1
|
Esbaugh AJ. Physiological responses of euryhaline marine fish to naturally-occurring hypersalinity. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111768. [PMID: 39454936 DOI: 10.1016/j.cbpa.2024.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Hypersaline habitats are generally defined as those with salinities in excess of 40 ppt. Well-known hypersaline regions (e.g. salt and soda lakes) have a well-earned reputation for being among the most inhospitable habitats in the world, and fish endemic to these areas have been the subject of much research related to extremophile physiology. Yet, marine coastal hypersalinity is both a common occurrence and a growing consideration in many marine coastal ecosystems, in part owing to human influence (e.g. evaporation, river diversion, desalination effluent). Importantly, any increase in salinity will elevate the osmoregulatory challenges experienced by a fish, which must be overcome by increasing the capacity to imbibe and absorb water and excrete ions. While great attention has been given to dynamic osmoregulatory processes with respect to freshwater to seawater transitions, and to the extreme hypersalinity tolerance that is associated with the adoption of an osmo-conforming strategy, relatively little focus has been placed on the physiological implications of moderate hypersalinity exposures (e.g. ≤ 60 ppt). Importantly, these exposures often represent the threshold of osmoregulatory performance owing to energetic constraints on ion excretion and efficiency limitations on water absorption. This review will explore the current state of knowledge with respect to hypersalinity exposure in euryhaline fishes, while placing a particular focus on the physiological constraints, plasticity and downstream implications of long-term exposure to moderate hypersalinity.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- University of Texas at Austin, Department of Marine Science, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
2
|
Dowd WW, Kültz D. Lost in translation? Evidence for a muted proteomic response to thermal stress in a stenothermal Antarctic fish and possible evolutionary mechanisms. Physiol Genomics 2024; 56:721-740. [PMID: 39250150 DOI: 10.1152/physiolgenomics.00051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Stenothermal Antarctic notothenioid fishes are noteworthy for their history of isolation in extreme cold and their corresponding lack of the canonical heat shock response. Despite extensive transcriptomic studies, the mechanistic basis for stenothermy has not been fully elucidated. Given that the proteome better represents an organism's physiology, the possibility exists that some aspects of stenothermy arise posttranscriptionally. Here, Antarctic emerald rockcod (Trematomus bernacchii) were sampled after exposure to chronic and/or acute high temperatures, followed by a thorough assessment of proteomic responses in the brain, gill, and kidney. Few cellular stress response proteins were induced, and overall responses were modest in terms of the numbers of differentially expressed proteins and their fold changes. Inconsistencies in protein induction across treatments and tissues are suggestive of dysregulation, rather than an adaptive response. Changes in regulation of the translational machinery in Antarctic notothenioids could explain these patterns. Some components of translational regulatory pathways are highly conserved [e.g., Ser-52, eukaryotic translation initiation factor 2α (eIF2α)], but other proteins comprising the cellular "integrated stress response," specifically, the eIF2α kinases general control nonderepressible 2 (GCN2) and PKR-like endoplasmic reticulum kinase (PERK), may have evolved along different trajectories in Antarctic fishes. Taken together, these observations suggest a novel hypothesis for stenothermy and the absence of a coordinated cellular stress response in Antarctic fishes.NEW & NOTEWORTHY Antarctic fishes have some of the lowest known heat tolerances among vertebrates, but the molecular mechanisms underlying this pattern are not fully understood. By combining detailed analyses of protein expression patterns in several tissues under various heat treatments with a broader evolutionary perspective, this study offers a novel hypothesis to explain the narrow range of temperature tolerance in this extraordinary group of fishes.
Collapse
Affiliation(s)
- W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Dietmar Kültz
- Physiological Genomics Group, Department of Animal Science and Genome Center, University of California, Davis, California, United States
| |
Collapse
|
3
|
Mojica EA, Petcu KA, Kültz D. Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae013. [PMID: 39372708 PMCID: PMC11452309 DOI: 10.1093/eep/dvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
This study sheds new light on the timescale through which histone post-translational modifications (PTMs) respond to environmental stimuli, demonstrating that the histone PTM response does not necessarily precede the proteomic response or acclimation. After a variety of salinity treatments were administered to Mozambique tilapia (Oreochromis mossambicus) throughout their lifetimes, we quantified 343 histone PTMs in the gills of each fish. We show here that histone PTMs differ dramatically between fish exposed to distinct environmental conditions for 18 months, and that the majority of these histone PTM alterations persist for at least 4 weeks, irrespective of further salinity changes. However, histone PTMs respond minimally to 4-week-long periods of salinity acclimation during adulthood. The results of this study altogether signify that patterns of histone PTMs in individuals reflect their prolonged exposure to environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Kathleen A Petcu
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| |
Collapse
|
4
|
Mojica E, Kültz D. A Strategy to Characterize the Global Landscape of Histone Post-Translational Modifications Within Tissues of Nonmodel Organisms. J Proteome Res 2024; 23:2780-2794. [PMID: 37624673 PMCID: PMC11301685 DOI: 10.1021/acs.jproteome.3c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/27/2023]
Abstract
Histone post-translational modifications (PTMs) are epigenetic marks that play a critical role in the expression and maintenance of DNA, but they remain largely uninvestigated in nonmodel organisms due to technical challenges. To begin alleviating this issue, we developed a workflow for histone PTM analysis in Mozambique tilapia (Oreochromis mossambicus), being a widespread and environmentally hardy fish, using mass spectrometry methods. By incorporating multiple protein digestion methods into the preparation of each sample, we reliably quantified 214 biologically relevant histone PTMs. All of these histone PTMs, collectively referred to as the global histone PTM landscape, were characterized in the gills, kidney, and testes of this fish. By comparing the global histone PTM landscape between the three tissues, we found that 91.59% of histone PTMs were tissue-dependent. The workflow and tools for histone PTM analysis described in this study are now publicly available and enable comprehensive investigation into the influence of environmental stress on histone PTMs in nonmodel organisms. Given the functionality and flexibility of histone PTMs, we anticipate that the study of histone PTMs in ecologically relevant contexts will provide ground-breaking insights into comparative physiology and evolution.
Collapse
Affiliation(s)
- Elizabeth
A. Mojica
- Department of Animal Sciences, University of California - Davis, One Shields Avenue, Meyer Hall, Davis, California 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences, University of California - Davis, One Shields Avenue, Meyer Hall, Davis, California 95616, United States
| |
Collapse
|
5
|
Blondeau-Bidet E, Tine M, Gonzalez AA, Guinand B, Lorin-Nebel C. Coping with salinity extremes: Gill transcriptome profiling in the black-chinned tilapia (Sarotherodon melanotheron). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172620. [PMID: 38642748 DOI: 10.1016/j.scitotenv.2024.172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.
Collapse
Affiliation(s)
| | - Mbaye Tine
- UFR of Agricultural Sciences, Aquaculture and Food Technologies (UFR S2ATA), Gaston Berger University, Saint-Louis, Senegal
| | | | - Bruno Guinand
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
6
|
Mojica EA, Fu Y, Kültz D. Salinity-responsive histone PTMs identified in the gills and gonads of Mozambique tilapia (Oreochromis mossambicus). BMC Genomics 2024; 25:586. [PMID: 38862901 PMCID: PMC11167857 DOI: 10.1186/s12864-024-10471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. RESULTS Four salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. CONCLUSIONS This study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Yuhan Fu
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Con P, Hamar J, Biran J, Kültz D, Cnaani A. Cell-based homologous expression system for in-vitro characterization of environmental effects on transmembrane peptide transport in fish. Curr Res Physiol 2024; 7:100118. [PMID: 38298473 PMCID: PMC10825657 DOI: 10.1016/j.crphys.2024.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
All organisms encounter environmental changes that lead to physiological adjustments that could drive evolutionary adaptations. The ability to adjust performance in order to cope with environmental changes depends on the organism's physiological plasticity. These adjustments can be reflected in behavioral, physiological, and molecular changes, which interact and affect each other. Deciphering the role of molecular adjustments in physiological changes will help to understand how multiple levels of biological organization are synchronized during adaptations. Transmembrane transporters, which facilitate a cell's interaction with its surroundings, are prime targets for molecular studies of the environmental effects on an organism's physiology. Fish are subjected to environmental fluctuations and exhibit different coping mechanisms. To study the molecular adjustments of fish transporters to their external surrounding, suitable experimental systems must be established. The Mozambique tilapia (Oreochromis mossambicus) is an excellent model for environmental stress studies, due to its extreme salinity tolerance. We established a homologous cellular-based expression system and uptake assay that allowed us to study the effects of environmental conditions on transmembrane transport. We applied our expression system to investigate the effects of environmental conditions on the activity of PepT2, a transmembrane transporter critical in the absorption of dietary peptides and drugs. We created a stable, modified fish cell-line, in which we exogenously expressed the tilapia PepT2, and tested the effects of water temperature and salinity on the uptake of a fluorescent di-peptide, β-Ala-Lys-AMCA. While temperature affected only Vmax, medium salinity had a bi-directional effect, with significantly reduced Vmax in hyposaline conditions and significantly increased Km in hypersaline conditions. These assays demonstrate the importance of suitable experimental systems for fish ecophysiology studies. Furthermore, our in-vitro results show how the effect of hypersaline conditions on the transporter activity can explain expression shifts seen in the intestine of saltwater-acclimated fish, emphasizing the importance of complimentary studies in better understanding environmental physiology. This research highlights the advantages of using homologous expression systems to study environmental effects encountered by fish, in a relevant cellular context. The presented tools and methods can be adapted to study other transporters in-vitro.
Collapse
Affiliation(s)
- Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Hamar
- Department of Animal Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
8
|
Root L, Kültz D. Effects of pejus and pessimum zone salinity stress on gill proteome networks and energy homeostasis in Oreochromis mossambicus. Proteomics 2024; 24:e2300121. [PMID: 37475512 DOI: 10.1002/pmic.202300121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Salinity tolerance in fish involves a suite of physiological changes, but a cohesive theory leading to a mechanistic understanding at the organismal level is lacking. To examine the potential of adapting energy homeostasis theory in the context of salinity stress in teleost fish, Oreochromis mossambicus were acclimated to hypersalinity at multiple rates and durations to determine salinity ranges of tolerance and resistance. Over 3000 proteins were quantified simultaneously to analyze molecular phenotypes associated with hypersalinity. A species- and tissue-specific data-independent acquisition (DIA) assay library of MSMS spectra was created. Protein networks representing complex molecular phenotypes associated with salinity acclimation were generated. O. mossambicus has a wide "zone of resistance" from 75 g/kg salinity to 120 g/kg. Crossing into the zone of resistance resulted in marked phenotypic changes including blood osmolality over 400 mOsm/kg, reduced body condition, and cessation of feeding. Protein networks impacted by hypersalinity consist of electron transport chain (ETC) proteins and specific osmoregulatory proteins. Cytoskeletal, cell adhesion, and extracellular matrix proteins are enriched in networks that are sensitive to the critical salinity threshold. These network analyses identify specific proteome changes that are associated with distinct zones described by energy homeostasis theory and distinguish them from general hypersalinity-induced proteome changes.
Collapse
Affiliation(s)
- Larken Root
- Department of Animal Sciences, University of California Davis, Davis, California, USA
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
9
|
Gleason LU, Fekete FJ, Tanner RL, Dowd WW. Multi-omics reveals largely distinct transcript- and protein-level responses to the environment in an intertidal mussel. J Exp Biol 2023; 226:jeb245962. [PMID: 37902141 PMCID: PMC10690110 DOI: 10.1242/jeb.245962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Organismal responses to stressful environments are influenced by numerous transcript- and protein-level mechanisms, and the relationships between expression changes at these levels are not always straightforward. Here, we used paired transcriptomic and proteomic datasets from two previous studies from gill of the California mussel, Mytilus californianus, to explore how simultaneous transcript and protein abundance patterns may diverge under different environmental scenarios. Field-acclimatized mussels were sampled from two disparate intertidal sites; individuals from one site were subjected to three further treatments (common garden, low-intertidal or high-intertidal outplant) that vary in temperature and feeding time. Assessing 1519 genes shared between the two datasets revealed that both transcript and protein expression patterns differentiated the treatments at a global level, despite numerous underlying discrepancies. There were far more instances of differential expression between treatments in transcript only (1451) or protein only (226) than of the two levels shifting expression concordantly (68 instances). Upregulated expression of cilium-associated transcripts (likely related to feeding) was associated with relatively benign field treatments. In the most stressful treatment, transcripts, but not proteins, for several molecular chaperones (including heat shock proteins and endoplasmic reticulum chaperones) were more abundant, consistent with a threshold model for induction of translation of constitutively available mRNAs. Overall, these results suggest that the relative importance of transcript- and protein-level regulation (translation and/or turnover) differs among cellular functions and across specific microhabitats or environmental contexts. Furthermore, the degree of concordance between transcript and protein expression can vary across benign versus acutely stressful environmental conditions.
Collapse
Affiliation(s)
- Lani U. Gleason
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Florian J. Fekete
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Richelle L. Tanner
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - W. Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
10
|
Garrity C, Garcia-Rovetta C, Rivas I, Delatorre U, Wong A, Kültz D, Peyton J, Arzi B, Vapniarsky N. Tilapia Fish Skin Treatment of Third-Degree Skin Burns in Murine Model. J Funct Biomater 2023; 14:512. [PMID: 37888177 PMCID: PMC10607444 DOI: 10.3390/jfb14100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This study explored the feasibility of using fish skin bandages as a therapeutic option for third-degree skin burns. Following the California wildfires, clinical observations of animals with third-degree skin burns demonstrated increased comfort levels and reduced pain when treated with tilapia fish skin. Despite the promises of this therapy, there are few studies explaining the healing mechanisms behind the application of tilapia fish skin. In this study, mice with third-degree burns were treated with either a hydrocolloid adhesive bandage (control) (n = 16) or fish skin (n = 16) 7 days post-burn. Mice were subjected to histologic, hematologic, molecular, and gross evaluation at days 7, 16, and 28 post-burn. The fish skin offered no benefit to overall wound closure compared to hydrocolloids. Additionally, we detected no difference between fish skin and control treatments in regard to hypermetabolism or hematologic values. However, the fish skin groups exhibited 2 times more vascularization and 2 times higher expression of antimicrobial defensin peptide in comparison to controls. Proteomic analysis of the fish skin revealed the presence of antimicrobial peptides. Collectively, these data suggest that fish skin can serve as an innovative and cost-effective therapeutic alternative for burn victims to facilitate vascularization and reduce bacterial infection.
Collapse
Affiliation(s)
- Carissa Garrity
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| | - Christina Garcia-Rovetta
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| | - Iris Rivas
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| | - Ubaldo Delatorre
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences and Coastal & Marine Sciences Institute, Davis, CA 95616, USA;
| | - Jamie Peyton
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| |
Collapse
|
11
|
Kim C, Cnaani A, Kültz D. Removal of evolutionarily conserved functional MYC domains in a tilapia cell line using a vector-based CRISPR/Cas9 system. Sci Rep 2023; 13:12086. [PMID: 37495710 PMCID: PMC10371998 DOI: 10.1038/s41598-023-37928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
MYC transcription factors have critical roles in facilitating a variety of cellular functions that have been highly conserved among species during evolution. However, despite circumstantial evidence for an involvement of MYC in animal osmoregulation, mechanistic links between MYC function and osmoregulation are missing. Mozambique tilapia (Oreochromis mossambicus) represents an excellent model system to study these links because it is highly euryhaline and highly tolerant to osmotic (salinity) stress at both the whole organism and cellular levels of biological organization. Here, we utilize an O. mossambicus brain cell line and an optimized vector-based CRISPR/Cas9 system to functionally disrupt MYC in the tilapia genome and to establish causal links between MYC and cell functions, including cellular osmoregulation. A cell isolation and dilution strategy yielded polyclonal myca (a gene encoding MYC) knockout (ko) cell pools with low genetic variability and high gene editing efficiencies (as high as 98.2%). Subsequent isolation and dilution of cells from these pools produced a myca ko cell line harboring a 1-bp deletion that caused a frameshift mutation. This frameshift functionally inactivated the transcriptional regulatory and DNA-binding domains predicted by bioinformatics and structural analyses. Both the polyclonal and monoclonal myca ko cell lines were viable, propagated well in standard medium, and differed from wild-type cells in morphology. As such, they represent a new tool for causally linking myca to cellular osmoregulation and other cell functions.
Collapse
Affiliation(s)
- Chanhee Kim
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Park JS, Gabel AM, Kassir P, Kang L, Chowdhary PK, Osei-Ntansah A, Tran ND, Viswanathan S, Canales B, Ding P, Lee YS, Brewster R. N-myc downstream regulated gene 1 (ndrg1) functions as a molecular switch for cellular adaptation to hypoxia. eLife 2022; 11:e74031. [PMID: 36214665 PMCID: PMC9550225 DOI: 10.7554/elife.74031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Lack of oxygen (hypoxia and anoxia) is detrimental to cell function and survival and underlies many disease conditions. Hence, metazoans have evolved mechanisms to adapt to low oxygen. One such mechanism, metabolic suppression, decreases the cellular demand for oxygen by downregulating ATP-demanding processes. However, the molecular mechanisms underlying this adaptation are poorly understood. Here, we report on the role of ndrg1a in hypoxia adaptation of the anoxia-tolerant zebrafish embryo. ndrg1a is expressed in the kidney and ionocytes, cell types that use large amounts of ATP to maintain ion homeostasis. ndrg1a mutants are viable and develop normally when raised under normal oxygen. However, their survival and kidney function is reduced relative to WT embryos following exposure to prolonged anoxia. We further demonstrate that Ndrg1a binds to the energy-demanding sodium-potassium ATPase (NKA) pump under anoxia and is required for its degradation, which may preserve ATP in the kidney and ionocytes and contribute to energy homeostasis. Lastly, we show that sodium azide treatment, which increases lactate levels under normoxia, is sufficient to trigger NKA degradation in an Ndrg1a-dependent manner. These findings support a model whereby Ndrg1a is essential for hypoxia adaptation and functions downstream of lactate signaling to induce NKA degradation, a process known to conserve cellular energy.
Collapse
Affiliation(s)
- Jong S Park
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Austin M Gabel
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Polina Kassir
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Lois Kang
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Prableen K Chowdhary
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Afia Osei-Ntansah
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Neil D Tran
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Soujanya Viswanathan
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Bryanna Canales
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Pengfei Ding
- Department of Chemistry and Biochemistry, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Young-Sam Lee
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Rachel Brewster
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| |
Collapse
|
13
|
Su M, Liu N, Zhang Z, Zhang J. Osmoregulatory strategies of estuarine fish Scatophagus argus in response to environmental salinity changes. BMC Genomics 2022; 23:545. [PMID: 35907798 PMCID: PMC9339187 DOI: 10.1186/s12864-022-08784-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scatophagus argus, an estuarine inhabitant, can rapidly adapt to different salinity environments. However, the knowledge of the molecular mechanisms underlying its strong salinity tolerance remains unclear. The gill, as the main osmoregulatory organ, plays a vital role in the salinity adaptation of the fish, and thus relative studies are constructive to reveal unique osmoregulatory mechanisms in S. argus. RESULTS In the present study, iTRAQ coupled with nanoLC-MS/MS techniques were employed to explore branchial osmoregulatory mechanisms in S. argus acclimated to different salinities. Among 1,604 identified proteins, 796 differentially expressed proteins (DEPs) were detected. To further assess osmoregulatory strategies in the gills under different salinities, DEPs related to osmoregulatory (22), non-directional (18), hypo- (52), and hypersaline (40) stress responses were selected. Functional annotation analysis of these selected DEPs indicated that the cellular ion regulation (e.g. Na+-K+-ATPase [NKA] and Na+-K+-2Cl- cotransporter 1 [NKCC1]) and ATP synthesis were deeply involved in the osmoregulatory process. As an osmoregulatory protein, NKCC1 expression was inhibited under hyposaline stress but showed the opposite trend in hypersaline conditions. The expression levels of NKA α1 and β1 were only increased under hypersaline challenge. However, hyposaline treatments could enhance branchial NKA activity, which was inhibited under hypersaline environments, and correspondingly, reduced ATP content was observed in gill tissues exposed to hyposaline conditions, while its contents were increased in hypersaline groups. In vitro experiments indicated that Na+, K+, and Cl- ions were pumped out of branchial cells under hypoosmotic stress, whereas they were absorbed into cells under hyperosmotic conditions. Based on our results, we speculated that NKCC1-mediated Na+ influx was inhibited, and proper Na+ efflux was maintained by improving NKA activity under hyposaline stress, promoting the rapid adaptation of branchial cells to the hyposaline condition. Meanwhile, branchial cells prevented excessive loss of ions by increasing NKA internalization and reducing ATP synthesis. In contrast, excess ions in cells exposed to the hyperosmotic medium were excreted with sufficient energy supply, and reduced NKA activity and enhanced NKCC1-mediated Na+ influx were considered a compensatory regulation. CONCLUSIONS S. argus exhibited divergent osmoregulatory strategies in the gills when encountering hypoosmotic and hyperosmotic stresses, facilitating effective adaptabilities to a wide range of environmental salinity fluctuation.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhengqi Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
14
|
Evans TG, Bible JM, Maynard A, Griffith KR, Sanford E, Kültz D. Proteomic changes associated with predator-induced morphological defenses in oysters. Mol Ecol 2022; 31:4254-4270. [PMID: 35754098 DOI: 10.1111/mec.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
Inducible prey defenses occur when organisms undergo plastic changes in phenotype to reduce predation risk. When predation pressure varies persistently over space or time, such as when predator and prey co-occur over only part of their biogeographic ranges, prey populations can become locally adapted in their inducible defenses. In California estuaries, native Olympia oyster (Ostrea lurida) populations have evolved disparate phenotypic responses to an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea). In this study, oysters from an estuary with drills, and oysters from an estuary without drills, were reared for two generations in a laboratory common garden, and subsequently exposed to cues from Atlantic drills. Comparative proteomics was then used to investigate molecular mechanisms underlying conserved and divergent aspects of their inducible defenses. Both populations developed smaller, thicker, and harder shells after drill exposure, and these changes in shell phenotype were associated with up-regulation of calcium transport proteins that could influence biomineralization. Inducible defenses evolve in part because defended phenotypes incur fitness costs when predation risk is low. Immune proteins were down-regulated by both oyster populations after exposure to drills, implying a trade-off between biomineralization and immune function. Following drill exposure, oysters from the population that co-occurs with drills grew smaller shells than oysters inhabiting the estuary not yet invaded by the predator. Variation in the response to drills between populations was associated with isoform-specific protein expression. This trend suggests that a stronger inducible defense response evolved in oysters that co-occur with drills through modification of an existing mechanism.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Jillian M Bible
- Department of Environmental Science and Studies, Washington College, Chestertown, MD 21620, USA
| | - Ashley Maynard
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Kaylee R Griffith
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Kim C, Wang X, Kültz D. Prediction and Experimental Validation of a New Salinity-Responsive Cis-Regulatory Element (CRE) in a Tilapia Cell Line. Life (Basel) 2022; 12:787. [PMID: 35743818 PMCID: PMC9225295 DOI: 10.3390/life12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptional regulation is a major mechanism by which organisms integrate gene x environment interactions. It can be achieved by coordinated interplay between cis-regulatory elements (CREs) and transcription factors (TFs). Euryhaline tilapia (Oreochromis mossambicus) tolerate a wide range of salinity and thus are an appropriate model to examine transcriptional regulatory mechanisms during salinity stress in fish. Quantitative proteomics in combination with the transcription inhibitor actinomycin D revealed 19 proteins that are transcriptionally upregulated by hyperosmolality in tilapia brain (OmB) cells. We searched the extended proximal promoter up to intron1 of each corresponding gene for common motifs using motif discovery tools. The top-ranked motif identified (STREME1) represents a binding site for the Forkhead box TF L1 (FoxL1). STREME1 function during hyperosmolality was experimentally validated by choosing two of the 19 genes, chloride intracellular channel 2 (clic2) and uridine phosphorylase 1 (upp1), that are enriched in STREME1 in their extended promoters. Transcriptional induction of these genes during hyperosmolality requires STREME1, as evidenced by motif mutagenesis. We conclude that STREME1 represents a new functional CRE that contributes to gene x environment interactions during salinity stress in tilapia. Moreover, our results indicate that FoxL1 family TFs are contribute to hyperosmotic induction of genes in euryhaline fish.
Collapse
Affiliation(s)
- Chanhee Kim
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Dietmar Kültz
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| |
Collapse
|
16
|
Tanner RL, Gleason LU, Dowd WW. Environment-driven shifts in inter-individual variation and phenotypic integration within subnetworks of the mussel transcriptome and proteome. Mol Ecol 2022; 31:3112-3127. [PMID: 35363903 PMCID: PMC9321163 DOI: 10.1111/mec.16452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The environment can alter the magnitude of phenotypic variation among individuals, potentially influencing evolutionary trajectories. However, environmental influences on variation are complex and remain understudied. Populations in heterogeneous environments might exhibit more variation, the amount of variation could differ between benign and stressful conditions, and/or variation might manifest in different ways among stages of the gene‐to‐protein expression cascade or among physiological functions. Here, we explore these three issues by quantifying patterns of inter‐individual variation in both transcript and protein expression levels among California mussels, Mytilus californianus Conrad. Mussels were exposed to five ecologically relevant treatments that varied in the mean and interindividual heterogeneity of body temperature. To target a diverse set of physiological functions, we assessed variation within 19 expression subnetworks, including canonical stress‐response pathways and empirically derived coexpression clusters that represent a diffuse set of cellular processes. Variation in expression was particularly pronounced in the treatments with high mean and heterogeneous body temperatures. However, with few exceptions, environment‐dependent shifts of variation in the transcriptome were not reflected in the proteome. A metric of phenotypic integration provided evidence for a greater degree of constraint on relative expression levels (i.e., stronger correlation) within expression subnetworks in benign, homogeneous environments. Our results suggest that environments that are more stressful on average – and which also tend to be more heterogeneous – can relax these expression constraints and reduce phenotypic integration within biochemical subnetworks. Context‐dependent “unmasking” of functional variation may contribute to interindividual differences in physiological phenotype and performance in stressful environments.
Collapse
Affiliation(s)
- Richelle L Tanner
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.,Environmental Science & Policy Program, Chapman University, Orange, CA, 92866, USA
| | - Lani U Gleason
- Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, 95819, USA
| | - W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
17
|
Gao J, Xu G, Xu P. Full-length transcriptomic analysis reveals osmoregulatory mechanisms in Coilia nasus eyes reared under hypotonic and hyperosmotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149333. [PMID: 34352462 DOI: 10.1016/j.scitotenv.2021.149333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
In recent years, sea-level rise, caused by global warming, will trigger salinity changes. This will threaten the survival of aquatic animals. Till now, the osmoregulatory mechanism of Coilia nasus eyes has not been yet explored. Oxford Nanopore Technologies (ONT) sequencing was performed in C. nasus eyes during hypotonic and hyperosmotic stress for the first time. 22.5G clean reads and 26,884 full-length non-redundant sequences were generated via ONT sequencing. AS events, APA, TF, and LncRNA were identified. During hypotonic stress, 46 up-regulated DEGs and 28 down-regulated DEGs were identified. During hypertonic stress, 190 up-regulated DEGs and 182 down-regulated DEGs were identified. These DEGs were associated with immune, metabolism, and transport responses. The expression of these DEGs indicated that apoptosis and inflammation were triggered during hypotonic and hyperosmotic stress. To resist hypotonic stress, polyamines metabolism and transport of Na+ and Cl- from inter-cellular to extra-cellular were activated. During hyperosmotic stress, amino acids metabolism and transport of myo-inositol and Na+ from extra-cellular to inter-cellular were activated, while Cl- transport was inhibited. Moreover, different transcript isoforms generated from the same gene performed different expression patterns during hypotonic and hypertonic stress. These findings will be beneficial to understand osmoregulatory mechanism of C. nasus eyes, and can also improve our insights on the adaptation of aquatic animals to environmental changes.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
18
|
Root L, Campo A, MacNiven L, Con P, Cnaani A, Kültz D. Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover. Genomics 2021; 113:3235-3249. [PMID: 34298068 DOI: 10.1016/j.ygeno.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
A data-independent acquisition (DIA) assay library for targeted quantitation of thousands of Oreochromis niloticus gill proteins using a label- and gel-free workflow was generated and used to compare protein and mRNA abundances. This approach generated complimentary rather than redundant data for 1899 unique genes in gills of tilapia acclimated to freshwater and brackish water. Functional enrichment analyses identified mitochondrial energy metabolism, serine protease and immunity-related functions, and cytoskeleton/ extracellular matrix organization as major processes controlled by salinity in O. niloticus gills. Non-linearity in salinity-dependent transcriptome versus proteome regulation was revealed for specific functional groups of genes. The relationship was more linear for other molecular functions/ cellular processes, suggesting that the salinity-dependent regulation of O. niloticus gill function relies on post-transcriptional mechanisms for some functions/ processes more than others. This integrative systems biology approach can be adopted for other tissues and organisms to study cellular dynamics for many changing ecological contexts.
Collapse
Affiliation(s)
- Larken Root
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Aurora Campo
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Leah MacNiven
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Root L, Campo A, MacNiven L, Con P, Cnaani A, Kültz D. A data-independent acquisition (DIA) assay library for quantitation of environmental effects on the kidney proteome of Oreochromis niloticus. Mol Ecol Resour 2021; 21:2486-2503. [PMID: 34101993 DOI: 10.1111/1755-0998.13445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022]
Abstract
Interactions of organisms with their environment are complex and environmental regulation at different levels of biological organization is often nonlinear. Therefore, the genotype to phenotype continuum requires study at multiple levels of organization. While studies of transcriptome regulation are now common for many species, quantitative studies of environmental effects on proteomes are needed. Here we report the generation of a data-independent acquisition (DIA) assay library that enables simultaneous targeted proteomics of thousands of Oreochromis niloticus kidney proteins using a label- and gel-free workflow that is well suited for ecologically relevant field samples. We demonstrate the usefulness of this DIA assay library by discerning environmental effects on the kidney proteome of O. niloticus. Moreover, we demonstrate that the DIA assay library approach generates data that are complimentary rather than redundant to transcriptomic data. Transcript and protein abundance differences in kidneys of tilapia acclimated to freshwater and brackish water (25 g/kg) were correlated for 2114 unique genes. A high degree of non-linearity in salinity-dependent regulation of transcriptomes and proteomes was revealed suggesting that the regulation of O. niloticus renal function by environmental salinity relies heavily on post-transcriptional mechanisms. The application of functional enrichment analyses using STRING and KEGG to DIA assay data sets is demonstrated by identifying myo-inositol metabolism, antioxidant and xenobiotic functions, and signalling mechanisms as key elements controlled by salinity in tilapia kidneys. The DIA assay library resource presented here can be adopted for other tissues and other organisms to study proteome dynamics during changing ecological contexts.
Collapse
Affiliation(s)
- Larken Root
- Department of Animal Sciences, University of California Davis, Davis, CA, USA
| | - Aurora Campo
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Leah MacNiven
- Department of Animal Sciences, University of California Davis, Davis, CA, USA
| | - Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
20
|
Li J, Kültz D. Proteomics of Osmoregulatory Responses in Threespine Stickleback Gills. Integr Comp Biol 2020; 60:304-317. [PMID: 32458981 DOI: 10.1093/icb/icaa042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gill proteome of threespine sticklebacks (Gasterosteus aculeatus) differs greatly in populations that inhabit diverse environments characterized by different temperature, salinity, food availability, parasites, and other parameters. To assess the contribution of a specific environmental parameter to such differences it is necessary to isolate its effects from those of other parameters. In this study the effect of environmental salinity on the gill proteome of G. aculeatus was isolated in controlled mesocosm experiments. Salinity-dependent changes in the gill proteome were analyzed by Liquid chromatography/Tandem mass spectrometry data-independent acquisition (DIA) and Skyline. Relative abundances of 1691 proteins representing the molecular phenotype of stickleback gills were quantified using previously developed MSMS spectral and assay libraries in combination with DIA quantitative proteomics. Non-directional stress responses were distinguished from osmoregulatory protein abundance changes by their consistent occurrence during both hypo- and hyper-osmotic salinity stress in six separate mesocosm experiments. If the abundance of a protein was consistently regulated in opposite directions by hyper- versus hypo-osmotic salinity stress, then it was considered an osmoregulatory protein. In contrast, if protein abundance was consistently increased irrespective of whether salinity was increased or decreased, then it was considered a non-directional response protein. KEGG pathway analysis revealed that the salivary secretion, inositol phosphate metabolism, valine, leucine, and isoleucine degradation, citrate cycle, oxidative phosphorylation, and corresponding endocrine and extracellular signaling pathways contain most of the osmoregulatory gill proteins whose abundance is directly proportional to environmental salinity. Most proteins that were inversely correlated with salinity map to KEGG pathways that represent proteostasis, immunity, and related intracellular signaling processes. Non-directional stress response proteins represent fatty and amino acid degradation, purine metabolism, focal adhesion, mRNA surveillance, phagosome, endocytosis, and associated intracellular signaling KEGG pathways. These results demonstrate that G. aculeatus responds to salinity changes by adjusting osmoregulatory mechanisms that are distinct from transient non-directional stress responses to control compatible osmolyte synthesis, transepithelial ion transport, and oxidative energy metabolism. Furthermore, this study establishes salinity as a key factor for causing the regulation of numerous proteins and KEGG pathways with established functions in proteostasis, immunity, and tissue remodeling. We conclude that the corresponding osmoregulatory gill proteins and KEGG pathways represent molecular phenotypes that promote transepithelial ion transport, cellular osmoregulation, and gill epithelial remodeling to adjust gill function to environmental salinity.
Collapse
Affiliation(s)
- Johnathon Li
- Department of Animal Sciences, University of California, Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
21
|
Li J, Xue L, Cao M, Zhang Y, Wang Y, Xu S, Zheng B, Lou Z. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1255-1277. [PMID: 32162151 DOI: 10.1007/s10695-020-00786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a major ecological factor in the marine environment, and extremely important for the survival, development, and growth of fish. In this study, gill transcriptomes were examined by high-throughput sequencing at three different salinities (12 ppt as low salinity, 22 ppt as control salinity, and 32 ppt as high salinity) in an importantly economical fish silvery pomfret. A total of 187 genes were differentially expressed, including 111 up-regulated and 76 down-regulated transcripts in low-salinity treatment group and 107 genes differentially expressed, including 74 up-regulated and 33 down-regulated transcripts in high-salinity treatment group compared with the control group, respectively. Some pathways including NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor pathway, cardiac muscle contraction, and vascular smooth muscle contraction were significantly enriched. qPCR analysis further confirmed that mRNA expression levels of immune (HSP90A, IL-1β, TNFα, TLR2, IP-10, MIG, CCL19, and IL-11) and ion transport-related genes (WNK2, NPY2R, CFTR, and SLC4A2) significantly changed under salinity stress. Low salinity stress caused more intensive expression changes of immune-related genes than high salinity. These results imply that salinity stress may affect immune function in addition to regulating osmotic pressure in silvery pomfret.
Collapse
Affiliation(s)
- Juan Li
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Liangyi Xue
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Mingyue Cao
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yu Zhang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yajun Wang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Shanliang Xu
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Baoxiao Zheng
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Zhengjia Lou
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Tian Y, Wen H, Qi X, Zhang X, Liu S, Li B, Sun Y, Li J, He F, Yang W, Li Y. Characterization of Full-Length Transcriptome Sequences and Splice Variants of Lateolabrax maculatus by Single-Molecule Long-Read Sequencing and Their Involvement in Salinity Regulation. Front Genet 2019; 10:1126. [PMID: 31803231 PMCID: PMC6873903 DOI: 10.3389/fgene.2019.01126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Transcriptome complexity plays crucial roles in regulating the biological functions of eukaryotes. Except for functional genes, alternative splicing and fusion transcripts produce a vast expansion of transcriptome diversity. In this study, we applied PacBio single-molecule long-read sequencing technology to unveil the whole transcriptome landscape of Lateolabrax maculatus. We obtained 28,809 high-quality non-redundant transcripts, including 18,280 novel isoforms covering 8,961 annotated gene loci within the current reference genome and 3,172 novel isoforms. A total of 10,249 AS events were detected, and intron retention was the predominant AS event. In addition, 1,359 alternative polyadenylation events, 3,112 lncRNAs, 29,609 SSRs, 365 fusion transcripts, and 1,194 transcription factors were identified in this study. Furthermore, we performed RNA-Seq analysis combined with Iso-Seq results to investigate salinity regulation mechanism at the transcripts level. A total of 518 transcripts were differentially expressed, which were further divided into 8 functional groups. Notably, transcripts from the same genes exhibited similar or opposite expression patterns. Our study provides a comprehensive view of the transcriptome complexity in L. maculatus, which significantly improves current gene models. Moreover, the diversity of the expression patterns of transcripts may enhance the understanding of salinity regulatory mechanism in L. maculatus and other euryhaline teleosts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
23
|
Jiang DL, Gu XH, Li BJ, Zhu ZX, Qin H, Meng ZN, Lin HR, Xia JH. Identifying a Long QTL Cluster Across chrLG18 Associated with Salt Tolerance in Tilapia Using GWAS and QTL-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:250-261. [PMID: 30737627 DOI: 10.1007/s10126-019-09877-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Understanding the genetic mechanism of osmoregulation is important for the improvement of salt tolerance in tilapia. In our previous study, we have identified a major quantitative trait locus (QTL) region located at 23.0 Mb of chrLG18 in a Nile tilapia line by QTL-seq. However, the conservation of these QTLs in other tilapia populations or species is not clear. In this study, we successfully investigated the QTLs associated with salt tolerance in a mass cross population from the GIFT line of Nile tilapia (Oreochromis niloticus) using a ddRAD-seq-based genome-wide association study (GWAS) and in a full-sib family from the Malaysia red tilapia strain (Oreochromis spp) using QTL-seq. Our study confirmed the major QTL interval that is located at nearly 23.0 Mb of chrLG18 in Nile tilapia and revealed a long QTL cluster across chrLG18 controlling for the salt-tolerant trait in both red tilapia and Nile tilapia. This is the first GWAS analysis on salt tolerance in tilapia. Our finding provides important insights into the genetic architecture of salinity tolerance in tilapia and supplies a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the underlying genes for salt tolerance in tilapia.
Collapse
Affiliation(s)
- Dan Li Jiang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hui Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zi Ning Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
24
|
Riggs CL, Le R, Kültz D, Zajic D, Summers A, Alvarez L, Podrabsky JE. Establishment and characterization of an anoxia-tolerant cell line, PSU-AL-WS40NE, derived from an embryo of the annual killifish Austrofundulus limnaeus. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:11-22. [PMID: 30802492 DOI: 10.1016/j.cbpb.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
Most animal cells rely on aerobic metabolism for survival and are damaged or die within minutes without oxygen. Embryos of the annual killifish Austrofundulus limnaeus, however, survive months without oxygen. Determining how their cells survive without oxygen has the potential to revolutionize our understanding of the cellular mechanisms supporting vertebrate anoxia tolerance and the evolution of such tolerance. Therefore, we aimed to establish and characterize an anoxia-tolerant cell line from A. limnaeus for investigating mechanisms of vertebrate anoxia tolerance. The PSU-AL-WS40NE cell line of neuroepithelial identity was established from embryonic tissue of A. limnaeus using a tissue explant. The cells can survive for at least 49 d without oxygen or replenishment of growth medium, compared to only 3 d of anoxic survival for two mammalian cell lines. PSU-AL-WS40NE cells accumulate lactate during anoxia, indicating use of common metabolic pathways for anaerobic metabolism. Additionally, they express many of the same small noncoding RNAs that are stress-responsive in whole embryos of A. limnaeus and mammalian cells, as well as anoxia-responsive small noncoding RNAs derived from the mitochondrial genome (mitosRNAs). The establishment of the cell line provides a unique tool for investigating cellular mechanisms of vertebrate anoxia tolerance, and has the potential to transform our understanding of the role of oxidative metabolism in cell biology.
Collapse
Affiliation(s)
- Claire L Riggs
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; Department of Biology, Saint Louis University, 1 N. Grand Blvd., St. Louis, MO 63103, United States of America.
| | - Rosey Le
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, United States of America
| | - Dietmar Kültz
- Department of Animal Science, University of California, One Shields Ave., Davis, CA 95616, United States of America
| | - Daniel Zajic
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| | - Amanda Summers
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; Department of Psychological and Brain Sciences, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Luz Alvarez
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| |
Collapse
|
25
|
Voisin AS, Kültz D, Silvestre F. Early-life exposure to the endocrine disruptor 17-α-ethinylestradiol induces delayed effects in adult brain, liver and ovotestis proteomes of a self-fertilizing fish. J Proteomics 2018; 194:112-124. [PMID: 30550985 DOI: 10.1016/j.jprot.2018.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2023]
Abstract
Early-life represents a critically sensitive window to endocrine disrupting chemicals, potentially leading to long-term repercussions on the phenotype later in life. The mechanisms underlying this phenomenon, referred to as the Developmental Origins of Health and Disease (DOHaD), are still poorly understood. To gain molecular understanding of these effects, we exposed mangrove rivulus (Kryptolebias marmoratus) for 28 days post hatching (dph) to 4 and 120 ng/L 17-α-ethinylestradiol, a model xenoestrogen. After 28 days, fish were raised for 140 days in clean water and we performed quantitative label-free proteomics on brain, liver and ovotestis of 168 dph adults. A total of 820, 888 and 420 proteins were robustly identified in the brain, liver and ovotestis, respectively. Effects of 17-α-ethinylestradiol were tissue and dose-dependent: a total of 31, 51 and 18 proteins were differentially abundant at 4 ng/L in the brain, liver and ovotestis, respectively, compared to 20, 25 and 39 proteins at 120 ng/L. Our results suggest that estrogen-responsive pathways, such as lipid metabolism, inflammation, and the innate immune system were affected months after the exposure. In addition, the potential perturbation of S-adenosylmethionine metabolism encourages future studies to investigate the role of DNA methylation in mediating the long-term effects of early-life exposures. SIGNIFICANCE: The Developmental Origins of Health and Disease (DOHaD) states that early life stages of humans and animals are sensitive to environmental stressors and can develop health issues later in life, even if the stress has ceased. Molecular mechanisms supporting DOHaD are still unclear. The mangrove rivulus is a new fish model species naturally reproducing by self-fertilization, making it possible to use isogenic lineages in which all individuals are highly homozygous. This species therefore permits to strongly reduce the confounding factor of genetic variability in order to investigate the effects of environmental stress on the phenotype. After characterizing the molecular phenotype of brain, liver and ovotestis, we obtained true proteomic reaction norms of these three organs in adults after early life stages have been exposed to the common endocrine disruptor 17-α-ethinylestradiol (EE2). Our study demonstrates long-term effects of early-life endocrine disruption at the proteomic level in diverse estrogen-responsive pathways 5 months after the exposure. The lowest tested and environmentally relevant concentration of 4 ng/L had the highest impact on the proteome in brain and liver, highlighting the potency of endocrine disruptors at low concentrations.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium
| |
Collapse
|
26
|
Saelao P, Wang Y, Chanthavixay G, Yu V, Gallardo RA, Dekkers JCM, Lamont SJ, Kelly T, Zhou H. Integrated Proteomic and Transcriptomic Analysis of Differential Expression of Chicken Lung Tissue in Response to NDV Infection during Heat Stress. Genes (Basel) 2018; 9:genes9120579. [PMID: 30486457 PMCID: PMC6316021 DOI: 10.3390/genes9120579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Newcastle disease virus (NDV) is a devastating worldwide poultry pathogen with major implications for global food security. In this study, two highly inbred and genetically distinct chicken lines, Fayoumis and Leghorns, were exposed to a lentogenic strain of NDV, while under the effects of heat stress, in order to understand the genetic mechanisms of resistance during high ambient temperatures. Fayoumis, which are relatively more resistant to pathogens than Leghorns, had larger numbers of differentially expressed genes (DEGs) during the early stages of infection when compared to Leghorns and subsequently down-regulated their immune response at the latter stages to return to homeostasis. Leghorns had very few DEGs across all observed time points, with the majority of DEGs involved with metabolic and glucose-related functions. Proteomic analysis corroborates findings made within Leghorns, while also identifying interesting candidate genes missed by expression profiling. Poor correlation between changes observed in the proteomic and transcriptomic datasets highlights the potential importance of integrative approaches to understand the mechanisms of disease response. Overall, this study provides novel insights into global protein and expression profiles of these two genetic lines, and provides potential genetic targets involved with NDV resistance during heat stress in poultry.
Collapse
Affiliation(s)
- Perot Saelao
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ganrea Chanthavixay
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Vivian Yu
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Terra Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| |
Collapse
|
27
|
Li J, Levitan B, Gomez-Jimenez S, Kültz D. Development of a Gill Assay Library for Ecological Proteomics of Threespine Sticklebacks ( Gasterosteus aculeatus). Mol Cell Proteomics 2018; 17:2146-2163. [PMID: 30093419 PMCID: PMC6210217 DOI: 10.1074/mcp.ra118.000973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
A data-independent acquisition (DIA) assay library for quantitative analyses of proteome dynamics has been developed for gills of threespine sticklebacks (Gasterosteus aculeatus). A raw spectral library was generated by data-dependent acquisition (DDA) and annotation of tryptic peptides to MSMS spectra and protein database identifiers. The assay library was constructed from the raw spectral library by removal of low-quality, ambiguous, and low-signal peptides. Only unique proteins represented by at least two peptides are included in the assay library, which consists of 1506 proteins, 5074 peptides, 5104 precursors, and 25,322 transitions. This assay library was used with DIA data to identify biochemical differences in gill proteomes of four populations representing different eco- and morpho-types of threespine sticklebacks. The assay library revealed unique and reproducible proteome signatures. Warm-adapted, low-plated, brackish-water fish from Laguna de la Bocana del Rosario (Mexico) show elevated HSP47, extracellular matrix, and innate immunity proteins whereas several immunoglobulins, interferon-induced proteins, ubiquitins, proteolytic enzymes, and nucleic acid remodeling proteins are reduced. Fully-plated, brackish-water fish from Westchester Lagoon (Alaska) display elevated ion regulation, GTPase signaling, and contractile cytoskeleton proteins, altered abundances of many ribosomal, calcium signaling and immunity proteins, and depleted transcriptional regulators and metabolic enzymes. Low-plated freshwater fish from Lake Solano (California) have elevated inflammasomes and proteolytic proteins whereas several iron containing and ion regulatory proteins are reduced. Gills of fully-plated, marine fish from Bodega Harbor (California) have elevated oxidative metabolism enzymes and reduced transglutaminase 2, collagens, and clathrin heavy chains. These distinct proteome signatures represent targets for testing ecological and evolutionary influences on molecular mechanisms of gill function in threespine sticklebacks. Furthermore, the gill assay library represents a model for other tissues and paves the way for accurate and reproducible network analyses of environmental context-dependent proteome dynamics in complex organisms.
Collapse
Affiliation(s)
- Johnathon Li
- From the ‡Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Ave., Davis, CA 95616
| | - Bryn Levitan
- From the ‡Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Ave., Davis, CA 95616
| | - Silvia Gomez-Jimenez
- §Centro de Investigación en Alimentación y Desarrollo, Carretera a la Victoria Km. 0.6, Apartado, Hermosillo, Sonora, México C.P. 83000
| | - Dietmar Kültz
- From the ‡Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Ave., Davis, CA 95616;
- ¶Coastal Marine Sciences Institute, University of California, Davis
| |
Collapse
|
28
|
Interrogation of the Gulf toadfish intestinal proteome response to hypersalinity exposure provides insights into osmoregulatory mechanisms and regulation of carbonate mineral precipitation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:66-76. [DOI: 10.1016/j.cbd.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
|
29
|
Alternatively spliced variants in Atlantic cod (Gadus morhua) support response to variable salinity environment. Sci Rep 2018; 8:11607. [PMID: 30072755 PMCID: PMC6072735 DOI: 10.1038/s41598-018-29723-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
Analysis of gill transcriptome of the Atlantic cod from the Baltic Sea demonstrated that alternatively spliced (AS) variants may be actively involved in the process of adaptation to altered salinity. Some AS variants of different genes, like phospholipase A2 group IVC (PLA2G4C), appeared only in fish exposed to altered salinity, while other isoforms of the same genes were present in all experimental groups. Novel sequence arrangements represent 89% of all AS in the Baltic cod compared to the Atlantic population. Profiles of modified pathways suggest that regulation by AS can afford specific changes of genes expressed in response to the environment. The AS variants appear to be involved in the response to stress by modifications of signalling in apoptosis pathways, an innate immunological response and pro-inflammatory process. Present results support the hypothesis that developing new AS variants could support genome complexity and reinforce the ability to fast adapt to local environments.
Collapse
|
30
|
González‐Gómez PL, Echeverria V, Estades CF, Perez JH, Krause JS, Sabat P, Li J, Kültz D, Wingfield JC. Contrasting seasonal and aseasonal environments across stages of the annual cycle in the rufous‐collared sparrow,
Zonotrichia capensis
: Differences in endocrine function, proteome and body condition. J Anim Ecol 2018; 87:1364-1382. [DOI: 10.1111/1365-2656.12846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/29/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Paulina L. González‐Gómez
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
- Universidad Autónoma de Chile Providencia Santiago Chile
| | - Valentina Echeverria
- Departamento de Manejo de Recursos Naturales Facultad de Ciencias Forestales y Conservación de la Naturaleza Universidad de Chile La Pintana Santiago Chile
| | - Cristian F. Estades
- Departamento de Manejo de Recursos Naturales Facultad de Ciencias Forestales y Conservación de la Naturaleza Universidad de Chile La Pintana Santiago Chile
| | - Jonathan H. Perez
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| | - Jesse S. Krause
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| | - Pablo Sabat
- IEB Facultad de Ciencias Universidad de Chile Ñuñoa Santiago Chile
- Center of Applied Ecology and Sustainability (CAPES) Pontificia Universidad Católica de Chile Santiago Chile
| | - Jonathon Li
- Biochemical Evolution Laboratory Department of Animal Science University of California Davis Davis California
| | - Dietmar Kültz
- Biochemical Evolution Laboratory Department of Animal Science University of California Davis Davis California
| | - John C. Wingfield
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis California
| |
Collapse
|
31
|
Turko AJ, Kültz D, Fudge D, Croll RP, Smith FM, Stoyek MR, Wright PA. Skeletal stiffening in an amphibious fish out of water is a response to increased body weight. ACTA ACUST UNITED AC 2018; 220:3621-3631. [PMID: 29046415 DOI: 10.1242/jeb.161638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, 1 Shields Ave., Meyer Hall, Davis, CA 95616, USA
| | - Douglas Fudge
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1.,Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA 92866, USA
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Frank M Smith
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2.,Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
32
|
Fietz K, Rye Hintze CO, Skovrind M, Kjærgaard Nielsen T, Limborg MT, Krag MA, Palsbøll PJ, Hestbjerg Hansen L, Rask Møller P, Gilbert MTP. Mind the gut: genomic insights to population divergence and gut microbial composition of two marine keystone species. MICROBIOME 2018; 6:82. [PMID: 29720271 PMCID: PMC5932900 DOI: 10.1186/s40168-018-0467-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/26/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Deciphering the mechanisms governing population genetic divergence and local adaptation across heterogeneous environments is a central theme in marine ecology and conservation. While population divergence and ecological adaptive potential are classically viewed at the genetic level, it has recently been argued that their microbiomes may also contribute to population genetic divergence. We explored whether this might be plausible along the well-described environmental gradient of the Baltic Sea in two species of sand lance (Ammodytes tobianus and Hyperoplus lanceolatus). Specifically, we assessed both their population genetic and gut microbial composition variation and investigated not only which environmental parameters correlate with the observed variation, but whether host genome also correlates with microbiome variation. RESULTS We found a clear genetic structure separating the high-salinity North Sea from the low-salinity Baltic Sea sand lances. The observed genetic divergence was not simply a function of isolation by distance, but correlated with environmental parameters, such as salinity, sea surface temperature, and, in the case of A. tobianus, possibly water microbiota. Furthermore, we detected two distinct genetic groups in Baltic A. tobianus that might represent sympatric spawning types. Investigation of possible drivers of gut microbiome composition variation revealed that host species identity was significantly correlated with the microbial community composition of the gut. A potential influence of host genetic factors on gut microbiome composition was further confirmed by the results of a constrained analysis of principal coordinates. The host genetic component was among the parameters that best explain observed variation in gut microbiome composition. CONCLUSIONS Our findings have relevance for the population structure of two commercial species but also provide insights into potentially relevant genomic and microbial factors with regards to sand lance adaptation across the North Sea-Baltic Sea environmental gradient. Furthermore, our findings support the hypothesis that host genetics may play a role in regulating the gut microbiome at both the interspecific and intraspecific levels. As sequencing costs continue to drop, we anticipate that future studies that include full genome and microbiome sequencing will be able to explore the full relationship and its potential adaptive implications for these species.
Collapse
Affiliation(s)
- Katharina Fietz
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.
- Marine Evolution and Conservation, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Christian Olaf Rye Hintze
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Mikkel Skovrind
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Environmental Science, Environmental Microbial Genomics Group, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Morten T Limborg
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Marcus A Krag
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Per J Palsbøll
- Marine Evolution and Conservation, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Environmental Microbial Genomics Group, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Peter Rask Møller
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, Section for Evolutionary Genomics, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.
- NTNU University Museum, 7491, Trondheim, Norway.
| |
Collapse
|
33
|
Gu XH, Jiang DL, Huang Y, Li BJ, Chen CH, Lin HR, Xia JH. Identifying a Major QTL Associated with Salinity Tolerance in Nile Tilapia Using QTL-Seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:98-107. [PMID: 29318417 DOI: 10.1007/s10126-017-9790-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Selection of new lines with high salinity tolerance allows for economically feasible production of tilapias in brackish water areas. Mapping QTLs and identifying the markers linked to salinity-tolerant traits are the first steps in the improvement of the tolerance in tilapia through marker-assisted selection techniques. By using QTL-seq strategy and linkage-based analysis, two significant QTL intervals (chrLG4 and chrLG18) on salinity-tolerant traits were firstly identified in the Nile tilapia. Fine mapping with microsatellite and SNP markers suggested a major QTL region that located at 23.0 Mb of chrLG18 and explained 79% of phenotypic variation with a LOD value of 95. Expression analysis indicated that at least 10 genes (e.g., LACTB2, KINH, NCOA2, DIP2C, LARP4B, PEX5R, and KCNJ9) near or within the QTL interval were significantly differentially expressed in intestines, brains, or gills under 10, 15, or 20 ppt challenges. Our findings suggest that QTL-seq can be effectively utilized in QTL mapping of salinity-tolerant traits in fish. The identified major QTL is a promising locus to improve our knowledge on the genetic mechanism of salinity tolerance in tilapia.
Collapse
Affiliation(s)
- Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dan Li Jiang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yan Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chao Hao Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
34
|
Schmitz M, Ziv T, Admon A, Baekelandt S, Mandiki SN, L'Hoir M, Kestemont P. Salinity stress, enhancing basal and induced immune responses in striped catfish Pangasianodon hypophthalmus (Sauvage). J Proteomics 2017; 167:12-24. [DOI: 10.1016/j.jprot.2017.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
|
35
|
Wang X, Kültz D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc Natl Acad Sci U S A 2017; 114:E2729-E2738. [PMID: 28289196 PMCID: PMC5380061 DOI: 10.1073/pnas.1614712114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of Omossambicus Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named "OSRE1." Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1 Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation).
Collapse
Affiliation(s)
- Xiaodan Wang
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dietmar Kültz
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616;
| |
Collapse
|
36
|
Tait JC, Mercer EW, Gerber L, Robertson GN, Marshall WS. Osmotic versus adrenergic control of ion transport by ionocytes of Fundulus heteroclitus in the cold. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:255-261. [PMID: 27746134 DOI: 10.1016/j.cbpa.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 11/27/2022]
Abstract
In eurythermic vertebrates, acclimation to the cold may produce changes in physiological control systems. We hypothesize that relatively direct osmosensitive control will operate better than adrenergic receptor mediated control of ion transport in cold vs. warm conditions. Fish were acclimated to full strength seawater (SW) at 21°C and 5°C for four weeks, gill samples and blood were taken and opercular epithelia mounted in Ussing style chambers. Short-circuit current (Isc) at 21°C and 5°C (measured at acclimation temperature), was significantly inhibited by the α2-adrenergic agonist clonidine but the ED50 dose was significantly higher in cold conditions (93.8±16.4nM) than in warm epithelia (47.8±8.1nM) and the maximum inhibition was significantly lower in cold (-66.1±2.2%) vs. warm conditions (-85.6±1.3%), indicating lower sensitivity in the cold. β-Adrenergic responses were unchanged. Hypotonic inhibition of Isc, was higher in warm acclimated (-95%), compared to cold acclimated fish (-75%), while hypertonic stimulations were the same, indicating equal responsiveness to hyperosmotic stimuli. Plasma osmolality was significantly elevated in cold acclimated fish and, by TEM, gill ionocytes from cold acclimated fish had significantly shorter mitochondria. These data are consistent with a shift in these eurythermic animals from complex adrenergic control to relatively simple biomechanical osmotic control of ion secretion in the cold.
Collapse
Affiliation(s)
- Janet C Tait
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Evan W Mercer
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Lucie Gerber
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - George N Robertson
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - William S Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada.
| |
Collapse
|
37
|
Synergic stress in striped catfish (Pangasianodon hypophthalmus, S.) exposed to chronic salinity and bacterial infection: Effects on kidney protein expression profile. J Proteomics 2016; 142:91-101. [DOI: 10.1016/j.jprot.2016.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
|
38
|
Population-specific renal proteomes of marine and freshwater three-spined sticklebacks. J Proteomics 2016; 135:112-131. [DOI: 10.1016/j.jprot.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/16/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022]
|
39
|
Kültz D, Li J, Zhang X, Villarreal F, Pham T, Paguio D. Population-specific plasma proteomes of marine and freshwater three-spined sticklebacks (Gasterosteus aculeatus
). Proteomics 2015. [DOI: 10.1002/pmic.201500132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science; University of California; Davis CA USA
| | - Johnathon Li
- Department of Animal Science; University of California; Davis CA USA
| | - Xuezhen Zhang
- Department of Animal Science; University of California; Davis CA USA
- College of Fisheries; Huazhong Agricultural University; Wuhan P. R. China
| | | | - Tuan Pham
- Department of Animal Science; University of California; Davis CA USA
| | - Darlene Paguio
- Department of Animal Science; University of California; Davis CA USA
| |
Collapse
|
40
|
Abstract
ABSTRACT
Salinity represents a critical environmental factor for all aquatic organisms, including fishes. Environments of stable salinity are inhabited by stenohaline fishes having narrow salinity tolerance ranges. Environments of variable salinity are inhabited by euryhaline fishes having wide salinity tolerance ranges. Euryhaline fishes harbor mechanisms that control dynamic changes in osmoregulatory strategy from active salt absorption to salt secretion and from water excretion to water retention. These mechanisms of dynamic control of osmoregulatory strategy include the ability to perceive changes in environmental salinity that perturb body water and salt homeostasis (osmosensing), signaling networks that encode information about the direction and magnitude of salinity change, and epithelial transport and permeability effectors. These mechanisms of euryhalinity likely arose by mosaic evolution involving ancestral and derived protein functions. Most proteins necessary for euryhalinity are also critical for other biological functions and are preserved even in stenohaline fish. Only a few proteins have evolved functions specific to euryhaline fish and they may vary in different fish taxa because of multiple independent phylogenetic origins of euryhalinity in fish. Moreover, proteins involved in combinatorial osmosensing are likely interchangeable. Most euryhaline fishes have an upper salinity tolerance limit of approximately 2× seawater (60 g kg−1). However, some species tolerate up to 130 g kg−1 salinity and they may be able to do so by switching their adaptive strategy when the salinity exceeds 60 g kg−1. The superior salinity stress tolerance of euryhaline fishes represents an evolutionary advantage favoring their expansion and adaptive radiation in a climate of rapidly changing and pulsatory fluctuating salinity. Because such a climate scenario has been predicted, it is intriguing to mechanistically understand euryhalinity and how this complex physiological phenotype evolves under high selection pressure.
Collapse
|
41
|
Kültz D, Li J, Sacchi R, Morin D, Buckpitt A, Van Winkle L. Alterations in the proteome of the respiratory tract in response to single and multiple exposures to naphthalene. Proteomics 2015; 15:2655-68. [PMID: 25825134 DOI: 10.1002/pmic.201400445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/16/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Protein adduction is considered to be critical to the loss of cellular homeostasis associated with environmental chemicals undergoing metabolic activation. Despite considerable effort, our understanding of the key proteins mediating the pathologic consequences from protein modification by electrophiles is incomplete. This work focused on naphthalene (NA) induced acute injury of respiratory epithelial cells and tolerance which arises after multiple toxicant doses to define the initial cellular proteomic response and later protective actions related to tolerance. Airways and nasal olfactory epithelium from mice exposed to 15 ppm NA either for 4 h (acute) or for 4 h/day × 7 days (tolerant) were used for label-free protein quantitation by LC/MS/MS. Cytochrome P450 2F2 and secretoglobin 1A1 are decreased dramatically in airways of mice exposed for 4 h, a finding consistent with the fact that CYPs are localized primarily in Clara cells. A number of heat shock proteins and protein disulfide isomerases, which had previously been identified as adduct targets for reactive metabolites from several lung toxicants, were upregulated in airways but not olfactory epithelium of tolerant mice. Protein targets that are upregulated in tolerance may be key players in the pathophysiology associated with reactive metabolite protein adduction. All MS data have been deposited in the ProteomeXchange with identifier PXD000846 (http://proteomecentral.proteomexchange.org/dataset/PXD000846).
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Johnathon Li
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Romina Sacchi
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Dexter Morin
- Depatment of Molecular Biosciences, University of California, Davis, CA, USA
| | - Alan Buckpitt
- Depatment of Molecular Biosciences, University of California, Davis, CA, USA
| | - Laura Van Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
42
|
Cozzi RRF, Robertson GN, Spieker M, Claus LN, Zaparilla GMM, Garrow KL, Marshall WS. Paracellular pathway remodeling enhances sodium secretion by teleost fish in hypersaline environments. ACTA ACUST UNITED AC 2015; 218:1259-69. [PMID: 25750413 DOI: 10.1242/jeb.117317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/02/2023]
Abstract
In vertebrate salt-secreting epithelia, Na(+) moves passively down an electrochemical gradient via a paracellular pathway. We assessed how this pathway is modified to allow Na(+) secretion in hypersaline environments. Mummichogs (Fundulus heteroclitus) acclimated to hypersaline [2× seawater (2SW), 64‰] for 30 days developed invasive projections of accessory cells with an increased area of tight junctions, detected by punctate distribution of CFTR (cystic fibrosis transmembrane conductance regulator) immunofluorescence and transmission electron miscroscopy of the opercular epithelia, which form a gill-like tissue rich in ionocytes. Distribution of CFTR was not explained by membrane raft organization, because chlorpromazine (50 μmol l(-1)) and filipin (1.5 μmol l(-1)) did not affect opercular epithelia electrophysiology. Isolated opercular epithelia bathed in SW on the mucosal side had a transepithelial potential (Vt) of +40.1±0.9 mV (N=24), sufficient for passive Na(+) secretion (Nernst equilibrium voltage≡ENa=+24.11 mV). Opercular epithelia from fish acclimated to 2SW and bathed in 2SW had higher Vt of +45.1±1.2 mV (N=24), sufficient for passive Na(+) secretion (ENa=+40.74 mV), but with diminished net driving force. Bumetanide block of Cl(-) secretion reduced Vt by 45% and 29% in SW and 2SW, respectively, a decrease in the driving force for Na(+) extrusion. Estimates of shunt conductance from epithelial conductance (Gt) versus short-circuit current (Isc) plots (extrapolation to zero Isc) suggested a reduction in total epithelial shunt conductance in 2SW-acclimated fish. In contrast, the morphological elaboration of tight junctions, leading to an increase in accessory-cell-ionocyte contact points, suggests an increase in local paracellular conductance, compensating for the diminished net driving force for Na(+) and allowing salt secretion, even in extreme salinities.
Collapse
Affiliation(s)
- Regina R F Cozzi
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - George N Robertson
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Melanie Spieker
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Lauren N Claus
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Gabriella M M Zaparilla
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Kelly L Garrow
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - William S Marshall
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| |
Collapse
|
43
|
Gardell AM, Qin Q, Rice RH, Li J, Kültz D. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines. PLoS One 2014; 9:e95919. [PMID: 24797371 PMCID: PMC4010420 DOI: 10.1371/journal.pone.0095919] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/01/2014] [Indexed: 12/12/2022] Open
Abstract
Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish.
Collapse
Affiliation(s)
- Alison M. Gardell
- Department of Animal Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Qin Qin
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| | - Johnathan Li
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Dietmar Kültz
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| |
Collapse
|
44
|
Sacchi R, Li J, Villarreal F, Gardell AM, Kültz D. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium. ACTA ACUST UNITED AC 2013; 216:4626-38. [PMID: 24072791 DOI: 10.1242/jeb.093823] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish.
Collapse
Affiliation(s)
- Romina Sacchi
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|