1
|
Versteeg L, Adhikari R, Robinson G, Lee J, Wei J, Islam N, Keegan B, Russell WK, Poveda C, Villar MJ, Jones K, Bottazzi ME, Hotez P, Tijhaar E, Pollet J. Immunopeptidomic MHC-I profiling and immunogenicity testing identifies Tcj2 as a new Chagas disease mRNA vaccine candidate. PLoS Pathog 2024; 20:e1012764. [PMID: 39693359 DOI: 10.1371/journal.ppat.1012764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease. Globally 6 to 7 million people are infected by this parasite of which 20-30% will progress to develop Chronic Chagasic Cardiomyopathy (CCC). Despite its high disease burden, no clinically approved vaccine exists for the prevention or treatment of CCC. Developing vaccines that can stimulate T. cruzi-specific CD8+ cytotoxic T cells and eliminate infected cells requires targeting parasitic antigens presented on major histocompatibility complex-I (MHC-I) molecules. We utilized mass spectrometry-based immunopeptidomics to investigate which parasitic peptides are displayed on MHC-I of T. cruzi infected cells. Through duplicate experiments, we identified an array of unique peptides that could be traced back to 17 distinct T. cruzi proteins. Notably, six peptides were derived from Tcj2, a trypanosome chaperone protein and member of the DnaJ (heat shock protein 40) family, showcasing its potential as a viable candidate vaccine antigen with cytotoxic T cell inducing capacity. Upon testing Tcj2 as an mRNA vaccine candidate in mice, we observed a strong memory cytotoxic CD8+ T cell response along with a Th1-skewed humoral antibody response. In vitro co-cultures of T. cruzi infected cells with splenocytes of Tcj2-immunized mice restricted the replication of T. cruzi, demonstrating the protective potential of Tcj2 as a vaccine target. Moreover, antisera from Tcj2-vaccinated mice displayed no cross-reactivity with DnaJ in lysates from mouse and human indicating a decreased likelihood of triggering autoimmune reactions. Our findings highlight how immunopeptidomics can identify new vaccine targets for Chagas disease, with Tcj2 emerging as a promising new mRNA vaccine candidate.
Collapse
Affiliation(s)
- Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Rakesh Adhikari
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gonteria Robinson
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jungsoon Lee
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junfei Wei
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nelufa Islam
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brian Keegan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - William K Russell
- University of Texas Medical Branch, Mass Spectrometry Facility, UTMB Health, Galveston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Jose Villar
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathryn Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
2
|
Ternette N, Adamopoulou E, Purcell AW. How mass spectrometric interrogation of MHC class I ligandomes has advanced our understanding of immune responses to viruses. Semin Immunol 2023; 68:101780. [PMID: 37276649 DOI: 10.1016/j.smim.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK.
| | - Eleni Adamopoulou
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
4
|
Lorente E, Martín-Galiano AJ, Kadosh DM, Barriga A, García-Arriaza J, Mir C, Esteban M, Admon A, López D. Abundance, Betweenness Centrality, Hydrophobicity, and Isoelectric Points Are Relevant Factors in the Processing of Parental Proteins of the HLA Class II Ligandome. J Proteome Res 2021; 21:164-171. [PMID: 34937342 DOI: 10.1021/acs.jproteome.1c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adaptive cellular and humoral immune responses to infectious agents require previous recognition of pathogenic peptides bound to human leukocyte antigen (HLA) class II molecules exposed on the surface of the professional antigen-presenting cells. Knowledge of how these peptide ligands are generated is essential to understand the basis for CD4+ T-cell-mediated immunity and tolerance. In this study, a high-throughput mass spectrometry analysis was used to identify more than 16,000 cell peptides bound to several HLA-DR and -DP class II molecules isolated from large amounts of uninfected and virus-infected human cells (ProteomeXchange accession: PXD028006). The analysis of the 1808 parental proteins containing HLA class II ligands revealed that these cell proteins were more acidic, abundant, and highly connected but less hydrophilic than non-parental proteomes. Therefore, the percentage of acidic residues was increased and hydroxyl and polar residues were decreased in the parental proteins for the HLA class II ligandomes versus the non-parental proteomes. This definition of the properties shared by parental proteins that constitute the source of the HLA class II ligandomes can serve as the basis for the development of bioinformatics tools to predict proteins that are most likely recognized by the immune system through the CD4+ helper T lymphocytes in both autoimmunity and infection.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Antonio J Martín-Galiano
- Unidad de Infecciones Intrahospitalarias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | | | - Alejandro Barriga
- Unidad de Presentación y Regulación Inmunes, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
5
|
Acid Stripping after Infection Improves the Detection of Viral HLA Class I Natural Ligands Identified by Mass Spectrometry. Int J Mol Sci 2021; 22:ijms221910503. [PMID: 34638844 PMCID: PMC8508920 DOI: 10.3390/ijms221910503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022] Open
Abstract
Identification of a natural human leukocyte antigen (HLA) ligandome is a key element to understand the cellular immune response. Advanced high throughput mass spectrometry analyses identify a relevant, but not complete, fraction of the many tens of thousands of self-peptides generated by antigen processing in live cells. In infected cells, in addition to this complex HLA ligandome, a minority of peptides from degradation of the few proteins encoded by the viral genome are also bound to HLA class I molecules. In this study, the standard immunopeptidomics strategy was modified to include the classical acid stripping treatment after virus infection to enrich the HLA ligandome in virus ligands. Complexes of HLA-B*27:05-bound peptide pools were isolated from vaccinia virus (VACV)-infected cells treated with acid stripping after virus infection. The HLA class I ligandome was identified using high throughput mass spectrometry analyses, yielding 37 and 51 natural peptides processed and presented untreated and after acid stripping treatment VACV-infected human cells, respectively. Most of these virus ligands were identified in both conditions, but exclusive VACV ligands detected by mass spectrometry detected on acid stripping treatment doubled the number of those identified in the untreated VACV-infected condition. Theoretical binding affinity prediction of the VACV HLA-B*27:05 ligands and acute antiviral T cell response characterization in the HLA transgenic mice model showed no differences between HLA ligands identified under the two conditions: untreated and under acid stripping condition. These findings indicated that acid stripping treatment could be useful to identify HLA class I ligands from virus-infected cells.
Collapse
|
6
|
Lorente E, Barnea E, Mir C, Admon A, López D. The HLA-DP peptide repertoire from human respiratory syncytial virus is focused on major structural proteins with the exception of the viral polymerase. J Proteomics 2020; 221:103759. [PMID: 32244010 DOI: 10.1016/j.jprot.2020.103759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023]
Abstract
The recognition by specific T helper cells of viral antigenic peptides complexed with HLA class II molecules exposed on the surface of antigen presenting cells is the first step of the complex cascade of immunological events that generates the protective cellular and humoral immune responses. The HLA class II-restricted helper immune response is critical in the control and the clearance of human respiratory syncytial virus (HRSV) infection, a pathogen with severe health risk in pediatric, immunocompromised and elderly populations. In this study, a mass spectrometry analysis was used to identify HRSV ligands bound to HLA-DP class II molecules present on the surface of HRSV-infected cells. Among the thousands of cellular peptides bound to HLA class II proteins in the virus-infected cells, sixty-four naturally processed viral ligands, most of them included in complex nested set of peptides, were identified bound to HLA-DP molecules. These viral ligands arose from five of six major structural HRSV proteins: attachment, fusion, matrix, nucleoprotein, and phosphoprotein. In contrast, no HLA-DP ligands were identified from polymerase protein, the largest HRSV protein that includes half of the viral proteome. These findings have important implications for analysis of the helper immune response as for antiviral vaccine design. SIGNIFICANCE: The existence of a supertype including five alleles that bind a peptide repertoire very similar make HLA-DP class II molecules an interesting target for the design of vaccines. Here, we analyze the HLA-DP-restricted peptide repertoire against the human respiratory syncytial virus, a pathogen that represents a high health risk in infected pediatric, immunocompromised and elderly populations. This repertoire is focused on major structural proteins with the exception of the viral polymerase.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid) 28220, Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid) 28220, Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid) 28220, Spain.
| |
Collapse
|
7
|
Lorente E, Fontela MG, Barnea E, Martín-Galiano AJ, Mir C, Galocha B, Admon A, Lauzurica P, López D. Modulation of Natural HLA-B*27:05 Ligandome by Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 2 (ERAP2). Mol Cell Proteomics 2020; 19:994-1004. [PMID: 32265295 PMCID: PMC7261815 DOI: 10.1074/mcp.ra120.002014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The HLA-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with AS, a chronic inflammatory spondyloarthropathy. This study examined the effect of ERAP2 in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones, and the peptides were identified using high-throughput mass spectrometry analyses. The relative abundance of a thousand ligands was established by quantitative tandem mass spectrometry and bioinformatics analysis. The residue frequencies at different peptide position, identified in the presence or absence of ERAP2, determined structural features of ligands and their interactions with specific pockets of the antigen-binding site of the HLA-B*27:05 molecule. Sequence alignment of ligands identified with species of bacteria associated with HLA-B*27-dependent reactive arthritis was performed. In the absence of ERAP2, peptides with N-terminal basic residues and minority canonical P2 residues are enriched in the natural ligandome. Further, alterations of residue frequencies and hydrophobicity profile at P3, P7, and PΩ positions were detected. In addition, several ERAP2-dependent cellular peptides were highly similar to protein sequences of arthritogenic bacteria, including one human HLA-B*27:05 ligand fully conserved in a protein from Campylobacter jejuni These findings highlight the pathogenic role of this aminopeptidase in the triggering of AS autoimmune disease.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Miguel G Fontela
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Begoña Galocha
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Pilar Lauzurica
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain.
| |
Collapse
|
8
|
Lorente E, Palomo C, Barnea E, Mir C, del Val M, Admon A, López D. Natural Spleen Cell Ligandome in Transporter Antigen Processing-Deficient Mice. J Proteome Res 2019; 18:3512-3520. [DOI: 10.1021/acs.jproteome.9b00416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Concepción Palomo
- Unidad de Presentación y Regulación Inmunes, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Margarita del Val
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| |
Collapse
|
9
|
Lorente E, Barriga A, Barnea E, Palomo C, García-Arriaza J, Mir C, Esteban M, Admon A, López D. Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence. PLoS Negl Trop Dis 2019; 13:e0007547. [PMID: 31276466 PMCID: PMC6636782 DOI: 10.1371/journal.pntd.0007547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/17/2019] [Accepted: 06/11/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Efficient adaptive antiviral cellular and humoral immune responses require previous recognition of viral antigenic peptides bound to human leukocyte antigen (HLA) class I and II molecules, which are exposed on the surface of infected and antigen presenting cells, respectively. The HLA-restricted immune response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe chronic polyarthralgia and polyarthritis, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, a high-throughput mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of human cells infected with a vaccinia virus (VACV) recombinant expressing CHIKV structural proteins was carried out. Twelve viral ligands from the CHIKV polyprotein naturally presented by different HLA-A, -B, and -C class I, and HLA-DR and -DP class II molecules were identified. CONCLUSIONS/SIGNIFICANCE The immunoprevalence of the HLA class II but not the HLA class I-restricted cellular immune response against the CHIKV structural polyprotein was greater than that against the VACV vector itself. In addition, most of the CHIKV HLA class I and II ligands detected by mass spectrometry are not conserved compared to its closely related O'nyong-nyong virus. These findings have clear implications for analysis of both cytotoxic and helper immune responses against CHIKV as well as for the future studies focused in the exacerbated T helper response linked to chronic musculoskeletal disorders in CHIKV patients.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Alejandro Barriga
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Concepción Palomo
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| |
Collapse
|
10
|
López D, Barriga A, Lorente E, Mir C. Immunoproteomic Lessons for Human Respiratory Syncytial Virus Vaccine Design. J Clin Med 2019; 8:E486. [PMID: 30974886 PMCID: PMC6518116 DOI: 10.3390/jcm8040486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
Accurate antiviral humoral and cellular immune responses require prior recognition of antigenic peptides presented by human leukocyte antigen (HLA) class I and II molecules on the surface of antigen-presenting cells. Both the helper and the cytotoxic immune responses are critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, which is a significant cause of morbidity and mortality in infected pediatric, immunocompromised and elderly populations. In this article we review the immunoproteomics studies which have defined the general antigen processing and presentation rules that determine both the immunoprevalence and the immunodominance of the cellular immune response to HRSV. Mass spectrometry and functional analyses have shown that the HLA class I and II cellular immune responses against HRSV are mainly focused on three viral proteins: fusion, matrix, and nucleoprotein. Thus, these studies have important implications for vaccine development against this virus, since a vaccine construct including these three relevant HRSV proteins could efficiently stimulate the major components of the adaptive immune system: humoral, helper, and cytotoxic effector immune responses.
Collapse
Affiliation(s)
- Daniel López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Alejandro Barriga
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Elena Lorente
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Carmen Mir
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| |
Collapse
|
11
|
Lorente E, Martín-Galiano AJ, Barnea E, Barriga A, Palomo C, García-Arriaza J, Mir C, Lauzurica P, Esteban M, Admon A, López D. Proteomics Analysis Reveals That Structural Proteins of the Virion Core and Involved in Gene Expression Are the Main Source for HLA Class II Ligands in Vaccinia Virus-Infected Cells. J Proteome Res 2019; 18:900-911. [PMID: 30629447 DOI: 10.1021/acs.jproteome.8b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protective cellular and humoral immune responses require previous recognition of viral antigenic peptides complexed with human leukocyte antigen (HLA) class II molecules on the surface of the antigen presenting cells. The HLA class II-restricted immune response is important for the control and the clearance of poxvirus infection including vaccinia virus (VACV), the vaccine used in the worldwide eradication of smallpox. In this study, a mass spectrometry analysis was used to identify VACV ligands bound to HLA-DR and -DP class II molecules present on the surface of VACV-infected cells. Twenty-six naturally processed viral ligands among the tens of thousands of cell peptides bound to HLA class II proteins were identified. These viral ligands arose from 19 parental VACV proteins: A4, A5, A18, A35, A38, B5, B13, D1, D5, D7, D12, D13, E3, E8, H5, I2, I3, J2, and K2. The majority of these VACV proteins yielded one HLA ligand and were generated mainly, but not exclusively, by the classical HLA class II antigen processing pathway. Medium-sized and abundant proteins from the virion core and/or involved in the viral gene expression were the major source of VACV ligands bound to HLA-DR and -DP class II molecules. These findings will help to understand the effectiveness of current poxvirus-based vaccines and will be important in the design of new ones.
Collapse
Affiliation(s)
| | | | - Eilon Barnea
- Department of Biology , Technion-Israel Institute of Technology , 32000 Haifa , Israel
| | | | | | - Juan García-Arriaza
- Department of Molecular and Cellular Biology , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid , Spain
| | | | | | - Mariano Esteban
- Department of Molecular and Cellular Biology , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid , Spain
| | - Arie Admon
- Department of Biology , Technion-Israel Institute of Technology , 32000 Haifa , Israel
| | | |
Collapse
|
12
|
Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics 2016; 14:3105-17. [PMID: 26628741 DOI: 10.1074/mcp.o115.052431] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field.
Collapse
Affiliation(s)
- Etienne Caron
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland;
| | - Daniel J Kowalewski
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ching Chiek Koh
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Theo Sturm
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Heiko Schuster
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; ¶Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Lorente E, Barriga A, Barnea E, Mir C, Gebe JA, Admon A, López D. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus. Mol Cell Proteomics 2016; 15:2141-51. [PMID: 27090790 DOI: 10.1074/mcp.m115.057356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/06/2022] Open
Abstract
Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design.
Collapse
Affiliation(s)
- Elena Lorente
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Alejandro Barriga
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Eilon Barnea
- §Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Carmen Mir
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - John A Gebe
- ¶Benaroya Research Institute, Seattle, WA 98101, USA
| | - Arie Admon
- §Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Daniel López
- From the ‡Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain,
| |
Collapse
|
14
|
Galassie AC, Link AJ. Proteomic contributions to our understanding of vaccine and immune responses. Proteomics Clin Appl 2015; 9:972-89. [PMID: 26172619 PMCID: PMC4713355 DOI: 10.1002/prca.201500054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 01/19/2023]
Abstract
Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses.
Collapse
Affiliation(s)
| | - Andrew J. Link
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|