of JLP at additional sites. Stable isotope labeling by amino acids in cell culture and quantitative LC-MS/MS analysis was performed to identify PLK1-dependent JLP-interacting proteins. Treatment of cells with the PLK1 kinase inhibitor BI2536 suppressed binding of the Forkhead box protein K1 (FOXK1) transcriptional repressor to JLP. JLP was found to interact with PLK1 and FOXK1 during mitosis. Moreover, knockdown of PLK1 affected the interaction between JLP and FOXK1. FOXK1 is a known transcriptional repressor of the CDK inhibitor p21/WAF1, and knockdown of JLP resulted in increased FOXK1 protein levels and a reduction of p21 transcript levels. Our results suggest a novel mechanism by which FOXK1 protein levels and activity are regulated by associating with JLP and PLK1.
Collapse
Affiliation(s)
- Poornima Ramkumar
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Clement M Lee
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Annie Moradian
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Michael J Sweredoski
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Sonja Hess
- the Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, and
| | - Andrew D Sharrocks
- the Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Dale S Haines
- the Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19122
| | - E Premkumar Reddy
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
24
|
Trusch F, Matena A, Vuk M, Koerver L, Knævelsrud H, Freemont PS, Meyer H, Bayer P. The N-terminal Region of the Ubiquitin Regulatory X (UBX) Domain-containing Protein 1 (UBXD1) Modulates Interdomain Communication within the Valosin-containing Protein p97. J Biol Chem 2015; 290:29414-27. [PMID: 26475856 DOI: 10.1074/jbc.m115.680686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/15/2022] Open
Abstract
Valosin-containing protein/p97 is an ATP-driven protein segregase that cooperates with distinct protein cofactors to control various aspects of cellular homeostasis. Mutations at the interface between the regulatory N-domain and the first of two ATPase domains (D1 and D2) deregulate the ATPase activity and cause a multisystem degenerative disorder, inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia/amyotrophic lateral sclerosis. Intriguingly, the mutations affect only a subset of p97-mediated pathways correlating with unbalanced cofactor interactions and most prominently compromised binding of the ubiquitin regulatory X domain-containing protein 1 (UBXD1) cofactor during endolysosomal sorting of caveolin-1. However, how the mutations impinge on the p97-cofactor interplay is unclear so far. In cell-based endosomal localization studies, we identified a critical role of the N-terminal region of UBXD1 (UBXD1-N). Biophysical studies using NMR and CD spectroscopy revealed that UBXD1-N can be classified as intrinsically disordered. NMR titration experiments confirmed a valosin-containing protein/p97 interaction motif and identified a second binding site at helices 1 and 2 of UBXD1-N as binding interfaces for p97. In reverse titration experiments, we identified two distant epitopes on the p97 N-domain that include disease-associated residues and an additional interaction between UBXD1-N and the D1D2 barrel of p97 that was confirmed by fluorescence anisotropy. Functionally, binding of UBXD1-N to p97 led to a reduction of ATPase activity and partial protection from proteolysis. These findings indicate that UBXD1-N intercalates into the p97-ND1 interface, thereby modulating interdomain communication of p97 domains and its activity with relevance for disease pathogenesis. We propose that the polyvalent binding mode characterized for UBXD1-N is a more general principle that defines a subset of p97 cofactors.
Collapse
Affiliation(s)
| | - Anja Matena
- From Structural and Medicinal Biochemistry and
| | - Maja Vuk
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany and
| | - Lisa Koerver
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany and
| | - Helene Knævelsrud
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany and
| | - Paul S Freemont
- Department of Medicine, Section of Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hemmo Meyer
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany and
| | - Peter Bayer
- From Structural and Medicinal Biochemistry and
| |
Collapse
|
25
|
UBXN2A regulates nicotinic receptor degradation by modulating the E3 ligase activity of CHIP. Biochem Pharmacol 2015; 97:518-530. [PMID: 26265139 DOI: 10.1016/j.bcp.2015.08.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α3 subunit are known for their prominent role in normal ganglionic transmission while their involvement in the mechanisms underlying nicotine addiction and smoking-related disease has been emerging only in recent years. The amount of information available on the maturation and trafficking of α3-containing nAChRs is limited. We previously showed that UBXN2A is a p97 adaptor protein that facilitates the maturation and trafficking of α3-containing nAChRs. Further investigation of the mechanisms of UBXN2A actions revealed that the protein interacts with CHIP (carboxyl terminus of Hsc70 interacting protein), whose ubiquitin E3 ligase activity regulates the degradation of several disease-related proteins. We show that CHIP displays E3 ligase activity toward the α3 nAChR subunit and contributes to its ubiquitination and subsequent degradation. UBXN2A interferes with CHIP-mediated ubiquitination of α3 and protects the nicotinic receptor subunit from endoplasmic reticulum associated degradation (ERAD). UBXN2A also cross-talks with VCP/p97 and HSC70/HSP70 proteins in a complex where α3 is likely to be targeted by CHIP. Overall,we identify CHIP as an E3 ligase for α3 and UBXN2A as a protein that may efficiently regulate the stability of CHIP's client substrates.
Collapse
|
26
|
Merulla J, Soldà T, Molinari M. A novel UGGT1 and p97-dependent checkpoint for native ectodomains with ionizable intramembrane residue. Mol Biol Cell 2015; 26:1532-42. [PMID: 25694454 PMCID: PMC4395132 DOI: 10.1091/mbc.e14-12-1615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/09/2015] [Indexed: 01/01/2023] Open
Abstract
There is unexpected collaboration of the cytosolic AAA-ATPase p97 and the luminal quality control factor UGGT1 in a novel, BiP- and CNX-independent protein quality checkpoint. This prevents Golgi transport of a chimera with a native ectodomain that passes the luminal quality control scrutiny but displays an intramembrane defect. Only native polypeptides are released from the endoplasmic reticulum (ER) to be transported at the site of activity. Persistently misfolded proteins are retained and eventually selected for ER-associated degradation (ERAD). The paradox of a structure-based protein quality control is that functional polypeptides may be destroyed if they are architecturally unfit. This has health-threatening implications, as shown by the numerous “loss-of-function” proteopathies, but also offers chances to intervene pharmacologically to promote bypassing of the quality control inspection and export of the mutant, yet functional protein. Here we challenged the ER of human cells with four modular glycopolypeptides designed to alert luminal and membrane protein quality checkpoints. Our analysis reveals the unexpected collaboration of the cytosolic AAA-ATPase p97 and the luminal quality control factor UDP-glucose:glycoprotein glucosyltransferase (UGGT1) in a novel, BiP- and CNX-independent checkpoint. This prevents Golgi transport of a chimera with a native ectodomain that passes the luminal quality control scrutiny but displays an intramembrane defect. Given that human proteopathies may result from impaired transport of functional polypeptides with minor structural defects, identification of quality checkpoints and treatments to bypass them as shown here upon silencing or pharmacologic inhibition of UGGT1 or p97 may have important clinical implications.
Collapse
Affiliation(s)
- Jessica Merulla
- Institute for Research in Biomedicine, Protein Folding and Quality Control, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3000 Bern, Switzerland
| | - Tatiana Soldà
- Institute for Research in Biomedicine, Protein Folding and Quality Control, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Maurizio Molinari
- Institute for Research in Biomedicine, Protein Folding and Quality Control, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Abstract
Insulin regulates glucose uptake by controlling the subcellular location of GLUT4 glucose transporters. GLUT4 is sequestered within fat and muscle cells during low-insulin states, and is translocated to the cell surface upon insulin stimulation. The TUG protein is a functional tether that sequesters GLUT4 at the Golgi matrix. To stimulate glucose uptake, insulin triggers TUG endoproteolytic cleavage. Cleavage accounts for a large proportion of the acute effect of insulin to mobilize GLUT4 to the cell surface. During ongoing insulin exposure, endocytosed GLUT4 recycles to the plasma membrane directly from endosomes, and bypasses a TUG-regulated trafficking step. Insulin acts through the TC10α GTPase and its effector protein, PIST, to stimulate TUG cleavage. This action is coordinated with insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases, and with other signals to direct overall GLUT4 targeting. Data support the idea that the N-terminal TUG cleavage product, TUGUL, functions as a novel ubiquitin-like protein modifier to facilitate GLUT4 movement to the cell surface. The C-terminal TUG cleavage product is extracted from the Golgi matrix, which vacates an "anchoring" site to permit subsequent cycles of GLUT4 retention and release. Together, GLUT4 vesicle translocation and TUG cleavage may coordinate glucose uptake with physiologic effects of other proteins present in the GLUT4-containing vesicles, and with potential additional effects of the TUG C-terminal product. Understanding this TUG pathway for GLUT4 retention and release will shed light on the regulation of glucose uptake and the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan P Belman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, Box 208020, New Haven, CT, 06520-8020, USA
| | | | | |
Collapse
|
28
|
Zheng C, Zhang B. Combined deficiency of coagulation factors V and VIII: an update. Semin Thromb Hemost 2013; 39:613-20. [PMID: 23852824 DOI: 10.1055/s-0033-1349223] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Combined deficiency of factor V (FV) and FVIII (F5F8D) is an autosomal recessive bleeding disorder characterized by simultaneous decreases of both coagulation factors. This review summarizes recent reports on the clinical presentations, treatments, and molecular mechanism of F5F8D. Genetic studies identified LMAN1 and MCFD2 as causative genes for this disorder, revealing a previously unknown intracellular transport pathway shared by the two important blood coagulation factors. LMAN1 and MCFD2 form a Ca2+-dependent cargo receptor complex that functions in the transport of FV/FVIII from the endoplasmic reticulum (ER) to the Golgi. Disrupting the LMAN1-MCFD2 receptor, complex formation is the primary molecular defect of missense mutations leading to F5F8D. The EF-hand domains of MCFD2 are necessary and sufficient for the interactions with both LMAN1 and FV/FVIII. Similarly, the carbohydrate recognition domain of LMAN1 contains distinct and separable binding sites for both MCFD2 and FV/FVIII. Therefore, FV and FVIII likely carry duel sorting signals that are separately recognized by LMAN1 and MCFD2 and necessary for the efficient ER-to-Golgi transport. FV and FVIII likely bind LMAN1 through the high-mannose N-linked glycans under the higher Ca2+ conditions in the ER and dissociate in the lower Ca2+ environment of the ER-Golgi intermediate compartment.
Collapse
Affiliation(s)
- Chunlei Zheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
29
|
Hutt DM, Balch WE. Expanding proteostasis by membrane trafficking networks. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013383. [PMID: 23426524 DOI: 10.1101/cshperspect.a013383] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The folding biology common to all three kingdoms of life (Archaea, Bacteria, and Eukarya) is proteostasis. The proteostasis network (PN) functions as a "cloud" to generate, protect, and degrade the proteome. Whereas microbes (Bacteria, Archaea) have a single compartment, Eukarya have numerous subcellular compartments. We examine evidence that Eukarya compartments use coat, tether, and fusion (CTF) membrane trafficking components to form an evolutionarily advanced arm of the PN that we refer to as the "trafficking PN" (TPN). We suggest that the TPN builds compartments by generating a mosaic of integrated cargo-specific trafficking signatures (TRaCKS). TRaCKS control the temporal and spatial features of protein-folding biology based on the Anfinsen principle that the local environment plays a critical role in managing protein structure. TPN-generated endomembrane compartments apply a "quinary" level of structural control to modify the secondary, tertiary, and quaternary structures defined by the primary polypeptide-chain sequence. The development of Anfinsen compartments provides a unifying foundation for understanding the purpose of endomembrane biology and its capacity to drive extant Eukarya function and diversity.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology and Department of Chemical Physiology, The Skaggs Institute for Chemical Biology and the Dorris Institute for Neurological Diseases, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
30
|
Activation of p107 by fibroblast growth factor, which is essential for chondrocyte cell cycle exit, is mediated by the protein phosphatase 2A/B55α holoenzyme. Mol Cell Biol 2013; 33:3330-42. [PMID: 23775125 DOI: 10.1128/mcb.00082-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The phosphorylation state of pocket proteins during the cell cycle is determined at least in part by an equilibrium between inducible cyclin-dependent kinases (CDKs) and serine/threonine protein phosphatase 2A (PP2A). Two trimeric holoenzymes consisting of the core PP2A catalytic/scaffold dimer and either the B55α or PR70 regulatory subunit have been implicated in the activation of p107/p130 and pRB, respectively. While the phosphorylation state of p107 is very sensitive to forced changes of B55α levels in human cell lines, regulation of p107 in response to physiological modulation of PP2A/B55α has not been elucidated. Here we show that fibroblast growth factor 1 (FGF1), which induces maturation and cell cycle exit in chondrocytes, triggers rapid accumulation of p107-PP2A/B55α complexes coinciding with p107 dephosphorylation. Reciprocal solution-based mass spectrometric analysis identified the PP2A/B55α complex as a major component in p107 complexes, which also contain E2F/DPs, DREAM subunits, and/or cyclin/CDK complexes. Of note, p107 is one of the preferred partners of B55α, which also associates with pRB in RCS cells. FGF1-induced dephosphorylation of p107 results in its rapid accumulation in the nucleus and formation of larger complexes containing p107 and enhances its interaction with E2F4 and other p107 partners. Consistent with a key role of B55α in the rapid activation of p107 in chondrocytes, limited ectopic expression of B55α results in marked dephosphorylation of p107 while B55α knockdown results in hyperphosphorylation. More importantly, knockdown of B55α dramatically delays FGF1-induced dephosphorylation of p107 and slows down cell cycle exit. Moreover, dephosphorylation of p107 in response to FGF1 treatment results in early recruitment of p107 to the MYC promoter, an FGF1/E2F-regulated gene. Our results suggest a model in which FGF1 mediates rapid dephosphorylation and activation of p107 independently of the CDK activities that maintain p130 and pRB hyperphosphorylation for several hours after p107 dephosphorylation in maturing chondrocytes.
Collapse
|