1
|
Li P, Wu Y, Deng Z, Samad A, Xi Y, Song J, Zhang Y, Li J, Zhou YA, Xiong Q, Wu C. Two novel SH3TC2 mutations predispose to Charcot-Marie-Tooth disease type 4C by mistargeting away from TFRC. Cell Signal 2025; 130:111669. [PMID: 39961410 DOI: 10.1016/j.cellsig.2025.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Charcot-Marie-Tooth disease type 4C (CMT4C) is an autosomal recessive form of demyelinating neuropathy caused by the biallelic pathogenic mutations in the SH3TC2 gene and characterized by progressive scoliosis, muscular atrophy, distal weakness, and reduced nerve conduction velocity. Here, we report two novel SH3TC2 mutations (c.452dupT and c.731 + 1G > T) from a proband with typical clinical manifestations of CMT4C. Splicing assay reveals the SH3TC2 c.731 + 1G > T mutation leads to a 58-nucleotide (nt) deletion from the downstream of exon 6 causing a frameshift and resulting in an early termination of protein expression. Protein expression assay indicates SH3TC2 c.452dupT mutant is degraded by both the nonsense mediated decay (NMD) and the ubiquitin-proteasome pathway. Moreover, our intracellular immunofluorescence, co-immunoprecipitation, liquid chromatography mass spectrometry and molecular docking describe that SH3TC2 interacts with the transferrin receptor protein 1 (TFRC) encoding a cell surface receptor playing a crucial role in mediating iron homeostasis. Interestingly, both the two novel SH3TC2 mutations present in our CMT4C patients are defective in the association with TFRC. Our study reveals the pathogenesis of these two novel SH3TC2 mutations and indicates that the SH3TC2-TFRC interaction is relevant for peripheral nerve pathophysiology, thus provides a novel insight into the pathophysiology of CMT4C neuropathy.
Collapse
Affiliation(s)
- Ping Li
- Institutes of Biomedical Sciences, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China.
| | - Ya Wu
- Institutes of Biomedical Sciences, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Zhanjin Deng
- Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yuqian Xi
- Institutes of Biomedical Sciences, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Jiawen Song
- Institutes of Biomedical Sciences, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Yanping Zhang
- Institutes of Biomedical Sciences, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Jianwei Li
- Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yong-An Zhou
- Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China.
| | - Changxin Wu
- Institutes of Biomedical Sciences, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China.
| |
Collapse
|
2
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Jones CM, Rohwedder A, Suen KM, Mohajerani SZ, Calabrese AN, Knipp S, Bedford MT, Ladbury JE. Affinity purification mass spectrometry characterisation of the interactome of receptor tyrosine kinase proline-rich motifs in cancer. Heliyon 2024; 10:e35480. [PMID: 39165974 PMCID: PMC11334840 DOI: 10.1016/j.heliyon.2024.e35480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Receptor tyrosine kinase (RTK) overexpression is linked to the development and progression of multiple cancers. RTKs are classically considered to initiate cytoplasmic signalling pathways via ligand-induced tyrosine phosphorylation, however recent evidence points to a second tier of signalling contingent on interactions mediated by the proline-rich motif (PRM) regions of non-activated RTKs. The presence of PRMs on the C-termini of >40 % of all RTKs and the abundance of PRM-binding proteins encoded by the human genome suggests that there is likely to be a large number of previously unexplored interactions which add to the RTK intracellular interactome. Here, we explore the RTK PRM interactome and its potential significance using affinity purification mass spectrometry and in silico enrichment analyses. Peptides comprising PRM-containing C-terminal tail regions of EGFR, FGFR2 and HER2 were used as bait to affinity purify bound proteins from different cancer cell line lysates. 490 unique interactors were identified, amongst which proteins with metabolic, homeostatic and migratory functions were overrepresented. This suggests that PRMs from RTKs may sustain a diverse interactome in cancer cells. Since RTK overexpression is common in cancer, RTK PRM-derived signalling may be an important, but as yet underexplored, contributor to negative cancer outcomes including resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Christopher M. Jones
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | - Arndt Rohwedder
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
- Centre for Medical Research (ZMF), Johannes Kepler University, 4020 Linz, Austria
| | - Kin Man Suen
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | | | | | - Sabine Knipp
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX. TX 77230, USA
| | - John E. Ladbury
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| |
Collapse
|
4
|
Stiegler AL, Vish KJ, Boggon TJ. Tandem engagement of phosphotyrosines by the dual SH2 domains of p120RasGAP. Structure 2022; 30:1603-1614.e5. [PMID: 36417908 PMCID: PMC9722645 DOI: 10.1016/j.str.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
p120RasGAP is a multidomain GTPase-activating protein for Ras. The presence of two Src homology 2 domains in an SH2-SH3-SH2 module raises the possibility that p120RasGAP simultaneously binds dual phosphotyrosine residues in target proteins. One known binding partner with two proximal phosphotyrosines is p190RhoGAP, a GTPase-activating protein for Rho GTPases. Here, we present the crystal structure of the p120RasGAP SH2-SH3-SH2 module bound to a doubly tyrosine-phosphorylated p190RhoGAP peptide, revealing simultaneous phosphotyrosine recognition by the SH2 domains. The compact arrangement places the SH2 domains in close proximity resembling an SH2 domain tandem and exposed SH3 domain. Affinity measurements support synergistic binding, while solution scattering reveals that dual phosphotyrosine binding induces compaction of this region. Our studies reflect a binding mode that limits conformational flexibility within the SH2-SH3-SH2 cassette and relies on the spacing and sequence surrounding the two phosphotyrosines, potentially representing a selectivity mechanism for downstream signaling events.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Pharmacology, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Chau JE, Vish KJ, Boggon TJ, Stiegler AL. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nat Commun 2022; 13:4788. [PMID: 35970859 PMCID: PMC9378701 DOI: 10.1038/s41467-022-32541-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
RhoGAP proteins are key regulators of Rho family GTPases and influence a variety of cellular processes, including cell migration, adhesion, and cytokinesis. These GTPase activating proteins (GAPs) downregulate Rho signaling by binding and enhancing the intrinsic GTPase activity of Rho proteins. Deleted in liver cancer 1 (DLC1) is a tumor suppressor and ubiquitously expressed RhoGAP protein; its activity is regulated in part by binding p120RasGAP, a GAP protein for the Ras GTPases. In this study, we report the co-crystal structure of the p120RasGAP SH3 domain bound directly to DLC1 RhoGAP, at a site partially overlapping the RhoA binding site and impinging on the catalytic arginine finger. We demonstrate biochemically that mutation of this interface relieves inhibition of RhoGAP activity by the SH3 domain. These results reveal the mechanism for inhibition of DLC1 RhoGAP activity by p120RasGAP and demonstrate the molecular basis for direct SH3 domain modulation of GAP activity.
Collapse
Affiliation(s)
- Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Tossavainen H, Uğurlu H, Karjalainen M, Hellman M, Antenucci L, Fagerlund R, Saksela K, Permi P. Structure of SNX9 SH3 in complex with a viral ligand reveals the molecular basis of its unique specificity for alanine-containing class I SH3 motifs. Structure 2022; 30:828-839.e6. [PMID: 35390274 DOI: 10.1016/j.str.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
Class I SH3 domain-binding motifs generally comply with the consensus sequence [R/K]xØPxxP, the hydrophobic residue Ø being proline or leucine. We have studied the unusual Ø = Ala-specificity of SNX9 SH3 by determining its complex structure with a peptide present in eastern equine encephalitis virus (EEEV) nsP3. The structure revealed the length and composition of the n-Src loop as important factors determining specificity. We also compared the affinities of EEEV nsP3 peptide, its mutants, and cellular ligands to SNX9 SH3. These data suggest that nsP3 has evolved to minimize reduction of conformational entropy upon binding, hence acquiring stronger affinity, enabling takeover of SNX9. The RxAPxxP motif was also found in human T cell leukemia virus-1 (HTLV-1) Gag polyprotein. We found that this motif was required for efficient HTLV-1 infection, and that the specificity of SNX9 SH3 for the RxAPxxP core binding motif was importantly involved in this process.
Collapse
Affiliation(s)
- Helena Tossavainen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki FI-00014 Finland
| | - Mikael Karjalainen
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Lina Antenucci
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla FI-40014, Finland; Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Riku Fagerlund
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki FI-00014 Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki FI-00014 Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla FI-40014, Finland; Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland.
| |
Collapse
|
7
|
Gao M, Johnson DA, Piper IM, Kodama HM, Svendsen JE, Tahti E, Longshore‐Neate F, Vogel B, Antos JM, Amacher JF. Structural and biochemical analyses of selectivity determinants in chimeric Streptococcus Class A sortase enzymes. Protein Sci 2022; 31:701-715. [PMID: 34939250 PMCID: PMC8862441 DOI: 10.1002/pro.4266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/22/2023]
Abstract
Sequence variation in related proteins is an important characteristic that modulates activity and selectivity. An example of a protein family with a large degree of sequence variation is that of bacterial sortases, which are cysteine transpeptidases on the surface of gram-positive bacteria. Class A sortases are responsible for attachment of diverse proteins to the cell wall to facilitate environmental adaption and interaction. These enzymes are also used in protein engineering applications for sortase-mediated ligations (SML) or sortagging of protein targets. We previously investigated SrtA from Streptococcus pneumoniae, identifying a number of putative β7-β8 loop-mediated interactions that affected in vitro enzyme function. We identified residues that contributed to the ability of S. pneumoniae SrtA to recognize several amino acids at the P1' position of the substrate motif, underlined in LPXTG, in contrast to the strict P1' Gly recognition of SrtA from Staphylococcus aureus. However, motivated by the lack of a structural model for the active, monomeric form of S. pneumoniae SrtA, here, we expanded our studies to other Streptococcus SrtA proteins. We solved the first monomeric structure of S. agalactiae SrtA which includes the C-terminus, and three others of β7-β8 loop chimeras from S. pyogenes and S. agalactiae SrtA. These structures and accompanying biochemical data support our previously identified β7-β8 loop-mediated interactions and provide additional insight into their role in Class A sortase substrate selectivity. A greater understanding of individual SrtA sequence and structural determinants of target selectivity may also facilitate the design or discovery of improved sortagging tools.
Collapse
Affiliation(s)
- Melody Gao
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - D. Alex Johnson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Isabel M. Piper
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Hanna M. Kodama
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Justin E. Svendsen
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Elise Tahti
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | | | - Brandon Vogel
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - John M. Antos
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Jeanine F. Amacher
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| |
Collapse
|
8
|
Valgardson J, Cosbey R, Houser P, Rupp M, Van Bronkhorst R, Lee M, Jagodzinski F, Amacher JF. MotifAnalyzer-PDZ: A computational program to investigate the evolution of PDZ-binding target specificity. Protein Sci 2019; 28:2127-2143. [PMID: 31599029 DOI: 10.1002/pro.3741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM-binding domains in the human proteome, the PDZ domain. These domains bind the extreme C-terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer-PDZ, a program that filters and compares all motif-satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C-terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously-relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif-satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer-PDZ is a versatile program to investigate potential PDZ interactions. This proof-of-concept work is poised to enable similar types of analyses for other SLiM-binding domains (e.g., MotifAnalyzer-Kinase). MotifAnalyzer-PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu.
Collapse
Affiliation(s)
- Jordan Valgardson
- Department of Computer Science, Western Washington University, Bellingham, Washington.,Department of Chemistry, Western Washington University, Bellingham, Washington
| | - Robin Cosbey
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Paul Houser
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Milo Rupp
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Raiden Van Bronkhorst
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Michael Lee
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Filip Jagodzinski
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, Washington
| |
Collapse
|
9
|
MC159 of Molluscum Contagiosum Virus Suppresses Autophagy by Recruiting Cellular SH3BP4 via an SH3 Domain-Mediated Interaction. J Virol 2019; 93:JVI.01613-18. [PMID: 30842330 DOI: 10.1128/jvi.01613-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
MC159 is a viral FLIP (FLICE inhibitory protein) encoded by the molluscum contagiosum virus (MCV) enabling MCV to evade antiviral immunity and to establish persistent infections in humans. Here, we show that MC159 contains a functional SH3 binding motif, which mediates avid and selective binding to SH3BP4, a signaling protein known to regulate endocytic trafficking and suppress cellular autophagy. The capacity to bind SH3BP4 was dispensable for regulation of NF-κB-mediated transcription and suppression of proapoptotic caspase activation but contributed to inhibition of amino acid starvation-induced autophagy by MC159. These results provide new insights into the cellular functions of MC159 and reveal SH3BP4 as a novel host cell factor targeted by a viral immune evasion protein.IMPORTANCE After the eradication of smallpox, molluscum contagiosum virus (MCV) is the only poxvirus restricted to infecting humans. MCV infection is common and causes benign skin lesions that usually resolve spontaneously but may persist for years and grow large, especially in immunocompromised individuals. While not life threatening, MCV infections pose a significant global health burden. No vaccine or specific anti-MCV therapy is available. MCV encodes several proteins that enable it to evade antiviral immunity, a notable example of which is the MC159 protein. In this study, we describe a novel mechanism of action for MC159 involving hijacking of a host cell protein called SH3BP4 to suppress autophagy, a cellular recycling mechanism important for antiviral immunity. This study contributes to our understanding of the host cell interactions of MCV and the molecular function of MC159.
Collapse
|
10
|
Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure 2017; 25:1598-1610.e3. [DOI: 10.1016/j.str.2017.07.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
|