1
|
Torres-Sangiao E, Happonen L, Heusel M, Palm F, Gueto-Tettay C, Malmström L, Shannon O, Malmström J. Quantification of Adaptive Immune Responses Against Protein-Binding Interfaces in the Streptococcal M1 Protein. Mol Cell Proteomics 2024; 23:100753. [PMID: 38527648 PMCID: PMC11059317 DOI: 10.1016/j.mcpro.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
Bacterial or viral antigens can contain subdominant protein regions that elicit weak antibody responses upon vaccination or infection although there is accumulating evidence that antibody responses against subdominant regions can enhance the protective immune response. One proposed mechanism for subdominant protein regions is the binding of host proteins that prevent antibody production against epitopes hidden within the protein binding interfaces. Here, we used affinity purification combined with quantitative mass spectrometry (AP-MS) to examine the level of competition between antigen-specific antibodies and host-pathogen protein interaction networks using the M1 protein from Streptococcus pyogenes as a model system. As most humans have circulating antibodies against the M1 protein, we first used AP-MS to show that the M1 protein interspecies protein network formed with human plasma proteins is largely conserved in naïve mice. Immunizing mice with the M1 protein generated a time-dependent increase of anti-M1 antibodies. AP-MS analysis comparing the composition of the M1-plasma protein network from naïve and immunized mice showed significant enrichment of 292 IgG peptides associated with 56 IgG chains in the immune mice. Despite the significant increase of bound IgGs, the levels of interacting plasma proteins were not significantly reduced in the immune mice. The results indicate that the antigen-specific polyclonal IgG against the M1 protein primarily targets epitopes outside the other plasma protein binding interfaces. In conclusion, this study demonstrates that AP-MS is a promising strategy to determine the relationship between antigen-specific antibodies and host-pathogen interaction networks that could be used to define subdominant protein regions of relevance for vaccine development.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Escherichia coli Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Clinical Microbiology Lab, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Lotta Happonen
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Morizt Heusel
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Evosep ApS, Odense, Denmark
| | - Frida Palm
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Carlos Gueto-Tettay
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Malmström
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Onna Shannon
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Faculty of Odontology, Section for Oral Biology and Pathology, Malmö University, Malmö, Sweden
| | - Johan Malmström
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Gueto-Tettay C, Tang D, Happonen L, Heusel M, Khakzad H, Malmström J, Malmström L. Multienzyme deep learning models improve peptide de novo sequencing by mass spectrometry proteomics. PLoS Comput Biol 2023; 19:e1010457. [PMID: 36668672 PMCID: PMC9891523 DOI: 10.1371/journal.pcbi.1010457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Generating and analyzing overlapping peptides through multienzymatic digestion is an efficient procedure for de novo protein using from bottom-up mass spectrometry (MS). Despite improved instrumentation and software, de novo MS data analysis remains challenging. In recent years, deep learning models have represented a performance breakthrough. Incorporating that technology into de novo protein sequencing workflows require machine-learning models capable of handling highly diverse MS data. In this study, we analyzed the requirements for assembling such generalizable deep learning models by systemcally varying the composition and size of the training set. We assessed the generated models' performances using two test sets composed of peptides originating from the multienzyme digestion of samples from various species. The peptide recall values on the test sets showed that the deep learning models generated from a collection of highly N- and C-termini diverse peptides generalized 76% more over the termini-restricted ones. Moreover, expanding the training set's size by adding peptides from the multienzymatic digestion with five proteases of several species samples led to a 2-3 fold generalizability gain. Furthermore, we tested the applicability of these multienzyme deep learning (MEM) models by fully de novo sequencing the heavy and light monomeric chains of five commercial antibodies (mAbs). MEMs extracted over 10000 matching and overlapped peptides across six different proteases mAb samples, achieving a 100% sequence coverage for 8 of the ten polypeptide chains. We foretell that the MEMs' proven improvements to de novo analysis will positively impact several applications, such as analyzing samples of high complexity, unknown nature, or the peptidomics field.
Collapse
Affiliation(s)
- Carlos Gueto-Tettay
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Moritz Heusel
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Torres-Sangiao E, Giddey AD, Leal Rodriguez C, Tang Z, Liu X, Soares NC. Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens. Front Med (Lausanne) 2022; 9:850374. [PMID: 35586072 PMCID: PMC9108449 DOI: 10.3389/fmed.2022.850374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Clinical Microbiology Lab, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Eva Torres-Sangiao,
| | - Alexander Dyason Giddey
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cristina Leal Rodriguez
- Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nelson C. Soares
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares,
| |
Collapse
|
4
|
Küchler J, Püttker S, Lahmann P, Genzel Y, Kupke S, Benndorf D, Reichl U. Absolute quantification of viral proteins during single-round replication of MDCK suspension cells. J Proteomics 2022; 259:104544. [PMID: 35240312 DOI: 10.1016/j.jprot.2022.104544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/17/2022]
Abstract
Madin-Darby canine kidney (MDCK) cells are widely used in basic research and for the propagation of influenza A viruses (IAV) for vaccine production. To identify targets for antiviral therapies and to optimize vaccine manufacturing, a detailed understanding of the viral life cycle is important. This includes the characterization of virus entry, the synthesis of the various viral RNAs and proteins, the transfer of viral compounds in the cell and virus budding. In case quantitative information is available, the analysis can be complemented by mathematical modelling approaches. While comprehensive studies focusing on IAV entry as well as viral mRNA, vRNA and cRNA accumulation in the nucleus of cells have been performed, quantitative data regarding IAV protein synthesis and accumulation was mostly lacking. In this study, we present a mass spectrometry (MS)-based method to evaluate whether an absolute quantification of viral proteins is possible for single-round replication in suspension MDCK cells. Using influenza A/PR/8/34 (H1N1, RKI) as a model strain at a multiplicity of infection of ten, defined amounts of isotopically labelled peptides of synthetic origin of four IAV proteins (hemagglutinin, neuraminidase, nucleoprotein, matrix protein 1) were added as an internal standard before tryptic digestion of samples for absolute quantification (AQUA). The first intracellular protein detected was NP at 1 h post infection (hpi). A maximum extracellular concentration of 7.7E+12 copies/mL was achieved. This was followed by hemagglutinin (3 hpi, maximum 4.1E+12 copies/mL at 13 hpi), matrix protein 1 (5 hpi, maximum 2.2E+12 copies/mL at 13 hpi) and neuraminidase (5 hpi, 6.0E+11 copies/mL at 13 hpi). In sum, for the first time absolute IAV protein copy numbers were quantified by a MS-based method for infected MDCK cells providing important insights into viral protein dynamics during single-round virus replication. SIGNIFICANCE: Influenza A virus is a significant human pathogen worldwide. To improve therapies against influenza and overcome bottlenecks in vaccine production in cell culture, it is critical to gain a detailed understanding of the viral life cycle. In addition to qPCR-based models, this study will examine the dynamics of influenza virus proteins during infection of producer cells to gain initial insights into changes in absolute copy numbers.
Collapse
Affiliation(s)
- Jan Küchler
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patrick Lahmann
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Sascha Kupke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Abstract
Streptococcus pyogenes is known to cause both mucosal and systemic infections in humans. In this study, we used a combination of quantitative and structural mass spectrometry techniques to determine the composition and structure of the interaction network formed between human plasma proteins and the surfaces of different S. pyogenes serotypes. Quantitative network analysis revealed that S. pyogenes forms serotype-specific interaction networks that are highly dependent on the domain arrangement of the surface-attached M protein. Subsequent structural mass spectrometry analysis and computational modeling of one of the M proteins, M28, revealed that the network structure changes across different host microenvironments. We report that M28 binds secretory IgA via two separate binding sites with high affinity in saliva. During vascular leakage mimicked by increasing plasma concentrations in saliva, the binding of secretory IgA was replaced by the binding of monomeric IgA and C4b-binding protein (C4BP). This indicates that an upsurge of C4BP in the local microenvironment due to damage to the mucosal membrane drives the binding of C4BP and monomeric IgA to M28. These results suggest that S. pyogenes has evolved to form microenvironment-dependent host-pathogen protein complexes to combat human immune surveillance during both mucosal and systemic infections. IMPORTANCEStreptococcus pyogenes (group A Streptococcus [GAS]), is a human-specific Gram-positive bacterium. Each year, the bacterium affects 700 million people globally, leading to 160,000 deaths. The clinical manifestations of S. pyogenes are diverse, ranging from mild and common infections like tonsillitis and impetigo to life-threatening systemic conditions such as sepsis and necrotizing fasciitis. S. pyogenes expresses multiple virulence factors on its surface to localize and initiate infections in humans. Among all these expressed virulence factors, the M protein is the most important antigen. In this study, we perform an in-depth characterization of the human protein interactions formed around one of the foremost human pathogens. This strategy allowed us to decipher the protein interaction networks around different S. pyogenes strains on a global scale and to compare and visualize how such interactions are mediated by M proteins.
Collapse
|
6
|
van Belkum A, Almeida C, Bardiaux B, Barrass SV, Butcher SJ, Çaykara T, Chowdhury S, Datar R, Eastwood I, Goldman A, Goyal M, Happonen L, Izadi-Pruneyre N, Jacobsen T, Johnson PH, Kempf VAJ, Kiessling A, Bueno JL, Malik A, Malmström J, Meuskens I, Milner PA, Nilges M, Pamme N, Peyman SA, Rodrigues LR, Rodriguez-Mateos P, Sande MG, Silva CJ, Stasiak AC, Stehle T, Thibau A, Vaca DJ, Linke D. Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics (Basel) 2021; 11:diagnostics11071259. [PMID: 34359341 PMCID: PMC8305138 DOI: 10.3390/diagnostics11071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
Collapse
Affiliation(s)
- Alex van Belkum
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
- Correspondence: (A.v.B.); (D.L.)
| | | | - Benjamin Bardiaux
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Sarah V. Barrass
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Sarah J. Butcher
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Tuğçe Çaykara
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Rucha Datar
- BioMérieux, Microbiology R&D, 38390 La Balme Les Grottes, France;
| | | | - Adrian Goldman
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Manisha Goyal
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Theis Jacobsen
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Pirjo H. Johnson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Andreas Kiessling
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Juan Leva Bueno
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Anchal Malik
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Paul A. Milner
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Michael Nilges
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Nicole Pamme
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Sally A. Peyman
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Pablo Rodriguez-Mateos
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Maria G. Sande
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Carla Joana Silva
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Aleksandra Cecylia Stasiak
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Correspondence: (A.v.B.); (D.L.)
| |
Collapse
|
7
|
Sukumaran A, Woroszchuk E, Ross T, Geddes-McAlister J. Proteomics of host-bacterial interactions: new insights from dual perspectives. Can J Microbiol 2020; 67:213-225. [PMID: 33027598 DOI: 10.1139/cjm-2020-0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass-spectrometry (MS)-based proteomics is a powerful and robust platform for studying the interactions between biological systems during health and disease. Bacterial infections represent a significant threat to global health and drive the pursuit of novel therapeutic strategies to combat emerging and resistant pathogens. During infection, the interplay between a host and pathogen determines the ability of the microbe to survive in a hostile environment and promotes an immune response by the host as a protective measure. It is the protein-level changes from either biological system that define the outcome of infection, and MS-based proteomics provides a rapid and effective platform to identify such changes. In particular, proteomics detects alterations in protein abundance, quantifies protein secretion and (or) release, measures an array of post-translational modifications that influence signaling cascades, and profiles protein-protein interactions through protein complex and (or) network formation. Such information provides new insight into the role of known and novel bacterial effectors, as well as the outcome of host cell activation. In this Review, we highlight the diverse applications of MS-based proteomics in profiling the relationship between bacterial pathogens and the host. Our work identifies a plethora of strategies for exploring mechanisms of infection from dual perspectives (i.e., host and pathogen), and we suggest opportunities to extrapolate the current knowledgebase to other biological systems for applications in therapeutic discovery.
Collapse
Affiliation(s)
- Arjun Sukumaran
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elizabeth Woroszchuk
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Taylor Ross
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019; 19:e1800435. [DOI: 10.1002/pmic.201800435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Sara Saleh
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - An Staes
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - Stijn Deborggraeve
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| |
Collapse
|
9
|
A quantitative Streptococcus pyogenes-human protein-protein interaction map reveals localization of opsonizing antibodies. Nat Commun 2019; 10:2727. [PMID: 31227708 PMCID: PMC6588558 DOI: 10.1038/s41467-019-10583-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/17/2019] [Indexed: 12/01/2022] Open
Abstract
A fundamental challenge in medical microbiology is to characterize the dynamic protein–protein interaction networks formed at the host–pathogen interface. Here, we generate a quantitative interaction map between the significant human pathogen, Streptococcus pyogenes, and proteins from human saliva and plasma obtained via complementary affinity-purification and bacterial-surface centered enrichment strategies and quantitative mass spectrometry. Perturbation of the network using immunoglobulin protease cleavage, mixtures of different concentrations of saliva and plasma, and different S. pyogenes serotypes and their isogenic mutants, reveals how changing microenvironments alter the interconnectivity of the interaction map. The importance of host immunoglobulins for the interaction with human complement proteins is demonstrated and potential protective epitopes of importance for phagocytosis of S. pyogenes cells are localized. The interaction map confirms several previously described protein–protein interactions; however, it also reveals a multitude of additional interactions, with possible implications for host–pathogen interactions involving other bacterial species. Characterizing host-pathogen protein interactions can help elucidate the molecular basis of bacterial infections. Here, the authors use an integrative proteomics approach to generate a quantitative map of protein interactions between Streptococcus pyogenes and human saliva and plasma.
Collapse
|
10
|
Computational Health Engineering Applied to Model Infectious Diseases and Antimicrobial Resistance Spread. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infectious diseases are the primary cause of mortality worldwide. The dangers of infectious disease are compounded with antimicrobial resistance, which remains the greatest concern for human health. Although novel approaches are under investigation, the World Health Organization predicts that by 2050, septicaemia caused by antimicrobial resistant bacteria could result in 10 million deaths per year. One of the main challenges in medical microbiology is to develop novel experimental approaches, which enable a better understanding of bacterial infections and antimicrobial resistance. After the introduction of whole genome sequencing, there was a great improvement in bacterial detection and identification, which also enabled the characterization of virulence factors and antimicrobial resistance genes. Today, the use of in silico experiments jointly with computational and machine learning offer an in depth understanding of systems biology, allowing us to use this knowledge for the prevention, prediction, and control of infectious disease. Herein, the aim of this review is to discuss the latest advances in human health engineering and their applicability in the control of infectious diseases. An in-depth knowledge of host–pathogen–protein interactions, combined with a better understanding of a host’s immune response and bacterial fitness, are key determinants for halting infectious diseases and antimicrobial resistance dissemination.
Collapse
|
11
|
Khakzad H, Malmström J, Malmström L. Greedy de novo motif discovery to construct motif repositories for bacterial proteomes. BMC Bioinformatics 2019; 20:141. [PMID: 30999854 PMCID: PMC6471678 DOI: 10.1186/s12859-019-2686-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bacterial surfaces are complex systems, constructed from membranes, peptidoglycan and, importantly, proteins. The proteins play crucial roles as critical regulators of how the bacterium interacts with and survive in its environment. A full catalog of the motifs in protein families and their relative conservation grade is a prerequisite to target the protein-protein interaction that bacterial surface protein makes to host proteins. RESULTS In this paper, we propose a greedy approach to identify conserved motifs in large sequence families iteratively. Each iteration discovers a motif de novo and masks all occurrences of that motif. Remaining unmasked sequences are subjected to the next round of motif detection until no more significant motifs can be found. We demonstrate the utility of the method through the construction of a proteome-wide motif repository for Group A Streptococcus (GAS), a significant human pathogen. GAS produce numerous surface proteins that interact with over 100 human plasma proteins, helping the bacteria to evade the host immune response. We used the repository to find that proteins part of the bacterial surface has motif architectures that differ from intracellular proteins. CONCLUSIONS We elucidate that the M protein, a coiled-coil homodimer that extends over 500 A from the cell wall, has a motif architecture that differs between various GAS strains. As the M protein is known to bind a variety of different plasma proteins, the results indicate that the different motif architectures are responsible for the quantitative differences of plasma proteins that various strains bind. The speed and applicability of the method enable its application to all major human pathogens.
Collapse
Affiliation(s)
- Hamed Khakzad
- Faculty of Science, Institute for Computational Science, University of Zurich, 429 Winterthurerstrasse, 190, Zurich, CH-8057 Switzerland
- Service and Support 430 for Science IT (S3IT), University of Zurich, Winterthurerstrasse, 190, Zurich, CH-8057 431 Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical 432 Sciences, Lund University, Tornavagen, 10, Lund, SE-22184 Sweden
| | - Lars Malmström
- Faculty of Science, Institute for Computational Science, University of Zurich, 429 Winterthurerstrasse, 190, Zurich, CH-8057 Switzerland
- Service and Support 430 for Science IT (S3IT), University of Zurich, Winterthurerstrasse, 190, Zurich, CH-8057 431 Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Division of Infection Medicine, Department of Clinical 432 Sciences, Lund University, Tornavagen, 10, Lund, SE-22184 Sweden
| |
Collapse
|
12
|
Menneteau T, Fabre B, Garrigues L, Stella A, Zivkovic D, Roux-Dalvai F, Mouton-Barbosa E, Beau M, Renoud ML, Amalric F, Sensébé L, Gonzalez-de-Peredo A, Ader I, Burlet-Schiltz O, Bousquet MP. Mass Spectrometry-based Absolute Quantification of 20S Proteasome Status for Controlled Ex-vivo Expansion of Human Adipose-derived Mesenchymal Stromal/Stem Cells. Mol Cell Proteomics 2019; 18:744-759. [PMID: 30700495 PMCID: PMC6442357 DOI: 10.1074/mcp.ra118.000958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/21/2019] [Indexed: 01/18/2023] Open
Abstract
The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.
Collapse
Affiliation(s)
- Thomas Menneteau
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;; §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Bertrand Fabre
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Luc Garrigues
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Alexandre Stella
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Dusan Zivkovic
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Florence Roux-Dalvai
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Mathilde Beau
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Marie-Laure Renoud
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - François Amalric
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Luc Sensébé
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Anne Gonzalez-de-Peredo
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Isabelle Ader
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;.
| | - Marie-Pierre Bousquet
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;.
| |
Collapse
|
13
|
Hauri S, Khakzad H, Happonen L, Teleman J, Malmström J, Malmström L. Rapid determination of quaternary protein structures in complex biological samples. Nat Commun 2019; 10:192. [PMID: 30643114 PMCID: PMC6331586 DOI: 10.1038/s41467-018-07986-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022] Open
Abstract
The understanding of complex biological systems is still hampered by limited knowledge of biologically relevant quaternary protein structures. Here, we demonstrate quaternary structure determination in biological samples using a combination of chemical cross-linking, high-resolution mass spectrometry and high-accuracy protein structure modeling. This approach, termed targeted cross-linking mass spectrometry (TX-MS), relies on computational structural models to score sets of targeted cross-linked peptide signals acquired using a combination of mass spectrometry acquisition techniques. We demonstrate the utility of TX-MS by creating a high-resolution quaternary model of a 1.8 MDa protein complex composed of a pathogen surface protein and ten human plasma proteins. The model is based on a dense network of cross-link distance constraints obtained directly in a mixture of human plasma and live bacteria. These results demonstrate that TX-MS can increase the applicability of flexible backbone docking algorithms to large protein complexes by providing rich cross-link distance information from complex biological samples. Protein structure determination in complex biological samples is still challenging. Here, the authors develop a computational modeling-guided cross-linking mass spectrometry method, obtaining a high-resolution model of a 1.8 MDa protein assembly from cross-links detected in a mixture of human plasma and bacteria.
Collapse
Affiliation(s)
- Simon Hauri
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, SE-22184, Lund, Sweden
| | - Hamed Khakzad
- S3IT, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, SE-22184, Lund, Sweden
| | - Johan Teleman
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, SE-22184, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, SE-22184, Lund, Sweden.
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, SE-22184, Lund, Sweden. .,S3IT, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
14
|
Palm F, Sjöholm K, Malmström J, Shannon O. Complement Activation Occurs at the Surface of Platelets Activated by Streptococcal M1 Protein and This Results in Phagocytosis of Platelets. THE JOURNAL OF IMMUNOLOGY 2018; 202:503-513. [PMID: 30541884 DOI: 10.4049/jimmunol.1800897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
Platelets circulate the bloodstream and principally maintain hemostasis. Disturbed hemostasis, a dysregulated inflammatory state, and a decreased platelet count are all hallmarks of severe invasive Streptococcus pyogenes infection, sepsis. We have previously demonstrated that the released M1 protein from S. pyogenes activates platelets, and this activation is dependent on the binding of M1 protein, fibrinogen, and M1-specific IgG to platelets in susceptible donors. In this study, we characterize the M1-associated protein interactions in human plasma and investigate the acquisition of proteins to the surface of activated platelets and the consequences for platelet immune function. Using quantitative mass spectrometry, M1 protein was determined to form a protein complex in plasma with statistically significant enrichment of fibrinogen, IgG3, and complement components, especially C1q. Using flow cytometry, these plasma proteins were also confirmed to be acquired to the platelet surface, resulting in complement activation on M1-activated human platelets. Furthermore, we demonstrated an increased phagocytosis of M1-activated platelets by monocytes, which was not observed with other physiological platelet agonists. This reveals a novel mechanism of complement activation during streptococcal sepsis, which contributes to the platelet consumption that occurs in sepsis.
Collapse
Affiliation(s)
- Frida Palm
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Kristoffer Sjöholm
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
15
|
Průcha M, Zazula R, Russwurm S. Sepsis Diagnostics in the Era of "Omics" Technologies. Prague Med Rep 2018; 119:9-29. [PMID: 29665344 DOI: 10.14712/23362936.2018.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Sepsis is a multifactorial clinical syndrome with an extremely dynamic clinical course and with high diverse clinical phenotype. Early diagnosis is crucial for the final clinical outcome. Previous studies have not identified a biomarker for the diagnosis of sepsis which would have sufficient sensitivity and specificity. Identification of the infectious agents or the use of molecular biology, next gene sequencing, has not brought significant benefit for the patient in terms of early diagnosis. Therefore, we are currently searching for biomarkers, through "omics" technologies with sufficient diagnostic specificity and sensitivity, able to predict the clinical course of the disease and the patient response to therapy. Current progress in the use of systems biology technologies brings us hope that by using big data from clinical trials such biomarkers will be found.
Collapse
Affiliation(s)
- Miroslav Průcha
- Department of Clinical Biochemistry, Haematology and Immunology, Na Homolce Hospital, Prague, Czech Republic.
| | - Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Stefan Russwurm
- Department of Anesthesiology and Intensive Care, University Hospital Jena, Jena, Germany
| |
Collapse
|
16
|
Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. J Mol Biol 2018; 430:2641-2660. [PMID: 29949751 DOI: 10.1016/j.jmb.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.
Collapse
|
17
|
Karlsson CAQ, Järnum S, Winstedt L, Kjellman C, Björck L, Linder A, Malmström JA. Streptococcus pyogenes Infection and the Human Proteome with a Special Focus on the Immunoglobulin G-cleaving Enzyme IdeS. Mol Cell Proteomics 2018; 17:1097-1111. [PMID: 29511047 PMCID: PMC5986240 DOI: 10.1074/mcp.ra117.000525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes, with a particular focus on bacterial cleavage of IgG in vivo. In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection.
Collapse
Affiliation(s)
- Christofer A Q Karlsson
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Sofia Järnum
- §Hansa Medical AB, Scheelevägen 22, 223 63 Lund, Sweden
| | - Lena Winstedt
- §Hansa Medical AB, Scheelevägen 22, 223 63 Lund, Sweden
| | | | - Lars Björck
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Adam Linder
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Johan A Malmström
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden;
| |
Collapse
|
18
|
Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 2018; 189:75-90. [PMID: 29452276 DOI: 10.1016/j.jprot.2018.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Starr AE, Deeke SA, Li L, Zhang X, Daoud R, Ryan J, Ning Z, Cheng K, Nguyen LVH, Abou-Samra E, Lavallée-Adam M, Figeys D. Proteomic and Metaproteomic Approaches to Understand Host–Microbe Interactions. Anal Chem 2017; 90:86-109. [DOI: 10.1021/acs.analchem.7b04340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda E. Starr
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Shelley A. Deeke
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Leyuan Li
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rachid Daoud
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - James Ryan
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Kai Cheng
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Linh V. H. Nguyen
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Elias Abou-Samra
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Molecular Architecture of Life Program, Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
20
|
Cristea IM. The Host-Pathogen Ecosystem Viewed Through the Prism of Proteomics. Mol Cell Proteomics 2017; 16:S1-S4. [PMID: 28283547 DOI: 10.1074/mcp.e117.068270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/10/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|