1
|
Müller H, Lesur A, Dittmar G, Gentzel M, Kettner K. Proteomic consequences of TDA1 deficiency in Saccharomyces cerevisiae: Protein kinase Tda1 is essential for Hxk1 and Hxk2 serine 15 phosphorylation. Sci Rep 2022; 12:18084. [PMID: 36302925 PMCID: PMC9613766 DOI: 10.1038/s41598-022-21414-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Hexokinase 2 (Hxk2) of Saccharomyces cerevisiae is a dual function hexokinase, acting as a glycolytic enzyme and being involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by phosphorylation of Hxk2 at serine 15, which has been attributed to the protein kinase Tda1. To explore the role of Tda1 beyond Hxk2 phosphorylation, the proteomic consequences of TDA1 deficiency were investigated by difference gel electrophoresis (2D-DIGE) comparing a wild type and a Δtda1 deletion mutant. To additionally address possible consequences of glucose repression/derepression, both were grown at 2% and 0.1% (w/v) glucose. A total of eight protein spots exhibiting a minimum twofold enhanced or reduced fluorescence upon TDA1 deficiency was detected and identified by mass spectrometry. Among the spot identities are-besides the expected Hxk2-two proteoforms of hexokinase 1 (Hxk1). Targeted proteomics analyses in conjunction with 2D-DIGE demonstrated that TDA1 is indispensable for Hxk2 and Hxk1 phosphorylation at serine 15. Thirty-six glucose-concentration-dependent protein spots were identified. A simple method to improve spot quantification, approximating spots as rotationally symmetric solids, is presented along with new data on the quantities of Hxk1 and Hxk2 and their serine 15 phosphorylated forms at high and low glucose growth conditions. The Δtda1 deletion mutant exhibited no altered growth under high or low glucose conditions or on alternative carbon sources. Also, invertase activity, serving as a reporter for glucose derepression, was not significantly altered. Instead, an involvement of Tda1 in oxidative stress response is suggested.
Collapse
Affiliation(s)
- Henry Müller
- grid.4488.00000 0001 2111 7257Institute of Physiological Chemistry, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Antoine Lesur
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Gunnar Dittmar
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg ,grid.16008.3f0000 0001 2295 9843Department of Life Sciences and Medicine, University of Luxembourg, 6 Avenue de Swing, 4367 Belvaux, Luxembourg
| | - Marc Gentzel
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering (CMCB), TP Molecular Analysis / Mass Spectrometry, Technische Universität Dresden, Tatzberg 46/47, 01307 Dresden, Germany
| | - Karina Kettner
- grid.4488.00000 0001 2111 7257Institute of Physiological Chemistry, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
2
|
Laurian R, Dementhon K, Doumèche B, Soulard A, Noel T, Lemaire M, Cotton P. Hexokinase and Glucokinases Are Essential for Fitness and Virulence in the Pathogenic Yeast Candida albicans. Front Microbiol 2019; 10:327. [PMID: 30858840 PMCID: PMC6401654 DOI: 10.3389/fmicb.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/08/2019] [Indexed: 01/28/2023] Open
Abstract
The pathogenic yeast Candida albicans is both a powerful commensal and a pathogen of humans that can infect wide range of organs and body sites. Metabolic flexibility promotes infection and commensal colonization by this opportunistic pathogen. Yeast cell survival depends upon assimilation of fermentable and non-fermentable locally available carbon sources. Physiologically relevant sugars like glucose and fructose are present at low levels in host niches. However, because glucose is the preferred substrate for energy and biosynthesis of structural components, its efficient detection and metabolism are fundamental for the metabolic adaptation of the pathogen. We explored and characterized the C. albicans hexose kinase system composed of one hexokinase (CaHxk2) and two glucokinases (CaGlk1 and CaGlk4). Using a set of mutant strains, we found that hexose phosphorylation is mostly performed by CaHxk2, which sustains growth on hexoses. Our data on hexokinase and glucokinase expression point out an absence of cross regulation mechanisms at the transcription level and different regulatory pathways. In the presence of glucose, CaHxk2 migrates in the nucleus and contributes to the glucose repression signaling pathway. In addition, CaHxk2 participates in oxidative, osmotic and cell wall stress responses, while glucokinases are overexpressed under hypoxia. Hexose phosphorylation is a key step necessary for filamentation that is affected in the hexokinase mutant. Virulence of this mutant is clearly impacted in the Galleria mellonella and macrophage models. Filamentation, glucose phosphorylation and stress response defects of the hexokinase mutant prevent host killing by C. albicans. By contributing to metabolic flexibility, stress response and morphogenesis, hexose kinase enzymes play an essential role in the virulence of C. albicans.
Collapse
Affiliation(s)
- Romain Laurian
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Karine Dementhon
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Bastien Doumèche
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon – Université Lyon 1, Lyon, France
| | - Alexandre Soulard
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Thierry Noel
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Marc Lemaire
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Pascale Cotton
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| |
Collapse
|
3
|
Rippert D, Backhaus K, Rodicio R, Heinisch JJ. Cell wall synthesis and central carbohydrate metabolism are interconnected by the SNF1/Mig1 pathway in Kluyveromyces lactis. Eur J Cell Biol 2017; 96:70-81. [DOI: 10.1016/j.ejcb.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
|
4
|
Liu S, Li L, Tong C, Zhao Q, Lukyanov PA, Chernikov OV, Li W. Quantitative proteomic analysis of the effects of a GalNAc/Man-specific lectin CSL on yeast cells by label-free LC–MS. Int J Biol Macromol 2016; 85:530-8. [DOI: 10.1016/j.ijbiomac.2016.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/09/2016] [Accepted: 01/10/2016] [Indexed: 11/28/2022]
|
5
|
Kaps S, Kettner K, Migotti R, Kanashova T, Krause U, Rödel G, Dittmar G, Kriegel TM. Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*. J Biol Chem 2015; 290:6243-55. [PMID: 25593311 DOI: 10.1074/jbc.m114.595074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.
Collapse
Affiliation(s)
- Sonja Kaps
- From the Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden
| | - Karina Kettner
- From the Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden,
| | - Rebekka Migotti
- the Mass Spectrometry Platform, Max Delbrück Center for Molecular Medicine, 13125 Berlin, and
| | - Tamara Kanashova
- the Mass Spectrometry Platform, Max Delbrück Center for Molecular Medicine, 13125 Berlin, and
| | - Udo Krause
- the Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Gerhard Rödel
- the Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Gunnar Dittmar
- the Mass Spectrometry Platform, Max Delbrück Center for Molecular Medicine, 13125 Berlin, and
| | - Thomas M Kriegel
- From the Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden
| |
Collapse
|
6
|
Rosas-Lemus M, Uribe-Alvarez C, Chiquete-Félix N, Uribe-Carvajal S. In Saccharomyces cerevisiae fructose-1,6-bisphosphate contributes to the Crabtree effect through closure of the mitochondrial unspecific channel. Arch Biochem Biophys 2014; 555-556:66-70. [PMID: 24924491 DOI: 10.1016/j.abb.2014.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 01/15/2023]
Abstract
In Saccharomyces cerevisiae addition of glucose inhibits oxygen consumption, i.e. S. cerevisiae is Crabtree-positive. During active glycolysis hexoses-phosphate accumulate, and probably interact with mitochondria. In an effort to understand the mechanism underlying the Crabtree effect, the effect of two glycolysis-derived hexoses-phosphate was tested on the S. cerevisiae mitochondrial unspecific channel (ScMUC). Glucose-6-phosphate (G6P) promoted partial opening of ScMUC, which led to proton leakage and uncoupling which in turn resulted in, accelerated oxygen consumption. In contrast, fructose-1,6-bisphosphate (F1,6BP) closed ScMUC and thus inhibited the rate of oxygen consumption. When added together, F1,6BP reverted the mild G6P-induced effects. F1,6BP is proposed to be an important modulator of ScMUC, whose closure contributes to the "Crabtree effect".
Collapse
Affiliation(s)
- Mónica Rosas-Lemus
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Cristina Uribe-Alvarez
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Natalia Chiquete-Félix
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|