1
|
Zhou XJ, Liu XF, Wang X, Cao XC. SITP: A single cell bioinformatics analysis flow captures proteasome markers in the development of breast cancer. Methods 2025; 233:1-10. [PMID: 39550019 DOI: 10.1016/j.ymeth.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Single cell sequencing and related databases have been widely used in the exploration of cancer occurrence and development, but there is still no in-depth explanation of specific and complicated cellular protein modification processes. Ubiquitin-Proteasome System (UPS), as a specific and precise protein modification and degradation process, plays an important role in the biological functions of cancer cell proliferation and apoptosis. Proteasomes, vital multi-catalytic proteinases in eukaryotic cells, play a crucial role in protein degradation and contribute to tumor regulation. The 26S proteasome, part of the ubiquitin-proteasome system. In this study, we have enrolled a common SITP process including analysis of single cell sequencing to elucidate a flow that can capture typical proteasome markers in the oncogenesis and progression of breast cancer. PSMD11, a key component of the 26S proteasome regulatory particle, has been identified as a critical survival factor in cancer cells. Results suggest that PSMD11's rapid degradation is linked to acute apoptosis in cancer cells, making it a potential target for cancer treatment. Our study explored the potential mechanisms of PSMD11 in breast cancer development. The findings revealed the feasibility of disclosing ubiquitinating biomarkers from public database, as well as presented new evidence supporting PSMD11 as a potential therapeutic biomarker for breast cancer.
Collapse
Affiliation(s)
- Xue-Jie Zhou
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiao-Feng Liu
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xin Wang
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| | - Xu-Chen Cao
- the First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
2
|
Zhang C, Xu T, Ji K, Cao S, Cao Y, Ai J, Jing L, Sun JH. An integrative analysis reveals the prognostic value and potential functions of PSMD11 in hepatocellular carcinoma. Mol Carcinog 2023; 62:1355-1368. [PMID: 37212487 DOI: 10.1002/mc.23568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The global burden of hepatocellular carcinoma (HCC) as a preeminent etiology of cancer-related mortalities sheds light on the imperative necessity for a more profound comprehension of its fundamental biological mechanisms. In this context, the precise function of the 26S proteasome non-ATPase regulatory subunit 11 (PSMD11) in HCC remains equivocal. To address this vital knowledge gap, we interrogated the cancer genome atlas, genotype-tissue expression, International cancer genome consortium, gene expression omnibus, the cancer cell line encyclopedia, and tumor immune single-cell hub databases to evaluate the expression pattern of PSMD11, further confirmed by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in LO2, MHCC-97H, HepG2, and SMMC7721 cell lines. Additionally, we meticulously assessed the clinical significance and prognostic value of PSMD11, while also exploring its potential molecular mechanisms in HCC. Our findings demonstrated that PSMD11 was highly expressed in HCC tissues, correlating with pathologic stage and histologic grade, thereby conferring a poor prognosis. Mechanistically, PSMD11 appears to exert its tumorigenic effects through the modulation of tumor metabolism-related pathways. Impressively, low PSMD11 expression was associated with increased immune effector cell infiltration, heightened responsiveness to molecular targeted drugs such as dasatinib, erlotinib, gefitinib, and imatinib, as well as reduced somatic mutation rate. Additionally, we demonstrated that PSMD11 might modulate HCC development through intricate interactions with cuproptosis-related genes ATP7A, DLAT, and PDHA1. Our comprehensive analyses collectively suggest that PSMD11 represents a promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Cong Zhang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Tiantian Xu
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Kun Ji
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Shoujin Cao
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Yunbo Cao
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Jing Ai
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Li Jing
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Jun-Hui Sun
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wang X, Zhang J, Hu Y, Zhao X, Wang Z, Zhang W, Liang J, Yu W, Tian T, Zhou H, Li J, Liu S, Zhao J, Jin Z, Wei W, Guo Z. Multi-Omics Analysis Reveals the Unexpected Immune Regulatory Effects of Arsenene Nanosheets in Tumor Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45137-45148. [PMID: 36166745 DOI: 10.1021/acsami.2c10743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arsenene, a two-dimensional (2D) monoelemental layered nanosheet composed of arsenic, was recently reported to feature outstanding anticancer activities. However, the specific biological mechanism of action remains unknown. In this work, we extensively analyzed the mechanism of arsenene in vivo and in vitro and discovered the unexpected immune regulatory capability of arsenene for the first time. Analysis of cell phenotypes in tumor microenvironment by single-cell RNA sequencing revealed that arsenene remodeled the tumor microenvironment by recruiting a high proportion of anticancer immune cells to eliminate the tumor. Mechanistically, arsenene significantly activated T cell receptor signaling pathways to produce antitumor immune cells while inhibiting DNA replication and TCA cycle pathways of tumor cells in vivo. Further proteomic analysis on tumor cells revealed that arsenene induced reactive oxygen species production and oxidative stress damage by targeting thioredoxin TXNL1. The overloaded reactive oxygen species (ROS) further triggered endoplasmic reticulum stress responses to release damage-associated molecular patterns (DAMPs) and "eat-me" signals from dying tumor cells, leading to the activation of antigen-presenting processes to induce the subsequent effector tumor-specific CD8+ T cell immune responses. This unexpected discovery indicated for the first time that 2D inorganic nanomaterials could effectively activate direct anticancer immune responses, suggesting arsenene as a promising candidate nanomedicine for future cancer immunotherapy.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing 210000, China
- Nanjing MetalGene Biotechnology Co., Ltd., Jiangbei New Area, Nanjing 210000, China
| | - Jingyi Zhang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Hu
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyang Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhicheng Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Zhang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Junchuan Liang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Yu
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian Tian
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Zhou
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanjing MetalGene Biotechnology Co., Ltd., Jiangbei New Area, Nanjing 210000, China
| | - Shengjin Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing 210000, China
| | - Zhong Jin
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Nanjing MetalGene Biotechnology Co., Ltd., Jiangbei New Area, Nanjing 210000, China
| | - Zijian Guo
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing 210000, China
- Nanjing MetalGene Biotechnology Co., Ltd., Jiangbei New Area, Nanjing 210000, China
| |
Collapse
|
4
|
RPNs Levels Are Prognostic and Diagnostic Markers for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7270541. [PMID: 36072976 PMCID: PMC9444382 DOI: 10.1155/2022/7270541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
The ribophorin family (RPN) is an essential regulatory subunit of the proteasome. By influencing the ubiquitin-proteasome system activity, ribophorins (RPNs) are responsible for almost all physiology and pathology processes of mammalian cells. Nevertheless, little is known about the role of RPNs in HCC. In this work, we first evaluated the transcriptional levels and the prognostic and diagnostic value of RPNs based on the public database. Firstly, we found all RPNs were surprisingly consistently upregulated in HCC tissues. Moreover, the RPNs' expression pattern is correlated with HCC tumor grade. The TCGA HCC platforms' data indicated that RPN2, RPN3, RPN6, RPN9, RPN10, RPN11, and RPN12 have robust diagnosis values. Then, survival analysis revealed that the high expression of RPN1, RPN2, RPN4, RPN5, RPN6, RPN9, and RPN11 was correlated with unfavourable HCC overall survival. Then, genetic alteration, immune infiltration feature, gene-genes network, and functional enrichment for RPNs indicated that RPNs have many potential biosynthesis activities expert for UPS functions. Moreover, western blot and qRT-PCR results confirmed these results. The silencing of RPN6 and RPN9 significantly reduced HCC cells' proliferation, migration, and invasion ability in vitro. An in vivo tumor model further validated the oncogene effect of RPN6 on HCC cell growth. Moreover, RPN6 and RPN9 could promote cell migratory and invasive potential by affecting the epithelial-mesenchymal transition (EMT) process. In summary, this study suggests that the RPN family has the potential to be potential biomarkers and targets for HCC.
Collapse
|
5
|
Zhao JM, Qi TG. The role of TXNL1 in disease: treatment strategies for cancer and diseases with oxidative stress. Mol Biol Rep 2021; 48:2929-2934. [PMID: 33660093 DOI: 10.1007/s11033-021-06241-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Thioredoxin-like protein-1 (TXNL1; also known as thioredoxin-related 32 kDa protein, TRP32) is a thioredoxin involved in the regulation of oxidative stress, which protects cells from damage through redox balance. Studies have shown that TXNL1 has a variety of functions, including cell signal transduction, cell cycle regulation, protein synthesis, modification and degradation, vesicle transport, transcriptional regulation, cell apoptosis, virus replication and oxidative stress regulation, etc., and plays an important role in the occurrence and development of human diseases. Therefore, TXNL1 has a strong correlation with the treatment of cancer and oxidative stress diseases. In this paper, the basic structure, function and potential application value of TXNL1 in diseases are reviewed, so as to open up new targets for the treatment of cancer and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jin-Ming Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Tong-Gang Qi
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
6
|
Zhao L, Zhao J, Zhang Y, Wang L, Zuo L, Niu A, Zhang W, Xue X, Zhao S, Sun C, Li K, Wang J, Bian Z, Zhao X, Saur D, Seidler B, Wang C, Qi T. Generation and identification of a conditional knockout allele for the PSMD11 gene in mice. BMC DEVELOPMENTAL BIOLOGY 2021; 21:4. [PMID: 33517884 PMCID: PMC7849139 DOI: 10.1186/s12861-020-00233-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our previous study have shown that the PSMD11 protein was an important survival factor for cancer cells except for its key role in regulation of assembly and activity of the 26S proteasome. To further investigate the role of PSMD11 in carcinogenesis, we constructed a conditional exon 5 floxed allele of PSMD11 (PSMD11flx) in mice. RESULTS It was found that homozygous PSMD11 flx/flx mice showed normal and exhibited a normal life span and fertility, and showed roughly equivalent expression of PSMD11 in various tissues, suggesting that the floxed allele maintained the wild-type function. Cre recombinase could induce efficient knockout of the floxed PSMD11 allele both in vitro and in vivo. Mice with constitutive single allele deletion of PSMD11 derived from intercrossing between PSMD11flx/flx and CMV-Cre mice were all viable and fertile, and showed apparent growth retardation, suggesting that PSMD11 played a significant role in the development of mice pre- or postnatally. No whole-body PSMD11 deficient embryos (PSMD11-/-) were identified in E7.5-8.5 embryos in uteros, indicating that double allele knockout of PSMD11 leads to early embryonic lethality. To avoid embryonic lethality produced by whole-body PSMD11 deletion, we further developed conditional PSMD11 global knockout mice with genotype Flp;FSF-R26CAG - CreERT2/+; PSMD11 flx/flx, and demonstrated that PSMD11 could be depleted in a temporal and tissue-specific manner. Meanwhile, it was found that depletion of PSMD11 could induce massive apoptosis in MEFs. CONCLUSIONS In summary, our data demonstrated that we have successfully generated a conditional knockout allele of PSMD11 in mice, and found that PSMD11 played a key role in early and postnatal development in mice, the PSMD11 flx/flx mice will be an invaluable tool to explore the functions of PSMD11 in development and diseases.
Collapse
Affiliation(s)
- Linlin Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Jinming Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yingying Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Lele Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Longyan Zuo
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Airu Niu
- Department of Clinical Laboratory, Sanhe Yanjiao No.23 Hospital, Beijing, 065201, China
| | - Wei Zhang
- Department of Medical Imaging, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Suhong Zhao
- Department of Medical Imaging, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Chao Sun
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Kailin Li
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Jue Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Zhimin Bian
- Comprehensive Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery/Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Dieter Saur
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Barbara Seidler
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Tonggang Qi
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
7
|
Lu J, Lu Y, Ding Y, Xiao Q, Liu L, Cai Q, Kong Y, Bai Y, Yu T. DNLC: differential network local consistency analysis. BMC Bioinformatics 2019; 20:489. [PMID: 31874600 PMCID: PMC6929334 DOI: 10.1186/s12859-019-3046-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The biological network is highly dynamic. Functional relations between genes can be activated or deactivated depending on the biological conditions. On the genome-scale network, subnetworks that gain or lose local expression consistency may shed light on the regulatory mechanisms related to the changing biological conditions, such as disease status or tissue developmental stages. RESULTS In this study, we develop a new method to select genes and modules on the existing biological network, in which local expression consistency changes significantly between clinical conditions. The method is called DNLC: Differential Network Local Consistency. In simulations, our algorithm detected artificially created local consistency changes effectively. We applied the method on two publicly available datasets, and the method detected novel genes and network modules that were biologically plausible. CONCLUSIONS The new method is effective in finding modules in which the gene expression consistency change between clinical conditions. It is a useful tool that complements traditional differential expression analyses to make discoveries from gene expression data. The R package is available at https://cran.r-project.org/web/packages/DNLC.
Collapse
Affiliation(s)
- Jianwei Lu
- School of Software Engineering, Tongji University, Shanghai, China
- Institute of Advanced Translational Medicine, Tongji University, Shanghai, China
| | - Yao Lu
- School of Software Engineering, Tongji University, Shanghai, China
| | - Yusheng Ding
- School of Software Engineering, Tongji University, Shanghai, China
| | - Qingyang Xiao
- Department of Environmental Health, Emory University, Atlanta, GA USA
| | - Linqing Liu
- School of Software Engineering, Tongji University, Shanghai, China
| | - Qingpo Cai
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| | - Yunchuan Kong
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| | - Yun Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| |
Collapse
|
8
|
Chen J, Wu F, Shi Y, Yang D, Xu M, Lai Y, Liu Y. Identification of key candidate genes involved in melanoma metastasis. Mol Med Rep 2019; 20:903-914. [PMID: 31173190 PMCID: PMC6625188 DOI: 10.3892/mmr.2019.10314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the most lethal stage of cancer progression. The present study aimed to investigate the underlying molecular mechanisms of melanoma metastasis using bioinformatics. Using the microarray dataset GSE8401 from the Gene Expression Omnibus database, which included 52 biopsy specimens from patients with melanoma metastasis and 31 biopsy specimens from patients with primary melanoma, differentially expressed genes (DEGs) were identified, subsequent to data preprocessing with the affy package, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A protein-protein interaction (PPI) network was constructed. Mutated genes were analyzed with 80 mutated cases with melanoma from The Cancer Genome Atlas. The overall survival of key candidate DEGs, which were within a filtering of degree >30 criteria in the PPI network and involved three or more KEGG signaling pathways, and genes with a high mutation frequency were delineated. The expression analysis of key candidate DEGs, mutant genes and their associated genes were performed on UALCAN. Of the 1,187 DEGs obtained, 505 were upregulated and 682 were downregulated. ‘Extracellular exosome’ processes, the ‘amoebiasis’ pathway, the ‘ECM-receptor interaction’ pathway and the ‘focal adhesion’ signaling pathway were significantly enriched and identified as important processes or signaling pathways. The overall survival analysis of phosphoinositide-3-kinase regulator subunit 3 (PIK3R3), centromere protein M (CENPM), aurora kinase A (AURKA), laminin subunit α 1 (LAMA1), proliferating cell nuclear antigen (PCNA), adenylate cyclase 1 (ADCY1), BUB1 mitotic checkpoint serine/threonine kinase (BUB1), NDC80 kinetochore complex component (NDC80) and protein kinase C α (PRKCA) in DEGs was statistically significant. Mutation gene analysis identified that BRCA1-associated protein 1 (BAP1) had a higher mutation frequency and survival analysis, and its associated genes in the BAP1-associated PPI network, including ASXL transcriptional regulator 1 (ASXL1), proteasome 26S subunit, non-ATPase 3 (PSMD3), proteasome 26S subunit, non ATPase 11 (PSMD11) and ubiquitin C (UBC), were statistically significantly associated with the overall survival of patients with melanoma. The expression levels of PRKCA, BUB1, BAP1 and ASXL1 were significantly different between primary melanoma and metastatic melanoma. Based on the present study, ‘extracellular exosome’ processes, ‘amoebiasis’ pathways, ‘ECM-receptor interaction’ pathways and ‘focal adhesion’ signaling pathways may be important in the formation of metastases from melanoma. The involved genes, including PIK3R3, CENPM, AURKA, LAMA1, PCNA, ADCY1, BUB1, NDC80 and PRKCA, and mutation associated genes, including BAP1, ASXL1, PSMD3, PSMD11 and UBC, may serve important roles in metastases of melanoma.
Collapse
Affiliation(s)
- Jia Chen
- Department of Dermatopathology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Fei Wu
- Department of Dermatopathology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Yu Shi
- Department of Medical Cosmetology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Degang Yang
- Department of Treatment, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Mingyuan Xu
- Department of Dermatopathology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| | - Yeqiang Liu
- Department of Dermatopathology, Tongji University Affiliated Shanghai Skin Disease Hospital, Shanghai 200443, P.R. China
| |
Collapse
|
9
|
Liu XD, Xie DF, Wang YL, Guan H, Huang RX, Zhou PK. Integrated analysis of lncRNA–mRNA co-expression networks in the α-particle induced carcinogenesis of human branchial epithelial cells. Int J Radiat Biol 2018; 95:144-155. [DOI: 10.1080/09553002.2019.1539880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao-Dan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, PR China
| | - Da-Fei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, PR China
| | - Yi-Long Wang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, PR China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, PR China
| | - Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Changsha, PR China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, PR China
- State Key Laboratory of Respiratory, School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
10
|
Wang L, Zhao L, Wei G, Saur D, Seidler B, Wang J, Wang C, Qi T. Homoharringtonine could induce quick protein synthesis of PSMD11 through activating MEK1/ERK1/2 signaling pathway in pancreatic cancer cells. J Cell Biochem 2018; 119:6644-6656. [PMID: 29665121 DOI: 10.1002/jcb.26847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/09/2018] [Indexed: 02/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most devastating disease with the 5-year survival rate less than 6%. In this study, we investigated if inhibiting protein synthesis directly with homoharringtonine (HHT) could induce acute apoptosis in pancreatic cancer cells through quick depletion of multiple short-lived critical members of the central proteome, example, PSMD11(26S proteasome non-ATPase regulatory subunit 11). It was shown that although HHT could inhibit proliferation and growth of MiaPaCa-2 and PANC-1 cells in a time- and dose-dependent manner, only part of pancreatic cancer cells could be induced to die through acute apoptosis. Mechanistic studies showed that HHT could induce quick protein synthesis of PSMD11 through activating MEK1/ERK1/2 signaling pathway in pancreatic cancer cells. Inhibiting MEK1/ERK1/2 pathway with sorafenib could improve the cytotoxity of HHT in vitro and in a genetically engineered mouse model of pancreatic cancer. These results suggest that quick induction of PSMD11 or other acute apoptosis inhibitors through activation of the MEK1/ERK1/2 signaling pathway may be one of the important surviving mechanism which can help pancreatic cancer cells avoid acute apoptosis, it may have significant implications for the targeted therapy of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Lele Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Linlin Zhao
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Guo Wei
- Department of Dermatology, The Second Hospital of Shandong University, Jinan, China
| | - Dieter Saur
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, München, Germany
| | - Barbara Seidler
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, München, Germany
| | - Junyan Wang
- Department of Internal Medicine, Dezhou People's Hospital, Dezhou, China
| | - Chuanxin Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Tonggang Qi
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China.,The Third People's Hospital of Tibet, Central Laboratory, Lhasa, China
| |
Collapse
|
11
|
Zhang Y, Yang Y, Zhang F, Liao X, Shao Z, Li D. Epigenetic silencing of RNF144A expression in breast cancer cells through promoter hypermethylation and MBD4. Cancer Med 2018; 7:1317-1325. [PMID: 29473320 PMCID: PMC5911569 DOI: 10.1002/cam4.1324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence shows that ring finger protein 144A (RNF144A), a poorly characterized member of the Ring-between-Ring (RBR) family of E3 ubiquitin ligases, is a potential tumor suppressor gene. However, its regulatory mechanism in breast cancer remains undefined. Here, we report that RNF144A promoter contains a putative CpG island and the methylation levels of RNF144A promoter are higher in primary breast tumors than those in normal breast tissues. Consistently, RNF144A promoter methylation levels are associated with its transcriptional silencing in breast cancer cells, and treatment with DNA methylation inhibitor 5-Aza-2-deoxycytidine (AZA) reactivates RNF144A expression in cells with RNF144A promoter hypermethylation. Furthermore, genetic knockdown or pharmacological inhibition of endogenous methyl-CpG-binding domain 4 (MBD4) results in increased RNF144A expression. These findings suggest that RNF144A is epigenetically silenced in breast cancer cells by promoter hypermethylation and MBD4.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yin‐Long Yang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Fang‐Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Hong Liao
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐Min Shao
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Da‐Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
12
|
Voutsadakis IA. Proteasome expression and activity in cancer and cancer stem cells. Tumour Biol 2017; 39:101042831769224. [DOI: 10.1177/1010428317692248] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste. Marie, ON, Canada
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|