1
|
Constantinou M, Charidemou E, Shanlitourk I, Strati K, Kirmizis A. Yeast Nat4 regulates DNA damage checkpoint signaling through its N-terminal acetyltransferase activity on histone H4. PLoS Genet 2024; 20:e1011433. [PMID: 39356727 PMCID: PMC11472955 DOI: 10.1371/journal.pgen.1011433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The DNA damage response (DDR) constitutes a vital cellular process that safeguards genome integrity. This biological process involves substantial alterations in chromatin structure, commonly orchestrated by epigenetic enzymes. Here, we show that the epigenetic modifier N-terminal acetyltransferase 4 (Nat4), known to acetylate the alpha-amino group of serine 1 on histones H4 and H2A, is implicated in the response to DNA damage in S. cerevisiae. Initially, we demonstrate that yeast cells lacking Nat4 have an increased sensitivity to DNA damage and accumulate more DNA breaks than wild-type cells. Accordingly, upon DNA damage, NAT4 gene expression is elevated, and the enzyme is specifically recruited at double-strand breaks. Delving deeper into its effects on the DNA damage signaling cascade, nat4-deleted cells exhibit lower levels of the damage-induced modification H2AS129ph (γH2A), accompanied by diminished binding of the checkpoint control protein Rad9 surrounding the double-strand break. Consistently, Mec1 kinase recruitment at double-strand breaks, critical for H2AS129ph deposition and Rad9 retention, is significantly impaired in nat4Δ cells. Consequently, Mec1-dependent phosphorylation of downstream effector kinase Rad53, indicative of DNA damage checkpoint activation, is reduced. Importantly, we found that the effects of Nat4 in regulating the checkpoint signaling cascade are mediated by its N-terminal acetyltransferase activity targeted specifically towards histone H4. Overall, this study points towards a novel functional link between histone N-terminal acetyltransferase Nat4 and the DDR, associating a new histone-modifying activity in the maintenance of genome integrity.
Collapse
Affiliation(s)
| | - Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Izge Shanlitourk
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Hadjicharalambous A, Whale AJ, Can G, Skehel JM, Houseley JM, Zegerman P. Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress. Wellcome Open Res 2023; 8:327. [PMID: 37766847 PMCID: PMC10521137 DOI: 10.12688/wellcomeopenres.19617.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/29/2023] Open
Abstract
Background: In eukaryotes, replication stress activates a checkpoint response, which facilitates genome duplication by stabilising the replisome. How the checkpoint kinases regulate the replisome remains poorly understood. The aim of this study is to identify new targets of checkpoint kinases within the replisome during replication stress. Methods: Here we use an unbiased biotin proximity-ligation approach in Saccharomyces cerevisiae to identify new interactors and substrates of the checkpoint kinase Rad53 in vivo. Results: From this screen, we identified the replication initiation factor Sld7 as a Rad53 substrate, and Pol1, the catalytic subunit of polymerase a, as a Rad53-interactor. We showed that CDK phosphorylation of Pol1 mediates its interaction with Rad53. Combined with other interactions between Rad53 and the replisome, this Rad53-Pol1 interaction is important for viability and replisome progression during replication stress. Conclusions: Together, we explain how the interactions of Rad53 with the replisome are controlled by both replication stress and the cell cycle, and why these interactions might be important for coordinating the stabilisation of both the leading and lagging strand machineries.
Collapse
Affiliation(s)
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Geylani Can
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| | - J. Mark Skehel
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, London, England, CB2 0QH, UK
| | - Jonathan M. Houseley
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Philip Zegerman
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| |
Collapse
|
3
|
A DNA Replication Fork-centric View of the Budding Yeast DNA Damage Response. DNA Repair (Amst) 2022; 119:103393. [DOI: 10.1016/j.dnarep.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
|
4
|
Lahiri V, Metur SP, Hu Z, Song X, Mari M, Hawkins WD, Bhattarai J, Delorme-Axford E, Reggiori F, Tang D, Dengjel J, Klionsky DJ. Post-transcriptional regulation of ATG1 is a critical node that modulates autophagy during distinct nutrient stresses. Autophagy 2022; 18:1694-1714. [PMID: 34836487 PMCID: PMC9298455 DOI: 10.1080/15548627.2021.1997305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved nutrient-recycling pathway that eukaryotes utilize to combat diverse stresses including nutrient depletion. Dysregulation of autophagy disrupts cellular homeostasis leading to starvation susceptibility in yeast and disease development in humans. In yeast, the robust autophagy response to starvation is controlled by the upregulation of ATG genes, via regulatory processes involving multiple levels of gene expression. Despite the identification of several regulators through genetic studies, the predominant mechanism of regulation modulating the autophagy response to subtle differences in nutrient status remains undefined. Here, we report the unexpected finding that subtle changes in nutrient availability can cause large differences in autophagy flux, governed by hitherto unknown post-transcriptional regulatory mechanisms affecting the expression of the key autophagyinducing kinase Atg1 (ULK1/ULK2 in mammals). We have identified two novel post-transcriptional regulators of ATG1 expression, the kinase Rad53 and the RNA-binding protein Ded1 (DDX3 in mammals). Furthermore, we show that DDX3 regulates ULK1 expression post-transcriptionally, establishing mechanistic conservation and highlighting the power of yeast biology in uncovering regulatory mechanisms that can inform therapeutic approaches.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zehan Hu
- Department of Biology, University of Fribourg, FribourgSwitzerland
| | - Xinxin Song
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, GroningenThe Netherlands
| | - Wayne D. Hawkins
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Janakraj Bhattarai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, GroningenThe Netherlands
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joern Dengjel
- Department of Biology, University of Fribourg, FribourgSwitzerland
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Shor E, Perlin DS. DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity. Curr Genet 2021; 67:439-445. [PMID: 33620543 DOI: 10.1007/s00294-021-01162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
How cells respond to DNA damage is key to maintaining genome integrity or facilitating genetic change. In fungi, DNA damage responses have been extensively characterized in the model budding yeast Saccharomyces cerevisiae, which is generally not pathogenic. However, it is not clear how closely these responses resemble those in fungal pathogens, in which genetic change plays an important role in the evolutionary arms race between pathogen and host and the evolution of antifungal drug resistance. A close relative of S. cerevisiae, Candida glabrata, is an opportunistic pathogen that displays high variability in chromosome structure among clinical isolates and rapidly evolves antifungal drug resistance. The mechanisms facilitating such genomic flexibility and evolvability in this organism are unknown. Recently we characterized the DNA damage response of C. glabrata and identified several features that distinguish it from the well characterized DNA damage response of S. cerevisiae. First, we discovered that, in contrast to the established paradigm, C. glabrata effector kinase Rad53 is not hyperphosphorylated upon DNA damage. We also uncovered evidence of an attenuated DNA damage checkpoint response, wherein in the presence of DNA damage C. glabrata cells did not accumulate in S-phase and proceeded with cell division, leading to aberrant mitoses and cell death. Finally, we identified evidence of transcriptional rewiring of the DNA damage response of C. glabrata relative to S. cerevisiae, including an upregulation of genes involved in mating and meiosis-processes that have not been reported in C. glabrata. Together, these results open new possibilities and raise tantalizing questions of how this major fungal pathogen facilitates genetic change.
Collapse
Affiliation(s)
- Erika Shor
- Center for Discovery and Innovation, Nutley, NJ, 07110, USA. .,Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Nutley, NJ, 07110, USA.,Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.,Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA
| |
Collapse
|
6
|
Abstract
In order to preserve genome integrity, all cells must mount appropriate responses to DNA damage, including slowing down or arresting the cell cycle to give the cells time to repair the damage and changing gene expression, for example to induce genes involved in DNA repair. The Rad53 protein kinase is a conserved central mediator of these responses in eukaryotic cells, and its extensive phosphorylation upon DNA damage is necessary for its activation and subsequent activity. DNA damage checkpoints are key guardians of genome integrity. Eukaryotic cells respond to DNA damage by triggering extensive phosphorylation of Rad53/CHK2 effector kinase, whereupon activated Rad53/CHK2 mediates further aspects of checkpoint activation, including cell cycle arrest and transcriptional changes. Budding yeast Candida glabrata, closely related to model eukaryote Saccharomyces cerevisiae, is an opportunistic pathogen characterized by high genetic diversity and rapid emergence of drug-resistant mutants. However, the mechanisms underlying this genetic variability are unclear. We used Western blotting and mass spectrometry to show that, unlike S. cerevisiae, C. glabrata cells exposed to DNA damage did not induce C. glabrata Rad53 (CgRad53) phosphorylation. Furthermore, flow cytometry analysis showed that, unlike S. cerevisiae, C. glabrata cells did not accumulate in S phase upon DNA damage. Consistent with these observations, time-lapse microscopy showed C. glabrata cells continuing to divide in the presence of DNA damage, resulting in mitotic errors and cell death. Finally, transcriptome sequencing (RNAseq) analysis revealed transcriptional rewiring of the DNA damage response in C. glabrata and identified several key protectors of genome stability upregulated by DNA damage in S. cerevisiae but downregulated in C. glabrata, including proliferating cell nuclear antigen (PCNA). Together, our results reveal a noncanonical fungal DNA damage response in C. glabrata, which may contribute to rapidly generating genetic change and drug resistance.
Collapse
|
7
|
Abstract
Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.
Collapse
Affiliation(s)
- David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
8
|
Villoria MT, Gutiérrez-Escribano P, Alonso-Rodríguez E, Ramos F, Merino E, Campos A, Montoya A, Kramer H, Aragón L, Clemente-Blanco A. PP4 phosphatase cooperates in recombinational DNA repair by enhancing double-strand break end resection. Nucleic Acids Res 2020; 47:10706-10727. [PMID: 31544936 PMCID: PMC6846210 DOI: 10.1093/nar/gkz794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
The role of Rad53 in response to a DNA lesion is central for the accurate orchestration of the DNA damage response. Rad53 activation relies on its phosphorylation by Mec1 and its own autophosphorylation in a manner dependent on the adaptor Rad9. While the mechanism behind Rad53 activation has been well documented, less is known about the processes that counteract its activity along the repair of a DNA adduct. Here, we describe that PP4 phosphatase is required to avoid Rad53 hyper-phosphorylation during the repair of a double-strand break, a process that impacts on the phosphorylation status of multiple factors involved in the DNA damage response. PP4-dependent Rad53 dephosphorylation stimulates DNA end resection by relieving the negative effect that Rad9 exerts over the Sgs1/Dna2 exonuclease complex. Consequently, elimination of PP4 activity affects resection and repair by single-strand annealing, defects that are bypassed by reducing Rad53 hyperphosphorylation. These results confirm that Rad53 phosphorylation is controlled by PP4 during the repair of a DNA lesion and demonstrate that the attenuation of its kinase activity during the initial steps of the repair process is essential to efficiently enhance recombinational DNA repair pathways that depend on long-range resection for their success.
Collapse
Affiliation(s)
- María Teresa Villoria
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Pilar Gutiérrez-Escribano
- Cell Cycle Group. Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Eva Merino
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Adrián Campos
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Luis Aragón
- Cell Cycle Group. Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
9
|
DDR Inc., one business, two associates. Curr Genet 2018; 65:445-451. [DOI: 10.1007/s00294-018-0908-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/03/2023]
|
10
|
Chen ESW, Weng JH, Chen YH, Wang SC, Liu XX, Huang WC, Matsui T, Kawano Y, Liao JH, Lim LH, Bessho Y, Huang KF, Wu WJ, Tsai MD. Phospho-Priming Confers Functionally Relevant Specificities for Rad53 Kinase Autophosphorylation. Biochemistry 2017; 56:5112-5124. [PMID: 28858528 DOI: 10.1021/acs.biochem.7b00689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vast majority of in vitro structural and functional studies of the activation mechanism of protein kinases use the kinase domain alone. Well-demonstrated effects of regulatory domains or allosteric factors are scarce for serine/threonine kinases. Here we use a site-specifically phosphorylated SCD1-FHA1-kinase three-domain construct of the serine/threonine kinase Rad53 to show the effect of phospho-priming, an in vivo regulatory mechanism, on the autophosphorylation intermediate and specificity. Unphosphorylated Rad53 is a flexible monomer in solution but is captured in an asymmetric enzyme:substrate complex in crystal with the two FHA domains separated from each other. Phospho-priming induces formation of a stable dimer via intermolecular pT-FHA binding in solution. Importantly, autophosphorylation of unprimed and phospho-primed Rad53 produced predominantly inactive pS350-Rad53 and active pT354-Rad53, respectively. The latter mechanism was also demonstrated in vivo. Our results show that, while Rad53 can display active conformations under various conditions, simulation of in vivo regulatory conditions confers functionally relevant autophosphorylation.
Collapse
Affiliation(s)
- Eric Sheng-Wen Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | - Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| | - Yu-Hou Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Shun-Chang Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Xiao-Xia Liu
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University , Menlo Park, California 94025, United States
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Liang-Hin Lim
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
11
|
Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans. Biochem J 2017; 474:1293-1306. [DOI: 10.1042/bcj20160889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Abstract
Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus Candida albicans. The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in C. albicans. We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in pph3Δ/Δ cells. Phosphomimetic mutation of the three residues (rad53-3D) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the rad53-3D mutant also occurred in the pph3Δ/Δ mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in C. albicans.
Collapse
|
12
|
Quantitative Analysis of Yeast Checkpoint Protein Kinase Activity by Combined Mass Spectrometry Enzyme Assays. Methods Enzymol 2017. [PMID: 28137560 DOI: 10.1016/bs.mie.2016.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Virtually all eukaryotic cell functions and signaling pathways are regulated by protein phosphorylation. The Rad53 kinase plays crucial roles in the DNA damage response in Saccharomyces cerevisiae and is widely used as a surrogate marker for DNA damage checkpoint activation by diverse genotoxic agents. Most currently available assays for Rad53 activation are based on either electrophoretic mobility shifts or semiquantitative in situ autophosphorylation activity on protein blots. Here, we describe direct quantitative measures to assess Rad53 activity using immunoprecipitation kinase assays and quantitative mass spectrometric analysis of Rad53 activation loop autophosphorylation states. Both assays employ a highly specific Rad53 antibody, and thus enable the analysis of the untagged endogenous protein under physiological conditions. The principles of these assays are readily transferable to other protein kinases for which immunoprecipitation-grade antibodies are available, and thus potentially applicable to a wide range of eukaryotic signaling pathways beyond yeast.
Collapse
|
13
|
Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc Natl Acad Sci U S A 2015; 112:E2467-76. [PMID: 25827231 DOI: 10.1073/pnas.1422934112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Defects in DNA polymerases δ (Polδ) and ε (Polε) cause hereditary colorectal cancer and have been implicated in the etiology of some sporadic colorectal and endometrial tumors. We previously reported that the yeast pol3-R696W allele mimicking a human cancer-associated variant, POLD1-R689W, causes a catastrophic increase in spontaneous mutagenesis. Here, we describe the mechanism of this extraordinary mutator effect. We found that the mutation rate increased synergistically when the R696W mutation was combined with defects in Polδ proofreading or mismatch repair, indicating that pathways correcting DNA replication errors are not compromised in pol3-R696W mutants. DNA synthesis by purified Polδ-R696W was error-prone, but not to the extent that could account for the unprecedented mutator phenotype of pol3-R696W strains. In a search for cellular factors that augment the mutagenic potential of Polδ-R696W, we discovered that pol3-R696W causes S-phase checkpoint-dependent elevation of dNTP pools. Abrogating this elevation by strategic mutations in dNTP metabolism genes eliminated the mutator effect of pol3-R696W, whereas restoration of high intracellular dNTP levels restored the mutator phenotype. Further, the use of dNTP concentrations present in pol3-R696W cells for in vitro DNA synthesis greatly decreased the fidelity of Polδ-R696W and produced a mutation spectrum strikingly similar to the spectrum observed in vivo. The results support a model in which (i) faulty synthesis by Polδ-R696W leads to a checkpoint-dependent increase in dNTP levels and (ii) this increase mediates the hypermutator effect of Polδ-R696W by facilitating the extension of mismatched primer termini it creates and by promoting further errors that continue to fuel the mutagenic pathway.
Collapse
|
14
|
Wybenga-Groot LE, Ho CS, Sweeney FD, Ceccarelli DF, McGlade CJ, Durocher D, Sicheri F. Structural basis of Rad53 kinase activation by dimerization and activation segment exchange. Cell Signal 2014; 26:1825-36. [PMID: 24815189 DOI: 10.1016/j.cellsig.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 01/08/2023]
Abstract
The protein kinase Rad53 is a key regulator of the DNA damage checkpoint in budding yeast. Its human ortholog, CHEK2, is mutated in familial breast cancer and mediates apoptosis in response to genotoxic stress. Autophosphorylation of Rad53 at residue Thr354 located in the kinase activation segment is essential for Rad53 activation. In this study, we assessed the requirement of kinase domain dimerization and the exchange of its activation segment during the Rad53 activation process. We solved the crystal structure of Rad53 in its dimeric form and found that disruption of the observed head-to-tail, face-to-face dimer structure decreased Rad53 autophosphorylation on Thr354 in vitro and impaired Rad53 function in vivo. Moreover, we provide critical functional evidence that Rad53 trans-autophosphorylation may involve the interkinase domain exchange of helix αEF via an invariant salt bridge. These findings suggest a mechanism of autophosphorylation that may be broadly applicable to other protein kinases.
Collapse
Affiliation(s)
- Leanne E Wybenga-Groot
- The Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Cynthia S Ho
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Frédéric D Sweeney
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada; Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Derek F Ceccarelli
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada; Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada; Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|