1
|
Zhang C, Xie S, Malek M. SNAP-25: A biomarker of synaptic loss in neurodegeneration. Clin Chim Acta 2025; 571:120236. [PMID: 40058720 DOI: 10.1016/j.cca.2025.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Synaptic dysfunction is one of the most important markers of neurodegenerative diseases, which contribute to cognitive decline and the loss of neurons. Synaptosomal-associated protein 25 (SNAP-25) is a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which plays a significant role in the exocytosis of synaptic vesicles and the release of neurotransmitters. Recent studies have shown that expression levels of SNAP-25 are altered in various neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), and Creutzfeldt-Jakob disease (CJD). These investigations led to the consideration of SNAP-25 as a potential biomarker of synaptic degeneration. Understanding the role of SNAP-25 in neurodegeneration will aid in early diagnosis, disease monitoring, and therapeutic development, and will also provide new insights into synaptic dysfunction as a main feature of neurodegenerative diseases. Therefore, this paper explores the physiological role of SNAP-25, its involvement in synaptic pathology, and the implications of its dysregulation in neurodegenerative conditions, such as AD, HD, and CJD. Literature regarding cerebrospinal fluid (CSF) SNAP-25 levels as a diagnostic marker were reviewed and its applications in detecting the progression of the disease have been discussed. Additionally, the limitations of SNAP-25 as a biomarker, including variability across studies and the need for further validation have been addressed.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Neurology, Tiantai People's Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People's Hospital, Hangzhou Medical College, Taizhou, Zhejiang 317200, China.
| | - Shanshan Xie
- Xinjiang Key Laboratory of Mental Development and Learning Science, Xinjiang Normal University, Urumqi, Xinjiang 830000, China
| | - Melika Malek
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Gobom J, Brinkmalm A, Brinkmalm G, Blennow K, Zetterberg H. Alzheimer's Disease Biomarker Analysis Using Targeted Mass Spectrometry. Mol Cell Proteomics 2024; 23:100721. [PMID: 38246483 PMCID: PMC10926085 DOI: 10.1016/j.mcpro.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
5
|
Gkanatsiou E, Nilsson J, Toomey CE, Vrillon A, Kvartsberg H, Portelius E, Zetterberg H, Blennow K, Brinkmalm A, Lashley T, Brinkmalm G. Amyloid pathology and synaptic loss in pathological aging. J Neurochem 2021; 159:258-272. [PMID: 34473357 DOI: 10.1111/jnc.15487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid β (Aβ) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and Aβ peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion Aβ peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of Aβ40 was higher in AD while for Aβ42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of Aβ40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of Aβ.
Collapse
Affiliation(s)
- Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Agathe Vrillon
- Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, University of Paris Diderot, Paris, France
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
6
|
Haytural H, Jordà-Siquier T, Winblad B, Mulle C, Tjernberg LO, Granholm AC, Frykman S, Barthet G. Distinctive alteration of presynaptic proteins in the outer molecular layer of the dentate gyrus in Alzheimer's disease. Brain Commun 2021; 3:fcab079. [PMID: 34013204 PMCID: PMC8117432 DOI: 10.1093/braincomms/fcab079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Synaptic degeneration has been reported as one of the best pathological correlates of cognitive deficits in Alzheimer's disease. However, the location of these synaptic alterations within hippocampal sub-regions, the vulnerability of the presynaptic versus postsynaptic compartments, and the biological mechanisms for these impairments remain unknown. Here, we performed immunofluorescence labelling of different synaptic proteins in fixed and paraffin-embedded human hippocampal sections and report reduced levels of several presynaptic proteins of the neurotransmitter release machinery (complexin-1, syntaxin-1A, synaptotagmin-1 and synaptogyrin-1) in Alzheimer's disease cases. The deficit was restricted to the outer molecular layer of the dentate gyrus, whereas other hippocampal sub-fields were preserved. Interestingly, standard markers of postsynaptic densities (SH3 and multiple ankyrin repeat domains protein 2) and dendrites (microtubule-associated protein 2) were unaltered, as well as the relative number of granule cells in the dentate gyrus, indicating that the deficit is preferentially presynaptic. Notably, staining for the axonal components, myelin basic protein, SMI-312 and Tau, was unaffected, suggesting that the local presynaptic impairment does not result from axonal loss or alterations of structural proteins of axons. There was no correlation between the reduction in presynaptic proteins in the outer molecular layer and the extent of the amyloid load or of the dystrophic neurites expressing phosphorylated forms of Tau. Altogether, this study highlights the distinctive vulnerability of the outer molecular layer of the dentate gyrus and supports the notion of presynaptic failure in Alzheimer's disease.
Collapse
Affiliation(s)
- Hazal Haytural
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
| | - Tomàs Jordà-Siquier
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
- Karolinska University Hospital, Theme Aging, 141 86 Huddinge, Sweden
| | - Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
| | - Ann-Charlotte Granholm
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
- Knoebel Institute for Healthy Aging, University of Denver, Denver 80208, CO, USA
| | - Susanne Frykman
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 64 Solna, Sweden
| | - Gaël Barthet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
7
|
A unified resource and configurable model of the synapse proteome and its role in disease. Sci Rep 2021; 11:9967. [PMID: 33976238 PMCID: PMC8113277 DOI: 10.1038/s41598-021-88945-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein-protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.
Collapse
|
8
|
Jové M, Mota-Martorell N, Torres P, Ayala V, Portero-Otin M, Ferrer I, Pamplona R. The Causal Role of Lipoxidative Damage in Mitochondrial Bioenergetic Dysfunction Linked to Alzheimer's Disease Pathology. Life (Basel) 2021; 11:life11050388. [PMID: 33923074 PMCID: PMC8147054 DOI: 10.3390/life11050388] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/18/2023] Open
Abstract
Current shreds of evidence point to the entorhinal cortex (EC) as the origin of the Alzheimer’s disease (AD) pathology in the cerebrum. Compared with other cortical areas, the neurons from this brain region possess an inherent selective vulnerability derived from particular oxidative stress conditions that favor increased mitochondrial molecular damage with early bioenergetic involvement. This alteration of energy metabolism is the starting point for subsequent changes in a multitude of cell mechanisms, leading to neuronal dysfunction and, ultimately, cell death. These events are induced by changes that come with age, creating the substrate for the alteration of several neuronal pathways that will evolve toward neurodegeneration and, consequently, the development of AD pathology. In this context, the present review will focus on description of the biological mechanisms that confer vulnerability specifically to neurons of the entorhinal cortex, the changes induced by the aging process in this brain region, and the alterations at the mitochondrial level as the earliest mechanism for the development of AD pathology. Current findings allow us to propose the existence of an altered allostatic mechanism at the entorhinal cortex whose core is made up of mitochondrial oxidative stress, lipid metabolism, and energy production, and which, in a positive loop, evolves to neurodegeneration, laying the basis for the onset and progression of AD pathology.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Pascual Torres
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Victoria Ayala
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, 28220 Madrid, Spain
- Correspondence: (I.F.); (R.P.)
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
- Correspondence: (I.F.); (R.P.)
| |
Collapse
|
9
|
Gulyássy P, Puska G, Györffy BA, Todorov-Völgyi K, Juhász G, Drahos L, Kékesi KA. Proteomic comparison of different synaptosome preparation procedures. Amino Acids 2020; 52:1529-1543. [PMID: 33211194 PMCID: PMC7695668 DOI: 10.1007/s00726-020-02912-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023]
Abstract
Synaptosomes are frequently used research objects in neurobiology studies focusing on synaptic transmission as they mimic several aspects of the physiological synaptic functions. They contain the whole apparatus for neurotransmission, the presynaptic nerve ending with synaptic vesicles, synaptic mitochondria and often a segment of the postsynaptic membrane along with the postsynaptic density is attached to its outer surface. As being artificial functional organelles, synaptosomes are viable for several hours, retain their activity, membrane potential, and capable to store, release, and reuptake neurotransmitters. Synaptosomes are ideal subjects for proteomic analysis. The recently available separation and protein detection techniques can cope with the reduced complexity of the organelle and enable the simultaneous qualitative and quantitative analysis of thousands of proteins shaping the structural and functional characteristics of the synapse. Synaptosomes are formed during the homogenization of nervous tissue in the isoosmotic milieu and can be isolated from the homogenate by various approaches. Each enrichment method has its own benefits and drawbacks and there is not a single method that is optimal for all research purposes. For a proper proteomic experiment, it is desirable to preserve the native synaptic structure during the isolation procedure and keep the degree of contamination from other organelles or cell types as low as possible. In this article, we examined five synaptosome isolation methods from a proteomic point of view by the means of electron microscopy, Western blot, and liquid chromatography-mass spectrometry to compare their efficiency in the isolation of synaptosomes and depletion of contaminating subcellular structures. In our study, the different isolation procedures led to a largely overlapping pool of proteins with a fairly similar distribution of presynaptic, active zone, synaptic vesicle, and postsynaptic proteins; however, discrete differences were noticeable in individual postsynaptic proteins and in the number of identified transmembrane proteins. Much pronounced variance was observed in the degree of contamination with mitochondrial and glial structures. Therefore, we suggest that in selecting the appropriate isolation method for any neuroproteomics experiment carried out on synaptosomes, the degree and sort/source of contamination should be considered as a primary aspect.
Collapse
Affiliation(s)
- Péter Gulyássy
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Gina Puska
- Department of Anatomy, Cell and Development Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary.,Department of Ecology, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary.,MTA-ELTE NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Balázs A Györffy
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary.,ELTE-NAP Neuroimmunology Research Group, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Katalin Todorov-Völgyi
- MTA-ELTE NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and ELTE Eötvös Loránd University, Budapest, 1117, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Gábor Juhász
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary.,MS Proteomics Research Group, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary.,Department of Physiology and Neurobiology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| |
Collapse
|
10
|
Mazzucchi S, Palermo G, Campese N, Galgani A, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. The role of synaptic biomarkers in the spectrum of neurodegenerative diseases. Expert Rev Proteomics 2020; 17:543-559. [PMID: 33028119 DOI: 10.1080/14789450.2020.1831388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The quest for reliable fluid biomarkers tracking synaptic disruption is supported by the evidence of a tight association between synaptic density and cognitive performance in neurodegenerative diseases (NDD), especially Alzheimer's disease (AD). AREAS COVERED Neurogranin (Ng) is a post-synaptic protein largely expressed in neurons involved in the memory networks. Currently, Ng measured in CSF is the most promising synaptic biomarker. Several studies show Ng elevated in AD dementia with a hippocampal phenotype as well as in MCI individuals who progress to AD. Ng concentrations are also increased in Creutzfeldt Jacob Disease where widespread and massive synaptic disintegration takes place. Ng does not discriminate Parkinson's disease from atypical parkinsonisms, nor is it altered in Huntington disease. CSF synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1) are emerging candidates. EXPERT OPINION CSF Ng revealed a role as a diagnostic and prognostic biomarker in NDD. Ng increase seems to be very specific for typical AD phenotype, probably for a prevalent hippocampal involvement. Synaptic biomarkers may serve different context-of-use in AD and other NDD including prognosis, diagnosis, and tracking synaptic damage - a critical pathophysiological mechanism in NDD - thus representing reliable tools for a precision medicine-oriented approach to NDD.
Collapse
Affiliation(s)
- Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Andrea Vergallo
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France.,Brain & Spine Institute (ICM), INSERM U1127 , Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP , Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy.,Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| |
Collapse
|
11
|
Honer WG, Ramos-Miguel A, Alamri J, Sawada K, Barr AM, Schneider JA, Bennett DA. The synaptic pathology of cognitive life
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 21:271-279. [PMID: 31749651 PMCID: PMC6829169 DOI: 10.31887/dcns.2019.21.3/whoner] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prospective, community-based studies allow evaluation of associations between
cognitive functioning and synaptic measures, controlled for age-related pathologies.
Findings from >400 community-based participants are reviewed. Levels of two
presynaptic proteins, complexin-I (inhibitory terminals), and complexin-II (excitatory
terminals) contributed to cognitive variation from normal to dementia. Adding the amount
of protein-protein interaction between two others, synaptosome-associated protein-25 and
syntaxin, explained 6% of overall variance. The presynaptic protein Munc18-1 long
variant was localized to inhibitory terminals, and like complexin-I, was positively
associated with cognition. Associations depended on Braak stage, with the level of
complexin-I contributing nearly 15% to cognitive variation in stages 0-II, while
complexin-II contributed 7% in stages V-VI. Non-denaturing gels identified multiple
soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein-protein
(SNARE) complexes in frontal and in temporal lobes, making specific contributions to
cognitive functions. Multiple mechanisms of presynaptic plasticity contribute to
cognitive function during aging.
Collapse
Affiliation(s)
- William G Honer
- Departments of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Jehan Alamri
- Departments of Anaesthesia, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Alasdair M Barr
- Departments of Anaesthesia, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, US
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, US
| |
Collapse
|
12
|
Xu C, Sellgren CM, Fatouros-Bergman H, Piehl F, Blennow K, Zetterberg H, Brinkmalm A, Santillo AF, Lundgren S, Cervenka S, Engberg G, Erhardt S. CSF levels of synaptosomal-associated protein 25 and synaptotagmin-1 in first-episode psychosis subjects. IBRO Rep 2020; 8:136-142. [PMID: 32490278 PMCID: PMC7262376 DOI: 10.1016/j.ibror.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/01/2020] [Indexed: 12/20/2022] Open
Abstract
Post-mortem studies consistently show evidence of reduced synaptic protein levels in patients with schizophrenia. Clinically high-risk subjects show a steeper decrease in grey matter thickness and in vitro modeling using patient-derived cells implicate excessive synaptic pruning during neurodevelopment as a part of the schizophrenia pathophysiology. However, it is unclear to what extent synapse elimination is present during various stages of the disease, which is of clinical importance as in a real-world setting most subjects received their first-episode psychosis (FEP) diagnosis not until their mid-twenties. In the present study, we measured cerebrospinal fluid (CSF) concentrations of the two pre-synaptic proteins synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1), both of which are increased in conditions of ongoing synaptic degeneration, in 44 FEP subjects (mean age 29.9 years) and 21 healthy controls (25.9 years) using immunoprecipitation mass spectrometry. Neither protein was found to differ between healthy controls and patients, and they showed no correlation with symptom ratings, cognitive performance or antipsychotic medication. Additional studies in high-risk subjects in the early prodromal phase will be needed to address if excessive synapse destruction occurs before the development of overt psychotic symptoms.
Collapse
Key Words
- BACS-SC, Brief Assessment of Cognition in Schizophrenia Symbol Coding
- BMI, body mass index
- BVMT-R, Brief Visuospatial Memory Test-Revised
- CGI, Clinical Global Impression
- CPT-IP, Continuous Performance Test-Identical Pairs
- DUP, duration of untreated psychosis
- FEP, first-episode psychosis
- GAF, Global Assessment of Functioning
- HC, healthy controls
- HVLT-R, Hopkins Verbal Learning Test-Revised
- LNS, Letter-Number Span
- MSCEIT, Mayer–Salovey– Caruso Emotional Intelligence Test
- NAB: MAZES, Neuropsychological Assessment Battery: Mazes
- PANSS, the Positive and Negative Syndrome Scale
- SNAP-25
- SYT-1
- Schizophrenia
- Synapse pruning
- TMT, Trail Making Test
- WMS-III, Wechsler Memory Scale-3rd Edition
Collapse
Affiliation(s)
- Chengai Xu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexander Frizell Santillo
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Sofia Lundgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
13
|
Öhrfelt A, Brinkmalm A, Dumurgier J, Zetterberg H, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K. A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer’s Disease. Neuroscience 2019; 420:136-144. [DOI: 10.1016/j.neuroscience.2018.11.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022]
|
14
|
Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the Synapse. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:297-321. [PMID: 30707593 PMCID: PMC6989097 DOI: 10.1146/annurev-anchem-061318-115434] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20-100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.
Collapse
Affiliation(s)
| | | | - Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| |
Collapse
|
15
|
Ramos-Miguel A, Barakauskas V, Alamri J, Miyauchi M, Barr AM, Beasley CL, Rosoklija G, Mann JJ, Dwork AJ, Moradian A, Morin GB, Honer WG. The SNAP25 Interactome in Ventromedial Caudate in Schizophrenia Includes the Mitochondrial Protein ARF1. Neuroscience 2019; 420:97-111. [PMID: 30610939 DOI: 10.1016/j.neuroscience.2018.12.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Abnormalities of SNAP25 (synaptosome-associated protein 25) amount and protein-protein interactions occur in schizophrenia, and may contribute to abnormalities of neurotransmitter release in patients. However, presynaptic terminal function depends on multiple subcellular mechanisms, including energy provided by mitochondria. To explore the SNAP25 interactome in schizophrenia, we immunoprecipitated SNAP25 along with interacting proteins from the ventromedial caudate of 15 cases of schizophrenia and 13 controls. Proteins were identified with mass spectrometry-based proteomics. As well as 15 SNARE- (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) associated proteins, we identified 17 mitochondria-associated and four other proteins. The mitochondrial small GTPase ARF1 (ADP-ribosylation factor 1) was identified in eight schizophrenia SNAP25 immunoprecipitates and none from controls (P = 0.004). Although the ARF1-SNAP25 interaction may be increased, immunoblotting demonstrated 21% lower ARF1-21 (21 kiloDaltons) in schizophrenia samples (P = 0.04). In contrast, the mitochondrial protein UQCRC1 (ubiquinol-cytochrome c reductase core protein 1) did not differ. Lower ARF1-21 levels were associated with the previously reported increased SNAP25-syntaxin interaction in schizophrenia (r = -0.39, P = 0.04). Additional immunoprecipitation studies confirmed the ARF1-21-SNAP25 interaction, independent of UQCRC1. Both ARF1 and SNAP25 were localized to synaptosomes. Confocal microscopy demonstrated co-localization of ARF1 and SNAP25, and further suggested fivefold enrichment of ARF1 in synaptosomes containing an excitatory marker (vesicular glutamate transporter) compared with synaptosomes containing an inhibitory marker (vesicular GABA transporter). The present findings suggest an association between abnormalities of SNARE proteins involved with vesicular neurotransmission and the mitochondrial protein ARF1 that may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada; Department of Pharmacology, University of the Basque Country, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barrio Sarriena, s/n, 48940 Leioa, Biscay, Spain
| | - Vilte Barakauskas
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, 2J9-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - Jehan Alamri
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Masatoshi Miyauchi
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Alasdair M Barr
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Annie Moradian
- Department of Medical Genetics, University of British Columbia, C234-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, C234-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - William G Honer
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
16
|
Ramos-Miguel A, Gicas K, Alamri J, Beasley CL, Dwork AJ, Mann JJ, Rosoklija G, Cai F, Song W, Barr AM, Honer WG. Reduced SNAP25 Protein Fragmentation Contributes to SNARE Complex Dysregulation in Schizophrenia Postmortem Brain. Neuroscience 2018; 420:112-128. [PMID: 30579835 DOI: 10.1016/j.neuroscience.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Recent studies associated schizophrenia with enhanced functionality of the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Altered degradation pathways of the three core SNARE proteins: synaptosomal-associated protein 25 (SNAP25), syntaxin-1 and vesicle-associated membrane protein (VAMP) could contribute to enhanced complex function. To investigate these pathways, we first identified a 15-kDa SNAP25 fragment (f-S25) in human and rat brains, highly enriched in synaptosomal extractions, and mainly attached to cytosolic membranes with low hydrophobicity. The presence of f-S25 is consistent with reports of calpain-mediated SNAP25 cleavage. Co-immunoprecipitation assays showed that f-S25 retains the ability to bind syntaxin-1, which might prevent VAMP and/or Munc18-1 assembly into the complex. Quantitative analyses in postmortem human orbitofrontal cortex (OFC) revealed that schizophrenia (n = 35), but not major depression (n = 15), is associated with lower amounts of f-S25 (-37%, P = 0.027), and greater SNARE protein-protein interactions (35%, P < 0.001), compared with healthy matched controls (n = 28). Enhanced SNARE complex formation was strongly correlated with lower SNAP25 fragmentation rates (R = 0.563, P < 0.001). Statistical mediation analyses supported the hypothesis that reduced f-S25 density could upregulate SNARE fusion events in schizophrenia. Cortical calpain activity in schizophrenia did not differ from controls. f-S25 levels did not correlate with total calpain activity, indicating that if present, schizophrenia-related calpain dysfunction might occur locally at the presynaptic terminals. Overall, the present findings suggest the existence of an endogenous SNARE complex inhibitor related to SNAP25 proteolysis, associated with enhanced SNARE activity in schizophrenia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Biscay, Spain
| | - Kristina Gicas
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Jehan Alamri
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Fang Cai
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Weihong Song
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Alasdair M Barr
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - William G Honer
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
17
|
Abstract
Proteomics and lipidomics are powerful tools to the large-scale study of proteins and lipids, respectively. Several methods can be employed with particular benefits and limitations in the study of human brain. This is a review of the rationale use of current techniques with particular attention to limitations and pitfalls inherent to each one of the techniques, and more importantly, to their use in the study of post-mortem brain tissue. These aspects are cardinal to avoid false interpretations, errors and unreal expectancies. Other points are also stressed as exemplified in the analysis of human neurodegenerative diseases which are manifested by disease-, region-, and stage-specific modifications commonly in the context of aging. Information about certain altered protein clusters and proteins oxidatively damaged is summarized for Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Isidro Ferrer
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona; and Network Center of Biomedical Research on Neurodegenerative Diseases, Institute Carlos III; Hospitalet de Llobregat, Llobregat, Spain.
| |
Collapse
|
18
|
Kupniewska A, Szymanska K, Demkow U. Proteomics in the Diagnosis of Inborn Encephalopathies of Unknown Origin: A Myth or Reality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1040:83-99. [PMID: 28983862 DOI: 10.1007/5584_2017_104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Synaptopathy underlies a great variety of neurological or neurodevelopmental disorders, including neurodegenerative diseases and the highly complex neuropsychiatric syndromes. Standard diagnostic assays in the majority of synaptopathies are insufficient to make an appropriate and fast diagnosis, which has spurred a search for more accurate diagnostic methods using recent technological advances. As synaptopathy phenotypes strictly depend on genetics and environmental factors, the best way to approach these diseases is the investigation of entire sets of protein characteristics. Thus, proteomics has emerged as a mainstay in the studies on synaptopathies, with mass spectrometry as a technology of choice. This review is an update on the proteomic methods and achievements in the understanding, diagnostics, and novel biomarkers of synaptopathies. The article also provides a critical point of view and future perspectives on the application of neuroproteomics in clinical practice.
Collapse
Affiliation(s)
- Anna Kupniewska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63A Zwirki and Wigury Street, 02-091, Warsaw, Poland.
| | - Krystyna Szymanska
- Department of Clinical and Experimental Neuropathology, The Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
- Department of Child Psychiatry, Warsaw Medical University, Warsaw, 24 Marszalkowska Street, 00-576, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63A Zwirki and Wigury Street, 02-091, Warsaw, Poland
| |
Collapse
|
19
|
Brinkmalm G, Sjödin S, Simonsen AH, Hasselbalch SG, Zetterberg H, Brinkmalm A, Blennow K. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease. Proteomics Clin Appl 2017; 12. [PMID: 29028155 DOI: 10.1002/prca.201700131] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 01/04/2023]
Abstract
SCOPE The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN Thirteen proteins were selected based on their association with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards. RESULTS Coefficients of variation were generally below 15%. Clinical evaluation was performed on a cohort of 10 patients with Alzheimer's disease (AD) and 15 healthy subjects. Investigated proteins of the granin family exhibited the largest difference between the patient groups. Secretogranin-2 (p<0.005) and neurosecretory protein VGF (p<0.001) concentrations were lowered in AD. For chromogranin A, two of three peptides had significantly lowered AD concentrations (p<0.01). The concentrations of the synaptic proteins neurexin-1 and neuronal pentraxin-1, as well as neurofascin were also significantly lowered in AD (p<0.05). The other investigated proteins, β2-microglobulin, cystatin C, amyloid precursor protein, lysozyme C, neurexin-2, neurexin-3, and neurocan core protein, were not significantly altered. CONCLUSION AND CLINICAL RELEVANCE PRM-MS of protein panels is a valuable tool to evaluate biomarker candidates for neurodegenerative disorders.
Collapse
Affiliation(s)
- Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Simon Sjödin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
20
|
Alfieri A, Sorokina O, Adrait A, Angelini C, Russo I, Morellato A, Matteoli M, Menna E, Boeri Erba E, McLean C, Armstrong JD, Ala U, Buxbaum JD, Brusco A, Couté Y, De Rubeis S, Turco E, Defilippi P. Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders. Front Mol Neurosci 2017; 10:212. [PMID: 28713243 PMCID: PMC5492163 DOI: 10.3389/fnmol.2017.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/21/2023] Open
Abstract
Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD). Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP) and long-term depression (LTD), and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD). p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Annalisa Alfieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Oksana Sorokina
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Annie Adrait
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Michela Matteoli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Menna
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale, Université Grenoble AlpesGrenoble, France.,CEA, DSV, IBSGrenoble, France.,Centre National de la Recherche Scientifique, IBSGrenoble, France
| | - Colin McLean
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - J Douglas Armstrong
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy.,GenoBiToUS-Genomics and Bioinformatics, Università di TorinoTurin, Italy
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Alfredo Brusco
- Department of Medical Sciences, Università di TorinoTurin, Italy.,Medical Genetics Unit, Azienda Ospedaliera Città della Salute e della Scienza di TorinoTurin, Italy
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| |
Collapse
|
21
|
Sjödin S, Öhrfelt A, Brinkmalm G, Zetterberg H, Blennow K, Brinkmalm A. Targeting LAMP2 in human cerebrospinal fluid with a combination of immunopurification and high resolution parallel reaction monitoring mass spectrometry. Clin Proteomics 2016; 13:4. [PMID: 26924951 PMCID: PMC4768413 DOI: 10.1186/s12014-016-9104-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/09/2016] [Indexed: 11/28/2022] Open
Abstract
Background
Alzheimer’s disease is the most common form of dementia. An increasing body of evidence suggests that endo-lysosomal dysfunction is a pathogenic mechanism of Alzheimer’s disease. Thus there is a potential for proteins involved in the normal function of endo-lysosomal vesicles to act as biomarkers of disease. Herein we focused on the lysosomal protein LAMP2 that is involved in chaperone mediated autophagy. Results Using a combination of immunoprecipitation, digestion and nano-liquid chromatography tandem mass spectrometry we targeted and identified six tryptic LAMP2 peptides in human cerebrospinal fluid. Employing the identified proteotypic tryptic peptides a hybrid immunoprecipitation high resolution parallel reaction monitoring mass spectrometric method was developed for the relative quantitation of LAMP2. The method was evaluated in a number of experiments which defined the overall methodological as well as the analytical micro-liquid chromatography mass spectrometric intra- and inter-day variability. We identified an overall methodological peptide dependent intra-day variability of 8–16 %. The inter-day experiments showed similar results. The analytical contribution to the variation was minor with a coefficient of variation of 0.5–2.1 %, depending on the peptide. Using the developed method, with defined and limited variability, we report increased cerebrospinal fluid levels of three LAMP2 peptides in Alzheimer’s disease subjects (n = 14), as compared to non-Alzheimer’s disease controls (n = 14). Conclusion Altered LAMP2 levels in cerebrospinal fluid may indicate endo-lysosomal dysfunction in Alzheimer’s disease. However, further studies in larger cohorts comprised of well-defined patient materials are required. We here present a tool which can be used for exploring the relevance of the level of LAMP2 as a potential measure of lysosomal dysfunction in Alzheimer’s disease or other neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9104-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Sjödin
- Department of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital at Mölndal, University of Gothenburg, House V3, 431 80 Mölndal, Sweden
| | - Annika Öhrfelt
- Department of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital at Mölndal, University of Gothenburg, House V3, 431 80 Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital at Mölndal, University of Gothenburg, House V3, 431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital at Mölndal, University of Gothenburg, House V3, 431 80 Mölndal, Sweden ; UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital at Mölndal, University of Gothenburg, House V3, 431 80 Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institution of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital at Mölndal, University of Gothenburg, House V3, 431 80 Mölndal, Sweden
| |
Collapse
|
22
|
de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 2016; 12:633-44. [PMID: 26776762 DOI: 10.1016/j.jalz.2015.12.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Loss of synapses best correlates to cognitive deficits in Alzheimer's disease (AD) in which oligomeric neurotoxic species of amyloid-β appears to contribute synaptic pathology. Although a number of clinical pathologic studies have been performed with limited sample size, there are no systematic studies encompassing large samples. Therefore, we performed a meta-analysis study. METHODS We identified 417 publications reporting postmortem synapse and synaptic marker loss from AD patients. Two meta-analyses were performed using a single database of subselected publications and calculating the standard mean differences. RESULTS Meta-analysis confirmed synaptic loss in selected brain regions is an early event in AD pathogenesis. The second meta-analysis of 57 synaptic markers revealed that presynaptic makers were affected more than postsynaptic markers. DISCUSSION The present meta-analysis study showed a consistent synaptic loss across brain regions and that molecular machinery including endosomal pathways, vesicular assembly mechanisms, glutamate receptors, and axonal transport are often affected.
Collapse
Affiliation(s)
- Martijn C de Wilde
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Cassia R Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - John W Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Abstract
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH,NIAID, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
24
|
Blennow K, Zetterberg H. The past and the future of Alzheimer's disease CSF biomarkers-a journey toward validated biochemical tests covering the whole spectrum of molecular events. Front Neurosci 2015; 9:345. [PMID: 26483625 PMCID: PMC4586276 DOI: 10.3389/fnins.2015.00345] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 11/28/2022] Open
Abstract
This paper gives a short review on cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD), from early developments to high-precision validated assays on fully automated lab analyzers. We also discuss developments on novel biomarkers, such as synaptic proteins and Aβ oligomers. Our vision for the future is that assaying a set of biomarkers in a single CSF tube can monitor the whole spectrum of AD molecular pathogenic events. CSF biomarkers will have a central position not only for clinical diagnosis, but also for the understanding of the sequence of molecular events in the pathogenic process underlying AD and as tools to monitor the effects of novel drug candidates targeting these different mechanisms.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg Mölndal, Sweden
| |
Collapse
|
25
|
Brinkmalm A, Portelius E, Öhrfelt A, Brinkmalm G, Andreasson U, Gobom J, Blennow K, Zetterberg H. Explorative and targeted neuroproteomics in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:769-78. [PMID: 25619854 DOI: 10.1016/j.bbapap.2015.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/23/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other higher brain functions. Neuropathologically, the disease is characterized by accumulation of a 42 amino acid peptide called amyloid β (Aβ42) in extracellular senile plaques, intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Biomarker assays capturing these pathologies have been developed for use on cerebrospinal fluid samples but there are additional molecular pathways that most likely contribute to the neurodegeneration and full clinical expression of AD. One way of learning more about AD pathogenesis is to identify novel biomarkers for these pathways and examine them in longitudinal studies of patients in different stages of the disease. Here, we discuss targeted proteomic approaches to study AD and AD-related pathologies in closer detail and explorative approaches to discover novel pathways that may contribute to the disease. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
Collapse
Affiliation(s)
- Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden.
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Annika Öhrfelt
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Johan Gobom
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|