1
|
Ingole KD, Alekseeva E, Lilley KS, Sadanandom A. Recent advances in proteomic workflows to interrogate the SUMOylome in plants. THE NEW PHYTOLOGIST 2025. [PMID: 40329655 DOI: 10.1111/nph.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Protein posttranslational modifications (PTMs) are vital for regulating protein functions. SUMOylation, a PTM essential for plant survival, involves attaching a Small Ubiquitin-like MOdifier (SUMO) to lysine residues of target proteins. SUMOylation influences stress tolerance, cell proliferation, protein stability, and gene expression. While well studied in mammals and yeast, SUMOylation studies in plants are scarce, as the identification of SUMOylated proteins and the specific modification sites is challenging. Deciphering the plant SUMOylome is essential for understanding stress response mechanisms. Advanced proteomic techniques are necessary to map these complex protein modifications. This article offers insights into the workflows employed for probing the SUMOylome. We analyze how current technological approaches have advanced our understanding of SUMOylation and highlight limitations that currently impede comprehensive mapping of SUMO signaling pathways.
Collapse
Affiliation(s)
- Kishor D Ingole
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1RX, UK
| | | | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1RX, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
2
|
Min WK, Kwak JS, Kwon DH, Kim S, Park SW, Ahn J, Cho S, Kim M, Lee SJ, Song JT, Kim Y, Seo HS. Retromer protein VPS29 plays a crucial and positive role in the sumoylation system mediated by E3 SUMO ligase SIZ1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70166. [PMID: 40286281 PMCID: PMC12033008 DOI: 10.1111/tpj.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Vacuolar protein sorting 29 (VPS29) functions in retrograde protein transport as a component of the retromer complex. However, the role of VPS29 in the regulation of post-translational modifications, such as sumoylation and ubiquitination, has not been elucidated. In this study, we demonstrate that VPS29 positively regulates SIZ/PIAS-type E3 SUMO (Small ubiquitin-related modifier) ligase-mediated sumoylation systems. In Arabidopsis, vps29-3 mutants display upregulated salicylic acid (SA) signaling pathways and reactive oxygen species accumulation, similar to those observed in siz1 mutants. Arabidopsis VPS29 (AtVPS29) directly interacts with the Arabidopsis E3 SUMO ligase SIZ1 (AtSIZ1) and localizes not only to the cytoplasm but also to the nucleus. The loss of AtVPS29 leads to a depletion of AtSIZ1, whereas the E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1), an upstream regulator of AtSIZ1, accumulates in vps29-3 mutants. Conversely, overexpression of AtVPS29 results in the accumulation of AtSIZ1 and the depletion of COP1 in transgenic Arabidopsis. Similarly, in human cells, silencing of hVPS29 leads to the depletion of the E3 SUMO ligase, PIAS1, and the accumulation of huCOP1. Under heat stress conditions, the levels of SUMO-conjugates are significantly lower in Arabidopsis vps29-3 mutants, indicating a regulatory role of AtVPS29 on AtSIZ1 activity. Moreover, AtVPS29 inhibits ubiquitination pathway-dependent degradation of AtSIZ1. Notably, AtSIZ1 forms a complex with AtVPS29 and trimeric retromer proteins. Taken together, our results indicate that VPS29 plays an essential role in signal transduction by regulating SIZ/PIAS-type E3 ligase-dependent sumoylation in both plants and animals.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Dae Hwan Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Sung‐Il Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Sang Woo Park
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jiyoung Ahn
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Soobin Cho
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Myung‐Jin Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Seung Ju Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jong Tae Song
- Department of Applied BiosciencesKyungpook National UniversityDaegu41566Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| |
Collapse
|
3
|
Xia S, Chen Y, Lai J, Zhang Z, Yang C, Han D. Functional characterization of protein SUMOylation in the miRNA transcription regulation during heat stress in Arabidopsis. THE PLANT GENOME 2024; 17:e20511. [PMID: 39291540 PMCID: PMC11628919 DOI: 10.1002/tpg2.20511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
MicroRNAs (miRNAs) play an essential role as non-coding-RNA-type epigenetic regulators in response to high-temperature stress in plants. There are crucial roles for global transcriptional regulation under SUMO (small ubiquitin-related MOdifier) stress response (SSR). However, the molecular mechanisms underlying its downstream regulation remain unclear. In this study, SUMO-specific chromatin immunoprecipitation sequencing analysis detected specific binding in the promoter region of miRNAs under high-temperature stress. A correlation analysis between this binding and miRNA profiling revealed that the location of SUMO on the chromosome was correlated with the expression pattern of miRNAs, particularly miR398a and miR824a. In contrast, knockout mutants of the SSR-dependent SUMO E3 ligase SAP AND MIZ 1 in Arabidopsis exhibited opposing trends in target gene expression for the SUMO-related miRNAs compared to the wild type. Multi-omics correlation analyses identified 34 SUMO-candidate proteins that might be involved in the regulation of miRNA response to high-temperature stress. Therefore, we propose a potential model whereby high-temperature exposure induces nuclear entry of SUMO molecules, modifying specific transcription factors that bind to miRNA gene promoters and potentially regulate miRNA expression.
Collapse
Affiliation(s)
- Simin Xia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Yue Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
4
|
Yu Z, Wang J, Zhang C, Zhan Q, Shi L, Song B, Han D, Jiang J, Huang J, Ou X, Zhang Z, Lai J, Li QQ, Yang C. SIZ1-mediated SUMOylation of CPSF100 promotes plant thermomorphogenesis by controlling alternative polyadenylation. MOLECULAR PLANT 2024; 17:1392-1406. [PMID: 39066483 DOI: 10.1016/j.molp.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Under warm temperatures, plants adjust their morphologies for environmental adaption via precise gene expression regulation. However, the function and regulation of alternative polyadenylation (APA), an important fine-tuning of gene expression, remains unknown in plant thermomorphogenesis. In this study, we found that SUMOylation, a critical post-translational modification, is induced by a long-term treatment at warm temperatures via a SUMO ligase SIZ1 in Arabidopsis. Disruption of SIZ1 altered the global usage of polyadenylation signals and affected the APA dynamic of thermomorphogenesis-related genes. CPSF100, a key subunit of the CPSF complex for polyadenylation regulation, is SUMOylated by SIZ1. Importantly, we demonstrated that SUMOylation is essential for the function of CPSF100 in genome-wide polyadenylation site choice during thermomorphogenesis. Further analyses revealed that the SUMO conjugation on CPSF100 attenuates its interaction with two isoforms of its partner CPSF30, increasing the nuclear accumulation of CPSF100 for polyadenylation regulation. In summary, our study uncovers a regulatory mechanism of APA via SIZ1-mediated SUMOylation in plant thermomorphogenesis.
Collapse
Affiliation(s)
- Zhibo Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qiuna Zhan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Leqian Shi
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Bing Song
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Junwen Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Ou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Biomedical Science Division, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
5
|
Sang T, Xu Y, Qin G, Zhao S, Hsu CC, Wang P. Highly sensitive site-specific SUMOylation proteomics in Arabidopsis. NATURE PLANTS 2024; 10:1330-1342. [PMID: 39294263 DOI: 10.1038/s41477-024-01783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/01/2024] [Indexed: 09/20/2024]
Abstract
SUMOylation-the attachment of a small ubiquitin-like modifier (SUMO) to target proteins-plays roles in controlling plant growth, nutrient signalling and stress responses. SUMOylation studies in plants are scarce because identifying SUMOylated proteins and their sites is challenging. To date, only around 80 SUMOylation sites have been identified. Here we introduce lysine-null SUMO1 into the Arabidopsis sumo1 sumo2 mutant and establish a two-step lysine-null SUMO enrichment method. We identified a site-specific SUMOylome comprising over 2,200 SUMOylation sites from 1,300 putative acceptors that function in numerous nuclear processes. SUMOylation marks occur on several motifs, differing from the canonical ψKxE motif in distant eukaryotes. Quantitative comparisons demonstrate that SUMOylation predominantly enhances the stability of SUMO1 acceptors. Our study delivers a highly sensitive and efficient method for site-specific SUMOylome studies and provides a comprehensive catalogue of Arabidopsis SUMOylation, serving as a valuable resource with which to further explore how SUMOylation regulates protein function.
Collapse
Affiliation(s)
- Tian Sang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yaping Xu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Shasha Zhao
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chuan-Chi Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Li W, Liu W, Xu Z, Zhu C, Han D, Liao J, Li K, Tang X, Xie Q, Yang C, Lai J. Heat-induced SUMOylation differentially affects bacterial effectors in plant cells. THE PLANT CELL 2024; 36:2103-2116. [PMID: 38445983 PMCID: PMC11132898 DOI: 10.1093/plcell/koae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Bacterial pathogens deliver effectors into host cells to suppress immunity. How host cells target these effectors is critical in pathogen-host interactions. SUMOylation, an important type of posttranslational modification in eukaryotic cells, plays a critical role in immunity, but its effect on bacterial effectors remains unclear in plant cells. In this study, using bioinformatic and biochemical approaches, we found that at least 16 effectors from the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 are SUMOylated by the enzyme cascade from Arabidopsis thaliana. Mutation of SUMOylation sites on the effector HopB1 enhances its function in the induction of plant cell death via stability attenuation of a plant receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1. By contrast, SUMOylation is essential for the function of another effector, HopG1, in the inhibition of mitochondria activity and jasmonic acid signaling. SUMOylation of both HopB1 and HopG1 is increased by heat treatment, and this modification modulates the functions of these 2 effectors in different ways in the regulation of plant survival rates, gene expression, and bacterial infection under high temperatures. Therefore, the current work on the SUMOylation of effectors in plant cells improves our understanding of the function of dynamic protein modifications in plant-pathogen interactions in response to environmental conditions.
Collapse
Affiliation(s)
- Wenliang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Wen Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zewei Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengluo Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianwei Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
7
|
Manrique S, Cavalleri A, Guazzotti A, Villarino GH, Simonini S, Bombarely A, Higashiyama T, Grossniklaus U, Mizzotti C, Pereira AM, Coimbra S, Sankaranarayanan S, Onelli E, Masiero S, Franks RG, Colombo L. HISTONE DEACETYLASE19 Controls Ovule Number Determination and Transmitting Tract Differentiation. PLANT PHYSIOLOGY 2024; 194:2117-2135. [PMID: 38060625 PMCID: PMC10980524 DOI: 10.1093/plphys/kiad629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/29/2023] [Indexed: 04/01/2024]
Abstract
The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.
Collapse
Affiliation(s)
- Silvia Manrique
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Alex Cavalleri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Andrea Guazzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Gonzalo H Villarino
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606, USA
| | - Sara Simonini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich CH-8008, Switzerland
| | - Aureliano Bombarely
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich CH-8008, Switzerland
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Ana Marta Pereira
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Universidade do Porto, rua do Campo Alegre, Porto 4169-007, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto 4169-007, Portugal
| | - Silvia Coimbra
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Universidade do Porto, rua do Campo Alegre, Porto 4169-007, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto 4169-007, Portugal
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606, USA
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, Milan 20133, Italy
| |
Collapse
|
8
|
Wang H, Feng M, Jiang Y, Du D, Dong C, Zhang Z, Wang W, Liu J, Liu X, Li S, Chen Y, Guo W, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Liu J. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. THE PLANT CELL 2023; 35:3889-3910. [PMID: 37399070 PMCID: PMC10533334 DOI: 10.1093/plcell/koad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Dissecting genetic components in crop plants associated with heat stress (HS) sensing and adaptation will facilitate the design of modern crop varieties with improved thermotolerance. However, the molecular mechanisms underlying the ON/OFF switch controlling HS responses (HSRs) in wheat (Triticum aestivum) remain largely unknown. In this study, we focused on the molecular action of TaHsfA1, a class A heat shock transcription factor, in sensing dynamically changing HS signals and regulating HSRs. We show that the TaHsfA1 protein is modified by small ubiquitin-related modifier (SUMO) and that this modification is essential for the full transcriptional activation activity of TaHsfA1 in triggering downstream gene expression. During sustained heat exposure, the SUMOylation of TaHsfA1 is suppressed, which partially reduces TaHsfA1 protein activity, thereby reducing the intensity of downstream HSRs. In addition, we demonstrate that TaHsfA1 interacts with the histone acetyltransferase TaHAG1 in a thermosensitive manner. Together, our findings emphasize the importance of TaHsfA1 in thermotolerance in wheat. In addition, they define a highly dynamic SUMOylation-dependent "ON/OFF" molecular switch that senses temperature signals and contributes to thermotolerance in crops.
Collapse
Affiliation(s)
- Haoran Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Man Feng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Jiang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chaoqun Dong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangqing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sufang Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Xu X, Fonseca de Lima CF, Vu LD, De Smet I. When drought meets heat - a plant omics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1250878. [PMID: 37674736 PMCID: PMC10478009 DOI: 10.3389/fpls.2023.1250878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Changes in weather patterns with emerging drought risks and rising global temperature are widespread and negatively affect crop growth and productivity. In nature, plants are simultaneously exposed to multiple biotic and abiotic stresses, but most studies focus on individual stress conditions. However, the simultaneous occurrence of different stresses impacts plant growth and development differently than a single stress. Plants sense the different stress combinations in the same or in different tissues, which could induce specific systemic signalling and acclimation responses; impacting different stress-responsive transcripts, protein abundance and modifications, and metabolites. This mini-review focuses on the combination of drought and heat, two abiotic stress conditions that often occur together. Recent omics studies indicate common or independent regulators involved in heat or drought stress responses. Here, we summarize the current research results, highlight gaps in our knowledge, and flag potential future focus areas.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
10
|
Rytz TC, Feng J, Barros JAS, Vierstra RD. Arabidopsis-expressing lysine-null SUMO1 reveals a non-essential role for secondary SUMO modifications in plants. PLANT DIRECT 2023; 7:e506. [PMID: 37465357 PMCID: PMC10350450 DOI: 10.1002/pld3.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
The reversible conjugation of small ubiquitin-like modifier (SUMO) to other proteins has pervasive roles in various aspects of plant development and stress defense through its selective attachment to numerous intracellular substrates. An intriguing aspect of SUMO is that it can be further modified by SUMOylation and ubiquitylation, which isopeptide-link either or both polypeptides to internal lysines within previously bound SUMOs. Although detectable by mass spectrometry, the functions of these secondary modifications remain obscure. Here, we generated transgenic Arabidopsis that replaced the two related and essential SUMO isoforms (SUMO1 and SUMO2) with a lysine-null SUMO1 variant (K0) immune to further SUMOylation/ubiquitylation at these residues. Remarkably, homozygous SUMO1(K0) sumo1 sumo2 plants developed normally, were not hypersensitive to heat stress, and have nearly unaltered SUMOylation profiles during heat shock. However, subtle changes in tolerance to salt, paraquat, and the DNA-damaging agents bleomycin and methane methylsulfonate were evident, as were increased sensitivities to ABA and the gibberellic acid biosynthesis inhibitor paclobutrazol, suggesting roles for these secondary modifications in stress defense, DNA repair, and hormone signaling. We also generated viable sumo1 sumo2 lines expressing a SUMO1(K0) variant specifically designed to help isolate SUMO conjugates and map SUMOylation sites, thus offering a new tool for investigating SUMO in planta.
Collapse
Affiliation(s)
- Thérèse C. Rytz
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Benson Hill Inc.St. LouisMissouriUSA
| | - Juanjuan Feng
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- State Key Laboratory of Cotton Biology, School of Life SciencesHenan UniversityKaifengChina
| | | | | |
Collapse
|
11
|
Zhao F, Liu L, Du J, Zhao X, Song Y, Zhou H, Qiao Y. BAG6-A from Fragaria viridis pollen modulates gametophyte development in diploid strawberry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111667. [PMID: 36858208 DOI: 10.1016/j.plantsci.2023.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Male and female gametophyte development processes are essential steps in the life cycles of all land plants. Here, we characterized a gene, FviBAG6-A, screened from the Fragaria viridis (2 n = 2x=14) pollen cDNA library and physically interacted with S-RNase. Ubiquitinated of Sa-RNase might be determined by the interaction of FviBAG6-A in the ubiquitin-proteasome system during fertilization. We found that overexpression of FviBAG6-A in Arabidopsis caused shorter silique length, and decreased silique number. Moreover, overexpression of FviBAG6-A in Fragaria vesca (2 n = 2x=14) led to a greatly reduced seed number, with nearly 80% of the seeds aborted. Analyses of paraffin sections and reactive oxygen species (ROS) content revealed that the majority of severe pollen defects were likely due to the early degradation of the tapetum and middle layer as a result of ROS accumulation and abnormal development of the uninucleate megaspore mother. Moreover, the FviBAG6-A interact with the E3 ligase SIZ1 and contribute to the SUMOylation of FviBAG6-A , which may be induced by the high level of ROS content, further promoting gametophyte abortion in strawberry transgenic lines. This study characterized the FviBAG6-A and reveals its novel function in gametophyte development.
Collapse
Affiliation(s)
- Fengli Zhao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Jianke Du
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Yanhong Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China.
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
12
|
Lai R, Li W, Xu Z, Liu W, Zeng Q, Lin W, Jiang J, Lai J, Yang C. A robust method for identification of plant SUMOylation substrates in a library-based reconstitution system. PLANT COMMUNICATIONS 2023:100573. [PMID: 36905123 PMCID: PMC10363499 DOI: 10.1016/j.xplc.2023.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Ruiqiang Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenliang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zewei Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Wen Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qianrui Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Wenxiong Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
13
|
Castro PH, Santos MÂ, Magalhães AP, Tavares RM, Azevedo H. Bioinformatic Tools for Exploring the SUMO Gene Network: An Update. Methods Mol Biol 2023; 2581:367-383. [PMID: 36413331 DOI: 10.1007/978-1-0716-2784-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant sumoylation research has seen significant advances in recent years, particularly since high-throughput proteomic strategies have enabled the discovery of more than one thousand SUMO targets. In the present chapter, we update the previously reported SUMO (small ubiquitin-related modifier) gene network (SGN) to its v4 iteration. SGN is a curated assembly of Arabidopsis thaliana genes that have been functionally associated with sumoylation, from SUMO pathway components to targets and interactors. The enclosed tutorial helps interpret and manage these datasets and details bioinformatic tools that can be used for in silico-based hypothesis generation. The latter include tools for sumoylation site prediction, comparative genomics, and gene network analysis.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Miguel Ângelo Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
- Crops Genetics Department, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alexandre Papadopoulos Magalhães
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
- Max-Planck Institute for Molecular Genetics, Department of Genome Regulation, Ihnestr, Berlin, Germany
| | - Rui Manuel Tavares
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), School of Sciences, University of Minho, Braga, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
14
|
Joo H, Lim CW, Lee SC. Pepper SUMO E3 ligase CaDSIZ1 enhances drought tolerance by stabilizing the transcription factor CaDRHB1. THE NEW PHYTOLOGIST 2022; 235:2313-2330. [PMID: 35672943 DOI: 10.1111/nph.18300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) is a reversible post-translational modification associated with protein stability and activity, and modulates hormone signaling and stress responses in plants. Previously, we reported that the pepper dehydration-responsive homeobox domain transcription factor CaDRHB1 acts as a positive modulator of drought response. Here, we show that CaDRHB1 protein stability is enhanced by SUMO E3 ligase Capsicum annuum DRHB1-interacting SAP and Miz domain (SIZ1) (CaDSIZ1)-mediated SUMOylation in response to drought, thereby positively modulating abscisic acid (ABA) signaling and drought responses. Substituting lysine (K) 138 of CaDRHB1 with arginine reduced CaDSIZ1-mediated SUMOylation, indicating that K138 is the principal site for SUMO conjugation. Virus-induced silencing of CaDSIZ1 promoted CaDRHB1 degradation, suggesting that CaDSIZ1 is involved in drought-induced SUMOylation of CaDRHB1. CaDSIZ1 interacted with and facilitated SUMO conjugation of CaDRHB1. CaDRHB1, mainly localized in the nucleus, but also in the cytoplasm in the SUMOylation mimic state, suggesting that SUMOylation of CaDRHB1 promotes its nuclear export, leading to cytoplasmic accumulation. Moreover, CaDSIZ1-silenced pepper plants were less sensitive to ABA and considerably sensitive to drought stress, whereas CaDSIZ1-overexpressing plants displayed ABA-hypersensitive and drought-tolerant phenotypes. Collectively, our data indicate that CaDSIZ1-mediated SUMOylation of CaDRHB1 functions in ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| |
Collapse
|
15
|
Molecular and epigenetic basis of heat stress responses and acclimatization in plants. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Zheng XT, Wang C, Lin W, Lin C, Han D, Xie Q, Lai J, Yang C. Importation of chloroplast proteins under heat stress is facilitated by their SUMO conjugations. THE NEW PHYTOLOGIST 2022; 235:173-187. [PMID: 35347735 DOI: 10.1111/nph.18121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Chloroplasts are hypersensitive to heat stress (HS). SUMOylation, a critical post-translational modification, is conservatively involved in HS responses. However, the functional connection between SUMOylation and chloroplasts under HS remains to be studied. The bioinformatics, biochemistry, and cell biology analyses were used to detect the SUMOylation statuses of Arabidopsis nuclear-encoded chloroplast proteins and the effect of SUMOylation on subcellular localization of these proteins under HS. PSBR, a subunit of photosystem II, was used as an example for a detailed investigation of functional mechanisms. After a global SUMOylation site prediction of nuclear-encoded chloroplast proteins, biochemical data showed that most of the selected candidates are modified by SUMO3 in the cytoplasm. The chloroplast localization of these SUMOylation targets under long-term HS is partially maintained by the SUMO ligase AtSIZ1. The HS-induced SUMOylation on PSBR contributes to the maintenance of its chloroplast localization, which is dependent on its chloroplast importation efficiency correlated to phosphorylation. The complementation analysis provided evidence that SUMOylation is essential for the physiological function of PSBR under HS. Our study illustrated a general regulatory mechanism of SUMOylation in maintaining the chloroplast protein importation during HS and provided hints for further investigation on protein modifications associated with plant organelles under stress conditions.
Collapse
Affiliation(s)
- Xiao-Ting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Caijuan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Wenxiong Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Chufang Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| |
Collapse
|
17
|
The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures. Biochem Soc Trans 2022; 50:1151-1165. [PMID: 35758233 PMCID: PMC9246330 DOI: 10.1042/bst20190572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Increasing temperatures impact plant biochemistry, but the effects can be highly variable. Both external and internal factors modulate how plants respond to rising temperatures. One such factor is the time of day or season the temperature increase occurs. This timing significantly affects plant responses to higher temperatures altering the signaling networks and affecting tolerance levels. Increasing overlaps between circadian signaling and high temperature responses have been identified that could explain this sensitivity to the timing of heat stress. ELF3, a circadian clock component, functions as a thermosensor. ELF3 regulates thermoresponsive hypocotyl elongation in part through its cellular localization. The temperature sensitivity of ELF3 depends on the length of a polyglutamine region, explaining how plant temperature responses vary between species. However, the intersection between the circadian system and increased temperature stress responses is pervasive and extends beyond this overlap in thermosensing. Here, we review the network responses to increased temperatures, heat stress, and the impacts on the mechanisms of gene expression from transcription to translation, highlighting the intersections between the elevated temperature and heat stress response pathways and circadian signaling, focusing on the role of ELF3 as a thermosensor.
Collapse
|
18
|
SUMOylation of the chromodomain factor MRG-1 in C. elegans affects chromatin-regulatory dynamics. Biotechniques 2022; 73:5-17. [PMID: 35698829 DOI: 10.2144/btn-2021-0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenetic mechanisms control chromatin accessibility and gene expression to ensure proper cell fate specification. Histone proteins are integral chromatin components, and their modification promotes gene expression regulation. Specific proteins recognize modified histones such as the chromodomain protein MRG-1. MRG-1 is the Caenorhabditis elegans ortholog of mammalian MRG15, which is involved in DNA repair. MRG-1 binds methylated histone H3 and is important for germline maturation and safeguarding. To elucidate interacting proteins that modulate MRG-1 activity, we performed in-depth protein-protein interaction analysis using immunoprecipitations coupled with mass spectrometry. We detected strong association with the Small ubiquitin-like modifier SUMO, and found that MRG-1 is post-translationally modified by SUMO. SUMOylation affects chromatin-binding dynamics of MRG-1, suggesting an epigenetic regulation pathway, which may be conserved.
Collapse
|
19
|
Khan MSS, Chen J. Regulation of the interplay between reactive oxygen species and SUMOylation pathways: an essential role for SIZ1. PLANT PHYSIOLOGY 2022; 189:454-456. [PMID: 35274733 PMCID: PMC9157095 DOI: 10.1093/plphys/kiac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Affiliation(s)
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Castro PH, Couto D, Santos MÂ, Freitas S, Lourenço T, Dias E, Huguet S, Marques da Silva J, Tavares RM, Bejarano ER, Azevedo H. SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:934-954. [PMID: 35238389 PMCID: PMC9157161 DOI: 10.1093/plphys/kiac085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitin-like modifying peptide SMALL UBIQUITIN-LIKE MODIFIER (SUMO) has become a known modulator of the plant response to multiple environmental stimuli. A common feature of many of these external stresses is the production of reactive oxygen species (ROS). Taking into account that SUMO conjugates rapidly accumulate in response to an external oxidative stimulus, it is likely that ROS and sumoylation converge at the molecular and regulatory levels. In this study, we explored the SUMO-ROS relationship, using as a model the Arabidopsis (Arabidopsis thaliana) null mutant of the major SUMO-conjugation enhancer, the E3 ligase SAP AND MIZ 1 (SIZ1). We showed that SIZ1 is involved in SUMO conjugate increase when primed with both exogenous and endogenous ROS. In siz1, seedlings were sensitive to oxidative stress imposition, and mutants accumulated different ROS throughout development. We demonstrated that the deregulation in hydrogen peroxide and superoxide homeostasis, but not of singlet O2 (1O2), was partially due to SA accumulation in siz1. Furthermore, transcriptomic analysis highlighted a transcriptional signature that implicated siz1 with 1O2 homeostasis. Subsequently, we observed that siz1 displayed chloroplast morphological defects and altered energy dissipation activity and established a link between the chlorophyll precursor protochlorophyllide and deregulation of PROTOCHLOROPHYLLIDE OXIDOREDUCTASE A (PORA), which is known to drive overproduction of 1O2. Ultimately, network analysis uncovered known and additional associations between transcriptional control of PORA and SIZ1-dependent sumoylation. Our study connects sumoylation, and specifically SIZ1, to the control of chloroplast functions and places sumoylation as a molecular mechanism involved in ROS homeostatic and signaling events.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Daniel Couto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Miguel Ângelo Santos
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Sara Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Tiago Lourenço
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Eva Dias
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Jorge Marques da Silva
- Biosystems and Integrative Sciences Institute (BioISI) and Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Rui Manuel Tavares
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Department of Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga 29071, Spain
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4099-002, Portugal
| |
Collapse
|
21
|
Post-translational modification: a strategic response to high temperature in plants. ABIOTECH 2022; 3:49-64. [PMID: 36304199 PMCID: PMC9590526 DOI: 10.1007/s42994-021-00067-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022]
Abstract
With the increasing global warming, high-temperature stress is affecting plant growth and development with greater frequency. Therefore, an increasing number of studies examining the mechanism of temperature response contribute to a more optimal understanding of plant growth under environmental pressure. Post-translational modification (PTM) provides the rapid reconnection of transcriptional programs including transcription factors and signaling proteins. It is vital that plants quickly respond to changes in the environment in order to survive under stressful situations. Herein, we discuss several types of PTMs that occur in response to warm-temperature and high-temperature stress, including ubiquitination, SUMOylation, phosphorylation, histone methylation, and acetylation. This review provides a valuable resolution to this issue to enable increased crop productivity at high temperatures.
Collapse
|
22
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
23
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
24
|
Abstract
To absolutely and relatively quantitate the alteration of a posttranslationally modified (PTM) proteome in response to a specific internal or external signal, a 15N-stable isotope labeling in Arabidopsis (SILIA) protocol has been integrated into the 4C quantitative PTM proteomics, named as SILIA-based 4C quantitative PTM proteomics (S4Quap). The isotope metabolic labeling produces both forward (F) and reciprocal (R) mixings of either 14N/15N-coded tissues or the 14N/15N-coded total cellular proteins. Plant protein is isolated using a urea-based extraction buffer (UEB). The presence of 8 M urea, 2% polyvinylpolypyrrolidone (PVPP), and 5 mM ascorbic acid allows to instantly denature protein, remove the phenolic compounds, and curb the oxidation by free radicals once plant cells are broken. The total cellular proteins are routinely processed into peptides by trypsin. The PTM peptide yield of affinity enrichment and preparation is 0.1-0.2% in general. Ion exchange chromatographic fractionation prepares the PTM peptides for LC-MS/MS analysis. The collected mass spectrograms are subjected to a target-decoy sequence analysis using various search engines. The computational programs are subsequently applied to analyze the ratios of the extracted ion chromatogram (XIC) of the 14N/15N isotope-coded PTM peptide ions and to perform the statistical evaluation of the quantitation results. The Student t-test values of ratios of quantifiable 14N/15N-coded PTM peptides are normally corrected using a Benjamini-Hochberg (BH) multiple hypothesis test to select the significantly regulated PTM peptide groups (BH-FDR < 5%). Consequently, the highly selected prospect candidate(s) of PTM proteins are confirmed and validated using biochemical, molecular, cellular, and transgenic plant analysis.
Collapse
Affiliation(s)
- Emily Oi Ying Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China.,Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China. .,Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hong Kong, SAR, China.
| |
Collapse
|
25
|
Mercier C, Roux B, Have M, Le Poder L, Duong N, David P, Leonhardt N, Blanchard L, Naumann C, Abel S, Cuyas L, Pluchon S, Nussaume L, Desnos T. Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1507-1521. [PMID: 34612534 PMCID: PMC9298234 DOI: 10.1111/tpj.15525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 05/07/2023]
Abstract
STOP1, an Arabidopsis transcription factor favouring root growth tolerance against Al toxicity, acts in the response to iron under low Pi (-Pi). Previous studies have shown that Al and Fe regulate the stability and accumulation of STOP1 in roots, and that the STOP1 protein is sumoylated by an unknown E3 ligase. Here, using a forward genetics suppressor screen, we identified the E3 SUMO (small ubiquitin-like modifier) ligase SIZ1 as a modulator of STOP1 signalling. Mutations in SIZ1 increase the expression of ALMT1 (a direct target of STOP1) and root growth responses to Al and Fe stress in a STOP1-dependent manner. Moreover, loss-of-function mutations in SIZ1 enhance the abundance of STOP1 in the root tip. However, no sumoylated STOP1 protein was detected by Western blot analysis in our sumoylation assay in Escherichia coli, suggesting the presence of a more sophisticated mechanism. We conclude that the sumo ligase SIZ1 negatively regulates STOP1 signalling, at least in part by modulating STOP1 protein in the root tip. Our results will allow a better understanding of this signalling pathway.
Collapse
Affiliation(s)
- Caroline Mercier
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
- Laboratoire de Nutrition VégétaleAgroinnovation International—TIMAC AGROSaint‐MaloFrance
| | - Brice Roux
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
| | - Marien Have
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
| | - Léa Le Poder
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
| | - Nathalie Duong
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
| | - Pascale David
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
| | - Nathalie Leonhardt
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
| | - Laurence Blanchard
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, MEMSaint Paul‐Lez‐Durance13108France
| | - Christin Naumann
- Department of Molecular Signal ProcessingLeibniz Institute of Plant BiochemistryHalle (Saale)06120Germany
| | - Steffen Abel
- Department of Molecular Signal ProcessingLeibniz Institute of Plant BiochemistryHalle (Saale)06120Germany
| | - Laura Cuyas
- Laboratoire de Nutrition VégétaleAgroinnovation International—TIMAC AGROSaint‐MaloFrance
| | - Sylvain Pluchon
- Laboratoire de Nutrition VégétaleAgroinnovation International—TIMAC AGROSaint‐MaloFrance
| | - Laurent Nussaume
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
| | - Thierry Desnos
- Aix Marseille UnivCEA, CNRS, BIAM, UMR7265, SAVESaint Paul‐Lez‐Durance13108France
| |
Collapse
|
26
|
Gao S, Zeng X, Wang J, Xu Y, Yu C, Huang Y, Wang F, Wu K, Yang S. Arabidopsis SUMO E3 Ligase SIZ1 Interacts with HDA6 and Negatively Regulates HDA6 Function during Flowering. Cells 2021; 10:cells10113001. [PMID: 34831226 PMCID: PMC8616286 DOI: 10.3390/cells10113001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 01/12/2023] Open
Abstract
The changes in histone acetylation mediated by histone deacetylases (HDAC) play a crucial role in plant development and response to environmental changes. Mammalian HDACs are regulated by post-translational modifications (PTM), such as phosphorylation, acetylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification (SUMOylation), which affect enzymatic activity and transcriptional repression. Whether PTMs of plant HDACs alter their functions are largely unknown. In this study, we demonstrated that the Arabidopsis SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HISTONE DEACETYLASE 6 (HDA6) both in vitro and in vivo. Biochemical analyses indicated that HDA6 is not modified by SUMO1. Overexpression of HDA6 in siz1-3 background results in a decreased level of histone H3 acetylation, indicating that the activity of HDA6 is increased in siz1-3 plants. Chromatin immunoprecipitation (ChIP) assays showed that SIZ1 represses HDA6 binding to its target genes FLOWERING LOCUS C (FLC) and MADS AFFECTING FLOWERING 4 (MAF4), resulting in the upregulation of FLC and MAF4 by increasing the level of histone H3 acetylation. Together, these findings indicate that the Arabidopsis SUMO E3 ligase SIZ1 interacts with HDA6 and negatively regulates HDA6 function.
Collapse
Affiliation(s)
- Sujuan Gao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Ministry of Agriculture, Guangzhou 510225, China;
| | - Xueqin Zeng
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (F.W.)
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510000, China;
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
| | - Chunwei Yu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan;
| | - Yishui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (F.W.)
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan;
- Correspondence: (K.W.); (S.Y.)
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (K.W.); (S.Y.)
| |
Collapse
|
27
|
Péter C, Nagy F, Viczián A. SUMOylation of different targets fine-tunes phytochrome signaling. THE NEW PHYTOLOGIST 2021; 232:1201-1211. [PMID: 34289130 DOI: 10.1111/nph.17634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Plants monitor their surrounding ambient light environment by specialized photoreceptor proteins. Among them, phytochromes monitor red and far-red light. These molecules perceive photons, undergo a conformational change, and regulate diverse light signaling pathways, resulting in the mediation of key developmental and growth responses throughout the whole life of plants. Posttranslational modifications of the photoreceptors and their signaling partners may modify their function. For example, the regulatory role of phosphorylation has been investigated for decades by using different methodological approaches. In the past few years, a set of studies revealed that ubiquitin-like short protein molecules, called small ubiquitin-like modifiers (SUMOs) are attached reversibly to different members of phytochrome signaling pathways, including phytochrome B, the dominant receptor of red light signaling. Furthermore, SUMO attachment modifies the action of the target proteins, leading to altered light signaling and photomorphogenesis. This review summarizes recent results regarding SUMOylation of various target proteins, the regulation of their SUMOylation level, and the physiological consequences of SUMO attachment. Potential future research directions are also discussed.
Collapse
Affiliation(s)
- Csaba Péter
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Ferenc Nagy
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - András Viczián
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| |
Collapse
|
28
|
The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability. PLoS Genet 2021; 17:e1009830. [PMID: 34695110 PMCID: PMC8568144 DOI: 10.1371/journal.pgen.1009830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 09/20/2021] [Indexed: 12/04/2022] Open
Abstract
The post-translational addition of SUMO plays essential roles in numerous eukaryotic processes including cell division, transcription, chromatin organization, DNA repair, and stress defense through its selective conjugation to numerous targets. One prominent plant SUMO ligase is METHYL METHANESULFONATE-SENSITIVE (MMS)-21/HIGH-PLOIDY (HPY)-2/NON-SMC-ELEMENT (NSE)-2, which has been connected genetically to development and endoreduplication. Here, we describe the potential functions of MMS21 through a collection of UniformMu and CRISPR/Cas9 mutants in maize (Zea mays) that display either seed lethality or substantially compromised pollen germination and seed/vegetative development. RNA-seq analyses of leaves, embryos, and endosperm from mms21 plants revealed a substantial dysregulation of the maize transcriptome, including the ectopic expression of seed storage protein mRNAs in leaves and altered accumulation of mRNAs associated with DNA repair and chromatin dynamics. Interaction studies demonstrated that MMS21 associates in the nucleus with the NSE4 and STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC)-5 components of the chromatin organizer SMC5/6 complex, with in vitro assays confirming that MMS21 will SUMOylate SMC5. Comet assays measuring genome integrity, sensitivity to DNA-damaging agents, and protein versus mRNA abundance comparisons implicated MMS21 in chromatin stability and transcriptional controls on proteome balance. Taken together, we propose that MMS21-directed SUMOylation of the SMC5/6 complex and other targets enables proper gene expression by influencing chromatin structure. The post-translational addition of SUMO to other proteins by the MMS21 SUMO ligase has been implicated in a plethora of biological processes in plants but the identit(ies) of its targets and the biological consequences of their modification remain poorly resolved. Here, we address this issue by characterizing a collection of maize mms21 mutants using genetic, biochemical, transcriptomic and proteomic approaches. Our results revealed that mms21 mutations substantially compromise pollen germination and seed/vegetative development, dysregulate the maize transcriptome, including the ectopic expression of seed storage protein mRNAs in leaves, increase DNA damage, and alter the proteome/transcriptome balance. Interaction studies showed that MMS21 associates in the nucleus with the NON-SMC-ELEMENT (NSE)-4 and STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC)-5 components of the chromatin organizer SMC5/6 complex responsible for DNA-damage repair and chromatin accessibility. Our data demonstrate that MMS21 is crucial for plant development likely through its maintenance of DNA repair, balanced transcription, and genome stability.
Collapse
|
29
|
Ingole KD, Kasera M, van den Burg HA, Bhattacharjee S. Antagonism between SUMO1/2 and SUMO3 regulates SUMO conjugate levels and fine-tunes immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6640-6658. [PMID: 34145454 DOI: 10.1093/jxb/erab296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
The attachment of SMALL UBIQUITIN-LIKE MODIFIER (SUMO) to target proteins regulates a plethora of cellular processes across eukaryotes. In Arabidopsis thaliana, mutants with abnormal SUMO1/2 conjugate levels display a dwarf stature, autoimmunity, and altered stress responses to adverse environmental conditions. Since the SUMO pathway is known to autoregulate its biochemical activity (via allosteric interactions), we assessed whether the emergence of additional SUMO paralogs in Arabidopsis has introduced the capacity of self-regulation by means of isoform diversification in this model plant. By studying the plant defense responses elicited by the bacterial pathogen Pseudomonas syringae pv. tomato, we provide genetic evidence that SUM3, a divergent paralog, acts downstream of the two main SUMO paralogues, SUM1/2. The expression of SUM3 apparently buffers or suppresses the function of SUM1/2 by controlling the timing and amplitude of the immune response. Moreover, SUM1 and SUM2 work additively to suppress both basal and TNL-specific immunity, a specific branch of the immune network. Finally, our data reveal that SUM3 is required for the global increase in SUMO1/2 conjugates upon exposure to biotic and abiotic stresses, namely heat and pathogen exposure. We cannot exclude that this latter effect is independent of the role of SUM3 in immunity.
Collapse
Affiliation(s)
- Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121 001, Haryana, India
- Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar-751 024, Odisha, India
| | - Mritunjay Kasera
- Laboratory of Signal Transduction and Plant Resistance, UNESCO Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121 001, Haryana, India
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121 001, Haryana, India
| |
Collapse
|
30
|
Han D, Lai J, Yang C. SUMOylation: A critical transcription modulator in plant cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110987. [PMID: 34315601 DOI: 10.1016/j.plantsci.2021.110987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Gene transcription is critical for various cellular processes and is precisely controlled at multiple levels, and posttranslational modification (PTM) is a fast and powerful way to regulate transcription factors (TFs). SUMOylation, which conjugates small ubiquitin-related modifier (SUMO) molecules to protein substrates, is a crucial PTM that modulates the activity, stability, subcellular localization, and partner interactions of TFs in plant cells. Here, we summarize the mechanisms of SUMOylation in the regulation of transcription in plant development and stress responses. We also discuss the crosstalk between SUMOylation and other PTMs, as well as the potential functions of SUMOylation in the regulation of transcription-associated complexes on plant chromatin. This summary and perspective will improve understanding of the molecular mechanism of PTMs in plant transcription regulation.
Collapse
Affiliation(s)
- Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
31
|
Park HJ, Jung HM, Lee A, Jo SH, Lee HJ, Kim HS, Jung CK, Min SR, Cho HS. SUMO Modification of OsFKBP20-1b Is Integral to Proper Pre-mRNA Splicing upon Heat Stress in Rice. Int J Mol Sci 2021; 22:ijms22169049. [PMID: 34445755 PMCID: PMC8396655 DOI: 10.3390/ijms22169049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
OsFKBP20-1b, a plant-specific cyclophilin protein, has been implicated to regulate pre-mRNA splicing under stress conditions in rice. Here, we demonstrated that OsFKBP20-1b is SUMOylated in a reconstituted SUMOylation system in E.coli and in planta, and that the SUMOylation-coupled regulation was associated with enhanced protein stability using a less SUMOylated OsFKBP20-1b mutant (5KR_OsFKBP20-1b). Furthermore, OsFKBP20-1b directly interacted with OsSUMO1 and OsSUMO2 in the nucleus and cytoplasm, whereas the less SUMOylated 5KR_OsFKBP20-1b mutant had an impaired interaction with OsSUMO1 and 2 in the cytoplasm but not in the nucleus. Under heat stress, the abundance of an OsFKBP20-1b-GFP fusion protein was substantially increased in the nuclear speckles and cytoplasmic foci, whereas the heat-responsiveness was remarkably diminished in the presence of the less SUMOylated 5KR_OsFKBP20-1b-GFP mutant. The accumulation of endogenous SUMOylated OsFKBP20-1b was enhanced by heat stress in planta. Moreover, 5KR_OsFKBP20-1b was not sufficiently associated with the U snRNAs in the nucleus as a spliceosome component. A protoplast transfection assay indicated that the low SUMOylation level of 5KR_OsFKBP20-1b led to inaccurate alternative splicing and transcription under heat stress. Thus, our results suggest that OsFKBP20-1b is post-translationally regulated by SUMOylation, and the modification is crucial for proper RNA processing in response to heat stress in rice.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
| | - Hae-Myeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seung-Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Functional Genomics, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
| | - Choon-Kyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Correspondence: (S.-R.M.); (H.-S.C.); Tel.: +82-42-860-4463 (S.-R.M.); +82-42-860-4469 (H.-S.C.)
| | - Hye-Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.-J.P.); (H.-M.J.); (A.L.); (S.-H.J.); (H.-J.L.); (H.-S.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (S.-R.M.); (H.-S.C.); Tel.: +82-42-860-4463 (S.-R.M.); +82-42-860-4469 (H.-S.C.)
| |
Collapse
|
32
|
Jiang J, Xie Y, Du J, Yang C, Lai J. A SUMO ligase OsMMS21 regulates rice development and auxin response. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153447. [PMID: 34098413 DOI: 10.1016/j.jplph.2021.153447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 05/27/2023]
Abstract
SUMOylation, which transfers the Small Ubiquitin-related Modifier (SUMO) polypeptides to target proteins, regulates diverse cellular processes in eukaryotes. The SUMO conjugation reaction is usually promoted by SUMO E3 ligases, but the molecular functions of this type of enzymes remain unclear in cereal crops. Here, OsMMS21, a SUMO E3 ligase, was functionally characterized in rice (Oryza sativa). Bioinformatics analysis showed that OsMMS21 harbors a conserved SP-RING domain that is essential for the activity of SUMO ligases. Biochemical data indicated that this protein is auto-SUMOylated. Besides, overexpression of OsMMS21 rescued the developmental defects of the AtMMS21 mutant, supporting that OsMMS21 is a functional homolog of the Arabidopsis SUMO ligase AtMMS21. The OsMMS21 rice T-DNA mutant displays a short-root and dwarfism phenotype. RNA-seq data revealed that the expression levels of many genes involved in signaling transduction of hormones, including auxin, are altered in the OsMMS21 mutant. Further results under the auxin treatment showed that the OsMMS21 mutant is insensitive to auxin. Collectively, our results demonstrated the molecular features of OsMMS21 and uncovered the roles of this SUMO ligase in development and auxin response, providing hints for further studies on protein SUMOylation in rice.
Collapse
Affiliation(s)
- Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Yun Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jinju Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
33
|
Hammoudi V, Beerens B, Jonker MJ, Helderman TA, Vlachakis G, Giesbers M, Kwaaitaal M, van den Burg HA. The protein modifier SUMO is critical for integrity of the Arabidopsis shoot apex at warm ambient temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab262. [PMID: 34106243 DOI: 10.1093/jxb/erab262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 06/12/2023]
Abstract
SUMO is a protein modification whose conjugate levels peak during acute heat stress. We find that SUMO is also critical for plant longevity when Arabidopsis experiences a prolonged non-damaging period of only 28 degrees Celsius. Remarkably, this thermo-lethality at 28 degrees was not seen with any other mutant of the SUMO pathway tested. Autoimmunity due to low SUMO1/2 expression levels was not causal for this thermo-lethality. The role of SUMO for thermo-resilience was also distinct from its requirement for thermomorphogenesis - a growth response triggered by the same warm temperature, as only the latter response was dependent on the SUMO ligase SIZ1 as well. Thermo-resilience at 28 degrees Celsius and (acquired) thermotolerance (a response that allows plants to recover and acclimate to brief extreme temperatures) both depend on the HEAT SHOCK TRANSCRIPTION FACTOR A1 (HSFA1). Acquired thermotolerance was, however, normal in the sumo1/2 knockdown mutant. Thus, SUMO-dependent thermo-resilience is potentially controlled in a different way than the protein damage pathway that underpins thermotolerance. Close inspection of shoot apices revealed that the cell patterning and tissue integrity of the shoot apex of the SUMO1/2 knockdown mutant was lost at 28, but not 22 degrees Celsius. We thus describe a novel SUMO-dependent phenotype.
Collapse
Affiliation(s)
- Valentin Hammoudi
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Bas Beerens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Tieme A Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Georgios Vlachakis
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University, The Netherlands
| | - Mark Kwaaitaal
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| |
Collapse
|
34
|
Bradley AI, Marsh NM, Borror HR, Mostoller KE, Gama AI, Gardner RG. Acute ethanol stress induces sumoylation of conserved chromatin structural proteins in Saccharomyces cerevisiae. Mol Biol Cell 2021; 32:1121-1133. [PMID: 33788582 PMCID: PMC8351541 DOI: 10.1091/mbc.e20-11-0715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is ubiquitous to life and can irreparably damage essential biomolecules and organelles in cells. To survive, organisms must sense and adapt to stressful conditions. One highly conserved adaptive stress response is through the posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO). Here, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae. We found that cells exhibit a transient sumoylation response after acute exposure to ≤7.5% vol/vol ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol exposure. Mass spectrometry analyses identified 18 proteins that are sumoylated after acute ethanol exposure, with 15 known to associate with chromatin. Upon further analysis, we found that the chromatin structural proteins Smc5 and Smc6 undergo ethanol-induced sumoylation that depends on the activity of the E3 SUMO ligase Mms21. Using cell-cycle arrest assays, we observed that Smc5 and Smc6 ethanol-induced sumoylation occurs during G1 and G2/M phases but not S phase. Acute ethanol exposure also resulted in the formation of Rad52 foci at levels comparable to Rad52 foci formation after exposure to the DNA alkylating agent methyl methanesulfonate (MMS). MMS exposure is known to induce the intra-S-phase DNA damage checkpoint via Rad53 phosphorylation, but ethanol exposure did not induce Rad53 phosphorylation. Ethanol abrogated the effect of MMS on Rad53 phosphorylation when added simultaneously. From these studies, we propose that acute ethanol exposure induces a change in chromatin leading to sumoylation of specific chromatin structural proteins.
Collapse
Affiliation(s)
- Amanda I Bradley
- Department of Pharmacology, University of Washington, Seattle, WA 98195.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | - Nicole M Marsh
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Heather R Borror
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | | | - Amber I Gama
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, WA 98195.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| |
Collapse
|
35
|
Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci 2021; 78:2641-2664. [PMID: 33452901 PMCID: PMC8004507 DOI: 10.1007/s00018-020-03723-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.
Collapse
Affiliation(s)
- Dipan Roy
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
36
|
Bernula P, Pettkó-Szandtner A, Hajdu A, Kozma-Bognár L, Josse EM, Ádám É, Nagy F, Viczián A. SUMOylation of PHYTOCHROME INTERACTING FACTOR 3 promotes photomorphogenesis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:2050-2061. [PMID: 33078389 DOI: 10.1111/nph.17013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/07/2020] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, phytochrome B (phyB) is the dominant receptor of photomorphogenic development under red light. Phytochrome B interacts with a set of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR 3 (PIF3). The interaction between PIF3 and photoactivated phyB leads to the rapid phosphorylation and degradation of PIF3 and also to the degradation of phyB, events which are required for proper photomorphogenesis. Here we report that PIF3 is SUMOylated at the Lys13 (K13) residue and that we could detect this posttranslational modification in a heterologous experimental system and also in planta. We also found that the SUMO acceptor site mutant PIF3(K13R) binds more strongly to the target promoters than its SUMOylated, wild-type counterpart. Seedlings expressing PIF3(K13R) show an elongated hypocotyl response, elevated photoprotection and higher transcriptional induction of red-light responsive genes compared with plantlets expressing wild-type PIF3. These observations are supported by the lower level of phyB in plants which possess only PIF3(K13R), indicating that SUMOylation of PIF3 also alters photomorphogenesis via the regulation of phyB levels. In conclusion, whereas SUMOylation is generally connected to different stress responses, it also fine-tunes light signalling by reducing the biological activity of PIF3, thus promoting photomorphogenesis.
Collapse
Affiliation(s)
- Péter Bernula
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | | | - Anita Hajdu
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Eve-Marie Josse
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, H-6720, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| |
Collapse
|
37
|
Doroodian P, Hua Z. The Ubiquitin Switch in Plant Stress Response. PLANTS (BASEL, SWITZERLAND) 2021; 10:246. [PMID: 33514032 PMCID: PMC7911189 DOI: 10.3390/plants10020246] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Ubiquitin is a 76 amino acid polypeptide common to all eukaryotic organisms. It functions as a post-translationally modifying mark covalently linked to a large cohort of yet poorly defined protein substrates. The resulting ubiquitylated proteins can rapidly change their activities, cellular localization, or turnover through the 26S proteasome if they are no longer needed or are abnormal. Such a selective modification is essential to many signal transduction pathways particularly in those related to stress responses by rapidly enhancing or quenching output. Hence, this modification system, the so-called ubiquitin-26S proteasome system (UPS), has caught the attention in the plant research community over the last two decades for its roles in plant abiotic and biotic stress responses. Through direct or indirect mediation of plant hormones, the UPS selectively degrades key components in stress signaling to either negatively or positively regulate plant response to a given stimulus. As a result, a tightly regulated signaling network has become of much interest over the years. The ever-increasing changes of the global climate require both the development of new crops to cope with rapid changing environment and new knowledge to survey the dynamics of ecosystem. This review examines how the ubiquitin can switch and tune plant stress response and poses potential avenues to further explore this system.
Collapse
Affiliation(s)
- Paymon Doroodian
- Department of Environment and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environment and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
38
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
39
|
Han D, Chen C, Xia S, Liu J, Shu J, Nguyen V, Lai J, Cui Y, Yang C. Chromatin-associated SUMOylation controls the transcriptional switch between plant development and heat stress responses. PLANT COMMUNICATIONS 2021; 2:100091. [PMID: 33511343 PMCID: PMC7816078 DOI: 10.1016/j.xplc.2020.100091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species. The functional connection between the global regulation of gene expression and chromatin-associated SUMOylation in plant cells is unknown. Here, we uncovered a genome-wide relationship between chromatin-associated SUMOylation and transcriptional switches in Arabidopsis thaliana grown at room temperature, exposed to heat stress, and exposed to heat stress followed by recovery. The small ubiquitin-like modifier (SUMO)-associated chromatin sites, characterized by whole-genome ChIP-seq, were generally associated with active chromatin markers. In response to heat stress, chromatin-associated SUMO signals increased at promoter-transcriptional start site regions and decreased in gene bodies. RNA-seq analysis supported the role of chromatin-associated SUMOylation in transcriptional activation during rapid responses to high temperature. Changes in SUMO signals on chromatin were associated with the upregulation of heat-responsive genes and the downregulation of growth-related genes. Disruption of the SUMO ligase gene SIZ1 abolished SUMO signals on chromatin and attenuated rapid transcriptional responses to heat stress. The SUMO signal peaks were enriched in DNA elements recognized by distinct groups of transcription factors under different temperature conditions. These observations provide evidence that chromatin-associated SUMOylation regulates the transcriptional switch between development and heat stress response in plant cells.
Collapse
Affiliation(s)
- Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Chen Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Simin Xia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Jun Liu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Shu
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Vi Nguyen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| |
Collapse
|
40
|
Jmii S, Cappadocia L. Plant SUMO E3 Ligases: Function, Structural Organization, and Connection With DNA. FRONTIERS IN PLANT SCIENCE 2021; 12:652170. [PMID: 33897743 PMCID: PMC8064691 DOI: 10.3389/fpls.2021.652170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 05/04/2023]
Abstract
Protein modification by the small ubiquitin-like modifier (SUMO) plays an important role in multiple plant processes, including growth, development, and the response to abiotic stresses. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases accelerate SUMO conjugation while also influencing target identity and interactions. This review explores the biological functions of plant SUMO E3 ligases [SAP AND MIZ1 DOMAIN-CONTAINING LIGASE (SIZs), METHYL METHANESULFONATE-SENSITIVITY PROTEIN 21 (MMS21s), and PROTEIN INHIBITOR OF ACTIVATED STAT-LIKE (PIALs)] in relation to their molecular activities and domains. We also explore the sub-cellular localization of SUMO E3 ligases and review evidence suggesting a connection between certain SUMO E3 ligases and DNA that contributes to gene expression regulation.
Collapse
|
41
|
Ingole KD, Dahale SK, Bhattacharjee S. Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis. J Proteomics 2020; 232:104054. [PMID: 33238213 DOI: 10.1016/j.jprot.2020.104054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Rapid adaptation of plants to developmental or physiological cues is facilitated by specific receptors that transduce the signals mostly via post-translational modification (PTM) cascades of downstream partners. Reversible covalent attachment of SMALL UBIQUITIN-LIKE MODIFIER (SUMO), a process termed as SUMOylation, influence growth, development and adaptation of plants to various stresses. Strong regulatory mechanisms maintain the steady-state SUMOylome and mutants with SUMOylation disturbances display mis-primed immunity often with growth consequences. Identity of the SUMO-substrates undergoing SUMOylation changes during defenses however remain largely unknown. Here we exploit either the auto-immune property of an Arabidopsis mutant or defense responses induced in wild-type plants against Pseudomonas syringae pv tomato (PstDC3000) to enrich and identify SUMO1-substrates. Our results demonstrate massive enhancement of SUMO1-conjugates due to increased SUMOylation efficiencies during defense responses. Of the 261 proteins we identify, 29 have been previously implicated in immune-associated processes. Role of others expand to diverse cellular roles indicating massive readjustments the SUMOylome alterations may cause during induction of immunity. Overall, our study highlights the complexities of a plant immune network and identifies multiple SUMO-substrates that may orchestrate the signaling. SIGNIFICANCE: In all eukaryotes, covalent linkage of the SMALL UBIQUITIN-LIKE MODIFIER (SUMOs), a process termed as SUMOylation, on target proteins affect their fate and function. Plants display reversible readjustments in the pool of SUMOylated proteins during biotic and abiotic stress responses. Here, we demonstrate net increase in global SUMO1/2-SUMOylome of Arabidopsis thaliana at induction of immunity. We enrich and identify 261 SUMO1-substrates enhanced in defenses that categorize to diverse cellular processes and include novel candidates with uncharacterized immune-associated roles. Overall, our results highlight intricacies of SUMO1-orchestration in defense signaling networks.
Collapse
Affiliation(s)
- Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India; Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar 751 024, Odisha, India
| | - Shraddha K Dahale
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India.
| |
Collapse
|
42
|
Coleman D, Kawamura A, Ikeuchi M, Favero DS, Lambolez A, Rymen B, Iwase A, Suzuki T, Sugimoto K. The SUMO E3 Ligase SIZ1 Negatively Regulates Shoot Regeneration. PLANT PHYSIOLOGY 2020; 184:330-344. [PMID: 32611787 PMCID: PMC7479894 DOI: 10.1104/pp.20.00626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/23/2020] [Indexed: 05/20/2023]
Abstract
Plants form calluses and regenerate new organs when incubated on phytohormone-containing media. While accumulating evidence suggests that these regenerative processes are governed by transcriptional networks orchestrating wound response and developmental transitions, it remains unknown if posttranslational regulatory mechanisms are involved in this process. In this study, we demonstrate that SAP AND MIZ1 DOMAIN- CONTAINING LIGASE1 (SIZ1), an E3 ligase-catalyzing attachment of the SMALL UBIQUITIN-LIKE MODIFIER (SUMO) to proteins, regulates wound-induced signal transduction and organ regeneration in Arabidopsis (Arabidopsis thaliana). We show that loss-of-function mutants for SIZ1 exhibit overproduction of shoot meristems under in vitro tissue culture conditions, while this defect is rescued in a complementation line expressing pSIZ1::SIZ1 RNA sequencing analysis revealed that siz1-2 mutants exhibit enhanced transcriptional responses to wound stress, resulting in the hyper-induction of over 400 genes immediately after wounding. Among them, we show that elevated levels of WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and WIND2 contribute to the enhanced shoot regeneration observed in siz1 mutants, as expression of the dominant-negative chimeric protein WIND1-SRDX (SUPERMAN repression domain) in siz1-3 mutants partly rescues this phenotype. Although compromised SIZ1 function does not modify the transcription of genes implicated in auxin-induced callus formation and/or pluripotency acquisition, it does lead to enhanced induction of cytokinin-induced shoot meristem regulators such as WUSCHEL, promoting the formation of WUSCHEL-expressing foci in explants. This study thus suggests that SIZ1 negatively regulates shoot regeneration in part by repressing wound-induced developmental reprogramming.
Collapse
Affiliation(s)
- Duncan Coleman
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biology, Faculty of Science, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Bart Rymen
- Institut de Biologie Moléculaire des Plantes, 67084 Strasboug cedex, France
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
43
|
Wang F, Liu Y, Shi Y, Han D, Wu Y, Ye W, Yang H, Li G, Cui F, Wan S, Lai J, Yang C. SUMOylation Stabilizes the Transcription Factor DREB2A to Improve Plant Thermotolerance. PLANT PHYSIOLOGY 2020; 183:41-50. [PMID: 32205452 PMCID: PMC7210647 DOI: 10.1104/pp.20.00080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 05/09/2023]
Abstract
Heat stress (HS) has serious effects on plant development, resulting in heavy agricultural losses. A critical transcription factor network is involved in plant adaptation to high temperature. DEHYDRATION RESPONSIVE ELEMENT-BINDING PROTEIN2A (DREB2A) is a key transcription factor that functions in plant thermotolerance. The DREB2A protein is unstable under normal temperature and is degraded by the 26S proteasome; however, the mechanism by which DREB2A protein stability dramatically increases in response to HS remains poorly understood. In this study, we found that the DREB2A protein of Arabidopsis (Arabidopsis thaliana) is stabilized under high temperature by the posttranslational modification SUMOylation. Biochemical data indicated that DREB2A is SUMOylated at K163, a conserved residue adjacent to the negative regulatory domain during HS. SUMOylation of DREB2A suppresses its interaction with BPM2, a ubiquitin ligase component, consequently increasing DREB2A protein stability under high temperature. In addition, analysis of plant heat tolerance and marker gene expression indicated that DREB2A SUMOylation is essential for its function in the HS response. Collectively, our data reveal a role for SUMOylation in the maintenance of DREB2A stability under high temperature, thus improving our understanding of the regulatory mechanisms underlying HS response in plant cells.
Collapse
Affiliation(s)
- Feige Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Yiyang Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, and Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, 250100 Jinan, China
| | - Yaqiao Shi
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Yuanyuan Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Weixian Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Huanling Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Guowei Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, and Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, 250100 Jinan, China
| | - Feng Cui
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, and Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, 250100 Jinan, China
| | - Shubo Wan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, and Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, 250100 Jinan, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631 Guangzhou, China
| |
Collapse
|
44
|
Liu W, Tang X, Qi X, Fu X, Ghimire S, Ma R, Li S, Zhang N, Si H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int J Mol Sci 2020; 21:E2894. [PMID: 32326224 PMCID: PMC7215765 DOI: 10.3390/ijms21082894] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme (E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly put on E2's regulation of biological functions of the cell.
Collapse
Affiliation(s)
- Weigang Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xuehong Qi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Shantwana Ghimire
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Rui Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Shigui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
45
|
Storey AJ, Hardman RE, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA. Accurate and Sensitive Quantitation of the Dynamic Heat Shock Proteome Using Tandem Mass Tags. J Proteome Res 2020; 19:1183-1195. [PMID: 32027144 DOI: 10.1021/acs.jproteome.9b00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells respond to environmental perturbations and insults through modulating protein abundance and function. However, the majority of studies have focused on changes in RNA abundance because quantitative transcriptomics has historically been more facile than quantitative proteomics. Modern Orbitrap mass spectrometers now provide sensitive and deep proteome coverage, allowing direct, global quantification of not only protein abundance but also post-translational modifications (PTMs) that regulate protein activity. We implemented and validated using the well-characterized heat shock response of budding yeast, a tandem mass tagging (TMT), triple-stage mass spectrometry (MS3) strategy to measure global changes in the proteome during the yeast heat shock response over nine time points. We report that basic-pH, ultra-high performance liquid chromatography (UPLC) fractionation of tryptic peptides yields superfractions of minimal redundancy, a crucial requirement for deep coverage and quantification by subsequent LC-MS3. We quantified 2275 proteins across three biological replicates and found that differential expression peaked near 90 min following heat shock (with 868 differentially expressed proteins at 5% false discovery rate). The sensitivity of the approach also allowed us to detect changes in the relative abundance of ubiquitination and phosphorylation PTMs over time. Remarkably, relative quantification of post-translationally modified peptides revealed striking evidence of regulation of the heat shock response by protein PTMs. These data demonstrate that the high precision of TMT-MS3 enables peptide-level quantification of samples, which can reveal important regulation of protein abundance and regulatory PTMs under various experimental conditions.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rebecca E Hardman
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rick D Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
46
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Cruz ER, Nguyen H, Nguyen T, Wallace IS. Functional analysis tools for post-translational modification: a post-translational modification database for analysis of proteins and metabolic pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1003-1013. [PMID: 31034103 DOI: 10.1111/tpj.14372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 05/23/2023]
Abstract
Post-translational modifications (PTMs) are critical regulators of protein function, and nearly 200 different types of PTM have been identified. Advances in high-resolution mass spectrometry have led to the identification of an unprecedented number of PTM sites in numerous organisms, potentially facilitating a more complete understanding of how PTMs regulate cellular behavior. While databases have been created to house the resulting data, most of these resources focus on individual types of PTM, do not consider quantitative PTM analyses or do not provide tools for the visualization and analysis of PTM data. Here, we describe the Functional Analysis Tools for Post-Translational Modifications (FAT-PTM) database (https://bioinformatics.cse.unr.edu/fat-ptm/), which currently supports eight different types of PTM and over 49 000 PTM sites identified in large-scale proteomic surveys of the model organism Arabidopsis thaliana. The FAT-PTM database currently supports tools to visualize protein-centric PTM networks, quantitative phosphorylation site data from over 10 different quantitative phosphoproteomic studies, PTM information displayed in protein-centric metabolic pathways and groups of proteins that are co-modified by multiple PTMs. Overall, the FAT-PTM database provides users with a robust platform to share and visualize experimentally supported PTM data, develop hypotheses related to target proteins or identify emergent patterns in PTM data for signaling and metabolic pathways.
Collapse
Affiliation(s)
- Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Hung Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA
- Department of Chemistry, University of Nevada, Reno, Reno, NV, 89557, USA
| |
Collapse
|
48
|
Zhou X, Du J, Liu Y, Yang C, Lai J. Functional characterization of DiMMS21, a SUMO ligase from Desmodium intortum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:206-214. [PMID: 31176880 DOI: 10.1016/j.plaphy.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
SUMOylation is an important protein modification that regulates the properties of substrate proteins in a variety of cellular processes. SUMOylation is catalyzed via a cascade of enzymes and is usually stimulated by SUMO E3 ligases. However, the molecular functions and regulatory mechanisms of SUMOylation in forage crops are unknown. Here, we isolated and functionally characterized DiMMS21, a homolog of the Arabidopsis thaliana SUMO ligase AtMMS21, from the forage legume Desmodium intortum. DiMMS21 is expressed ubiquitously in various D. intortum organs and its encoded protein is found in the cytoplasm and nucleus. Bioinformatics analysis indicated that DiMMS21 contains a conserved SP-RING domain that is required for its activity. Biochemical evidence supports the notion that this protein is a functional SUMO ligase. When expressed in an Arabidopsis mms21 mutant, DiMMS21 completely rescued the defects in root, leaf, and silique development. The results from cotyledon greening and marker gene expression suggested that DiMMS21 can only partially complements the role of AtMMS21 in abscisic acid (ABA) responses. In summary, we characterized the molecular features of DiMMS21 and uncovered potential roles of this SUMO ligase in development and ABA responses, increasing our understanding on the function of SUMOylation in forage crops.
Collapse
Affiliation(s)
- Xuan Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jinju Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yiyang Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China; College of Life Science, Shandong Normal University, Jinan, 250014, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
49
|
Rosa MT, Abreu IA. Exploring the regulatory levels of SUMOylation to increase crop productivity. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:43-51. [PMID: 31177030 DOI: 10.1016/j.pbi.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
SUMOylation is an essential post-translational modification that affects several cellular processes, from gene replication to stress response. Studies using the SUMO (de)conjugation machinery have provided evidence regarding its potential to improve crop performance and productivity under normal and adverse conditions. However, the pleiotropic effect of SUMOylation can be a disadvantage in both situations, especially when considering unpredictable environmental conditions caused by climate changes. Here, we discuss the pleiotropic effects caused by disrupting the SUMOylation machinery, and new strategies that may help to overcome pleiotropy. We propose exploring the several regulatory levels of SUMOylation recently revealed, including transcriptional, post-transcriptional regulation by alternative splicing, and post-translational modifications. These new findings may provide valuable tools to increase crop productivity.
Collapse
Affiliation(s)
- Margarida Tg Rosa
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
50
|
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:119-151. [PMID: 30786234 DOI: 10.1146/annurev-arplant-050718-100211] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia;
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia;
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell, CNRS UMR9198, F-91198 Gif-sur-Yvette Cedex, France;
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria;
| | - Waltraud X Schulze
- Systembiologie der Pflanze, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|