1
|
Brandi J, Noberini R, Bonaldi T, Cecconi D. Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications. J Chromatogr A 2022; 1678:463352. [PMID: 35896048 DOI: 10.1016/j.chroma.2022.463352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Post-translational modifications (PTMs) occur during or after protein biosynthesis and increase the functional diversity of proteome. They comprise phosphorylation, acetylation, methylation, glycosylation, ubiquitination, sumoylation (among many other modifications), and influence all aspects of cell biology. Mass-spectrometry (MS)-based proteomics is the most powerful approach for PTM analysis. Despite this, it is challenging due to low abundance and labile nature of many PTMs. Hence, enrichment of modified peptides is required for MS analysis. This review provides an overview of most common PTMs and a discussion of current enrichment methods for MS-based proteomics analysis. The traditional affinity strategies, including immunoenrichment, chromatography and protein pull-down, are outlined together with their strengths and shortcomings. Moreover, a special attention is paid to chemical enrichment strategies, such as capture by chemoselective probes, metabolic and chemoenzymatic labelling, which are discussed with an emphasis on their recent progress. Finally, the challenges and future trends in the field are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy.
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy.
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
2
|
Analysis of EYA3 Phosphorylation by Src Kinase Identifies Residues Involved in Cell Proliferation. Int J Mol Sci 2019; 20:ijms20246307. [PMID: 31847183 PMCID: PMC6940942 DOI: 10.3390/ijms20246307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Eyes absent (EYA) are non-thiol-based protein tyrosine phosphatases (PTPs) that also have transcriptional co-activator functions. Their PTP activity is involved in various pathologies. Recently, we demonstrated that Src tyrosine kinase phosphorylates human EYA3 by controlling its subcellular localization. We also found EYA3′s ability to autodephosphorylate, while raising the question if the two opposing processes could be involved in maintaining a physiologically adequate level of phosphorylation. Using native and bottom-up mass spectrometry, we performed detailed mapping and characterization of human EYA3 Src-phosphorylation sites. Thirteen tyrosine residues with different phosphorylation and autodephosphorylation kinetics were detected. Among these, Y77, 96, 237, and 508 displayed an increased resistance to autodephosphorylation. Y77 and Y96 were found to have the highest impact on the overall EYA3 phosphorylation. Using cell cycle analysis, we showed that Y77, Y96, and Y237 are involved in HEK293T proliferation. Mutation of the three tyrosine residues abolished the pro-proliferative effect of EYA3 overexpression. We have also identified a Src-induced phosphorylation pattern of EYA3 in these cells. These findings suggest that EYA3′s tyrosine phosphorylation sites are non-equivalent with their phosphorylation levels being under the control of Src-kinase activity and of EYA3′s autodephosphorylation.
Collapse
|
3
|
Merő B, Radnai L, Gógl G, Tőke O, Leveles I, Koprivanacz K, Szeder B, Dülk M, Kudlik G, Vas V, Cserkaszky A, Sipeki S, Nyitray L, Vértessy BG, Buday L. Structural insights into the tyrosine phosphorylation-mediated inhibition of SH3 domain-ligand interactions. J Biol Chem 2019; 294:4608-4620. [PMID: 30659095 DOI: 10.1074/jbc.ra118.004732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains bind proline-rich linear motifs in eukaryotes. By mediating inter- and intramolecular interactions, they regulate the functions of many proteins involved in a wide variety of signal transduction pathways. Phosphorylation at different tyrosine residues in SH3 domains has been reported previously. In several cases, the functional consequences have also been investigated. However, a full understanding of the effects of tyrosine phosphorylation on the ligand interactions and cellular functions of SH3 domains requires detailed structural, atomic-resolution studies along with biochemical and biophysical analyses. Here, we present the first crystal structures of tyrosine-phosphorylated human SH3 domains derived from the Abelson-family kinases ABL1 and ABL2 at 1.6 and 1.4 Å resolutions, respectively. The structures revealed that simultaneous phosphorylation of Tyr89 and Tyr134 in ABL1 or the homologous residues Tyr116 and Tyr161 in ABL2 induces only minor structural perturbations. Instead, the phosphate groups sterically blocked the ligand-binding grooves, thereby strongly inhibiting the interaction with proline-rich peptide ligands. Although some crystal contact surfaces involving phosphotyrosines suggested the possibility of tyrosine phosphorylation-induced dimerization, we excluded this possibility by using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and NMR relaxation analyses. Extensive analysis of relevant databases and literature revealed not only that the residues phosphorylated in our model systems are well-conserved in other human SH3 domains, but that the corresponding tyrosines are known phosphorylation sites in vivo in many cases. We conclude that tyrosine phosphorylation might be a mechanism involved in the regulation of the human SH3 interactome.
Collapse
Affiliation(s)
| | | | - Gergő Gógl
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Orsolya Tőke
- Laboratory for NMR Spectroscopy, Research Center for Natural Sciences (RCNS), Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Ibolya Leveles
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | | | | | | | | | - Virág Vas
- From the Institute of Enzymology and
| | | | - Szabolcs Sipeki
- the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - László Nyitray
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Beáta G Vértessy
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | - László Buday
- From the Institute of Enzymology and .,the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| |
Collapse
|
4
|
Steinberg SF. Post-translational modifications at the ATP-positioning G-loop that regulate protein kinase activity. Pharmacol Res 2018; 135:181-187. [PMID: 30048755 DOI: 10.1016/j.phrs.2018.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022]
Abstract
Protein kinases are a superfamily of enzymes that control a wide range of cellular functions. These enzymes share a highly conserved catalytic core that folds into a similar bilobar three-dimensional structure. One highly conserved region in the protein kinase core is the glycine-rich loop (or G-loop), a highly flexible loop that is characterized by a consensus GxGxxG sequence. The G-loop points toward the catalytic cleft and functions to bind and position ATP for phosphotransfer. Of note, in many protein kinases, the second and third glycine residues in the G-loop triad flank residues that can be targets for phosphorylation (Ser, Thr, or Tyr) or other post-translational modifications (ubiquitination, acetylation, O-GlcNAcylation, oxidation). There is considerable evidence that cyclin-dependent kinases are held inactive through inhibitory phosphorylation of the conserved Thr/Tyr residues in this position of the G-loop and that dephosphorylation by cellular phosphatases is required for CDK activation and progression through the cell cycle. This review summarizes literature that identifies residues in or adjacent to the G-loop in other protein kinases that are targets for functionally important post-translational modifications.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
5
|
Zitterbart R, Seitz O. Parallele chemische Proteinsynthese auf der Oberfläche zur schnellen Analyse der Phosphoregulierung von SH3-Domänen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert Zitterbart
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Oliver Seitz
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
6
|
Zitterbart R, Seitz O. Parallel Chemical Protein Synthesis on a Surface Enables the Rapid Analysis of the Phosphoregulation of SH3 Domains. Angew Chem Int Ed Engl 2016; 55:7252-6. [DOI: 10.1002/anie.201601843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Robert Zitterbart
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Oliver Seitz
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
7
|
Lamontanara AJ, Gencer EB, Kuzyk O, Hantschel O. Mechanisms of resistance to BCR-ABL and other kinase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1449-59. [PMID: 23277196 DOI: 10.1016/j.bbapap.2012.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/15/2012] [Indexed: 01/15/2023]
Abstract
In this article, we are reviewing the molecular mechanisms that lead to kinase inhibitor resistance. As the oncogenic BCR-ABL kinase is the target of the first approved small-molecule kinase inhibitor imatinib, we will first focus on the structural and mechanistic basis for imatinib resistance. We will then show ways how next generations of BCR-ABL inhibitors and alternative targeting strategies have helped to offer effective treatment options for imatinib-resistant patients. Based on these insights, we discuss commonalities and further mechanisms that lead to resistance to other kinase inhibitors in solid tumors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Allan Joaquim Lamontanara
- École polytechnique fédérale de Lausanne EPFL, School of Life Sciences, Swiss Institute for Experimental Cancer Research ISREC, Lausanne, Switzerland
| | | | | | | |
Collapse
|
8
|
Abstract
Abl kinases are prototypic cytoplasmic tyrosine kinases and are involved in a variety of chromosomal aberrations in different cancers. This causes the expression of Abl fusion proteins, such as Bcr-Abl, that are constitutively activated and drivers of tumorigenesis. Over the past decades, biochemical and functional studies on the molecular mechanisms of Abl regulation have gone hand in hand with progression of our structural understanding of autoinhibited and active Abl conformations. In parallel, Abl oncoproteins have become prime molecular targets for cancer therapy, using adenosine triphosphate (ATP)-competitive kinase inhibitors, such as imatinib. Abl-targeting drugs serve as a paradigm for our understanding of kinase inhibitor action, specificity, and resistance development. In this review article, I will review the molecular mechanisms that are responsible for the regulation of Abl kinase activity and how oncogenic Abl fusions signal. Furthermore, past and ongoing efforts to target Abl oncoproteins using ATP-competitive and allosteric inhibitors, as well as future possibilities using combination therapy, will be discussed.
Collapse
Affiliation(s)
- Oliver Hantschel
- École polytechnique fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| |
Collapse
|
9
|
Myung S, Cohen H, Fenyo D, Padovan JC, Krutchinsky AN, Chait BT. High-Capacity Ion Trap Coupled to a Time-of-Flight Mass Spectrometer for Comprehensive Linked Scans with no Scanning Losses. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 301:211-219. [PMID: 21516228 PMCID: PMC3079222 DOI: 10.1016/j.ijms.2010.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A high-capacity ion trap coupled to a time-of-flight (TOF) mass spectrometer has been developed to carry out comprehensive linked scan analysis of all stored ions in the ion trap. The approach involves a novel tapered geometry high-capacity ion trap that can store more than 10(6) ions (range 800-4000 m/z) without degrading its performance. Ions are stored and scanned out from the high-capacity ion trap as a function of m/z, collisionally fragmented and analyzed by TOF. Accurate mass analysis is achieved on both the precursor and fragment ions of all species ejected from the ion trap. We demonstrate the approach for comprehensive linked-scan identification of phosphopeptides in mixtures with their corresponding unphosphorylated peptides.
Collapse
|
10
|
Preyer M, Vigneri P, Wang JYJ. Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR-ABL. PLoS One 2011; 6:e17020. [PMID: 21347248 PMCID: PMC3037956 DOI: 10.1371/journal.pone.0017020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/19/2011] [Indexed: 02/07/2023] Open
Abstract
Background The constitutively activated BCR-ABL tyrosine kinase of chronic myeloid leukemia (CML) is localized exclusively to the cytoplasm despite the three nuclear localization signals (NLS) in the ABL portion of this fusion protein. The NLS function of BCR-ABL is re-activated by a kinase inhibitor, imatinib, and in a kinase-defective BCR-ABL mutant. The mechanism of this kinase-dependent inhibition of the NLS function is not understood. Methodology/Principal Findings By examining the subcellular localization of mutant BCR-ABL proteins under conditions of imatinib and/or leptomycin B treatment to inhibit nuclear export, we have found that mutations of three specific tyrosines (Y232, Y253, Y257, according to ABL-1a numbering) in the kinase domain can inhibit the NLS function of kinase-proficient and kinase-defective BCR-ABL. Interestingly, binding of imatinib to the kinase-defective tyrosine-mutant restored the NLS function, suggesting that the kinase domain conformation induced by imatinib-binding is critical to the re-activation of the NLS function. The C-terminal region of ABL contains an F-actin binding domain (FABD). We examined the subcellular localization of several FABD-mutants and found that this domain is also required for the activated kinase to inhibit the NLS function; however, the binding to F-actin per se is not important. Furthermore, we found that some of the C-terminal deletions reduced the kinase sensitivity to imatinib. Conclusions/Significance Results from this study suggest that an autophosphorylation-dependent kinase conformation together with the C-terminal region including the FABD imposes a blockade of the BCR-ABL NLS function. Conversely, conformation of the C-terminal region including the FABD can influence the binding affinity of imatinib for the kinase domain. Elucidating the structural interactions among the kinase domain, the NLS region and the FABD may therefore provide insights on the design of next generation BCR-ABL inhibitors for the treatment of CML.
Collapse
Affiliation(s)
- Martin Preyer
- Division of Hematology-Oncology and Moores Cancer Center, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Paolo Vigneri
- Division of Hematology-Oncology and Moores Cancer Center, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Jean Y. J. Wang
- Division of Hematology-Oncology and Moores Cancer Center, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 2009; 49:199-221. [PMID: 18834307 DOI: 10.1146/annurev.pharmtox.011008.145606] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein phosphorylation is a key posttranslational modification, which reversibly regulates almost all processes in the living cell. Deregulated signaling is a hallmark of cancer and other diseases, and protein kinases are prominent drug targets. Phosphorylation events are commonly probed in a targeted manner by phosphorylation-specific antibodies. In contrast, advances in proteomics technology, including phosphopeptide enrichment, high-accuracy mass spectrometry, and associated bioinformatics now make it possible to analyze entire phosphoproteomes. Quantitative methods can assess the relative change in phosphorylation for several thousand sites in a single experiment. Here we review enrichment strategies and methods for mass spectrometric fragmentation and analysis of phosphopeptides. We also describe different quantitative methods and their application to problems in cell signaling and drug target discovery. Emerging phosphoproteomics technologies are becoming more comprehensive, robust, and generically applicable to a wide range of questions, including areas outside traditional eukaryotic cell signaling such as Ser/Thr/Tyr signaling in bacteria.
Collapse
Affiliation(s)
- Boris Macek
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
12
|
Charting the molecular network of the drug target Bcr-Abl. Proc Natl Acad Sci U S A 2009; 106:7414-9. [PMID: 19380743 DOI: 10.1073/pnas.0900653106] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tyrosine kinase Bcr-Abl causes chronic myeloid leukemia and is the cognate target of tyrosine kinase inhibitors like imatinib. We have charted the protein-protein interaction network of Bcr-Abl by a 2-pronged approach. Using a monoclonal antibody we have first purified endogenous Bcr-Abl protein complexes from the CML K562 cell line and characterized the set of most tightly-associated interactors by MS. Nine interactors were subsequently subjected to tandem affinity purifications/MS analysis to obtain a molecular interaction network of some hundred cellular proteins. The resulting network revealed a high degree of interconnection of 7 "core" components around Bcr-Abl (Grb2, Shc1, Crk-I, c-Cbl, p85, Sts-1, and SHIP-2), and their links to different signaling pathways. Quantitative proteomics analysis showed that tyrosine kinase inhibitors lead to a disruption of this network. Certain components still appear to interact with Bcr-Abl in a phosphotyrosine-independent manner. We propose that Bcr-Abl and other drug targets, rather than being considered as single polypeptides, can be considered as complex protein assemblies that remodel upon drug action.
Collapse
|
13
|
Madsen JA, Brodbelt JS. Comparison of infrared multiphoton dissociation and collision-induced dissociation of supercharged peptides in ion traps. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:349-58. [PMID: 19036605 DOI: 10.1016/j.jasms.2008.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 05/12/2023]
Abstract
The number and types of diagnostic ions obtained by infrared multiphoton dissociation (IRMPD) and collision-induced dissociation (CID) were evaluated for supercharged peptide ions created by electrospray ionization of solutions spiked with m-nitrobenzyl alcohol. IRMPD of supercharged peptide ions increased the sequence coverage compared with that obtained by CID for all charge states investigated. The number of diagnostic ions increased with the charge state for IRMPD; however, this trend was not consistent for CID because the supercharged ions did not always yield the greatest number of diagnostic ions. Significantly different fragmentation pathways were observed for the different charge states upon CID or IRMPD with the latter yielding far more immonium ions and often fewer uninformative ammonia, water, and phosphoric acid neutral losses. Pulsed-Q dissociation resulted in an increase in the number of internal product ions, a decrease in sequence-informative ions, and reduced overall ion abundances. The enhanced sequence coverage afforded by IRMPD of supercharged ions was demonstrated for a variety of model peptides, as well as for a tryptic digest of cytochrome c.
Collapse
Affiliation(s)
- James A Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | |
Collapse
|
14
|
Baginsky S. Plant proteomics: concepts, applications, and novel strategies for data interpretation. MASS SPECTROMETRY REVIEWS 2009; 28:93-120. [PMID: 18618656 DOI: 10.1002/mas.20183] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteomics is an essential source of information about biological systems because it generates knowledge about the concentrations, interactions, functions, and catalytic activities of proteins, which are the major structural and functional determinants of cells. In the last few years significant technology development has taken place both at the level of data analysis software and mass spectrometry hardware. Conceptual progress in proteomics has made possible the analysis of entire proteomes at previously unprecedented density and accuracy. New concepts have emerged that comprise quantitative analyses of full proteomes, database-independent protein identification strategies, targeted quantitative proteomics approaches with proteotypic peptides and the systematic analysis of an increasing number of posttranslational modifications at high temporal and spatial resolution. Although plant proteomics is making progress, there are still several analytical challenges that await experimental and conceptual solutions. With this review I will highlight the current status of plant proteomics and put it into the context of the aforementioned conceptual progress in the field, illustrate some of the plant-specific challenges and present my view on the great opportunities for plant systems biology offered by proteomics.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Plant Sciences, Swiss Federal Institute of Technology, Universitätsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
15
|
Schreiber TB, Mäusbacher N, Breitkopf SB, Grundner-Culemann K, Daub H. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research. Proteomics 2008; 8:4416-32. [PMID: 18837465 DOI: 10.1002/pmic.200800132] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation is the most important type of reversible post-translational modification involved in the regulation of cellular signal-transduction processes. In addition to controlling normal cellular physiology on the molecular level, perturbations of phosphorylation-based signaling networks and cascades have been implicated in the onset and progression of various human diseases. Recent advances in mass spectrometry-based proteomics helped to overcome many of the previous limitations in protein phosphorylation analysis. Improved isotope labeling and phosphopeptide enrichment strategies in conjunction with more powerful mass spectrometers and advances in data analysis have been integrated in highly efficient phosphoproteomics workflows, which are capable of monitoring up to several thousands of site-specific phosphorylation events within one large-scale analysis. Combined with ongoing efforts to define kinase-substrate relationships in intact cells, these major achievements have considerable potential to assess phosphorylation-based signaling networks on a system-wide scale. Here, we provide an overview of these exciting developments and their potential to transform signal-transduction research into a technology-driven, high-throughput science.
Collapse
Affiliation(s)
- Thiemo B Schreiber
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
16
|
Correia CF, Clavaguera C, Erlekam U, Scuderi D, Ohanessian G. IRMPD Spectroscopy of a Protonated, Phosphorylated Dipeptide. Chemphyschem 2008; 9:2564-73. [DOI: 10.1002/cphc.200800469] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
De Keersmaecker K, Versele M, Cools J, Superti-Furga G, Hantschel O. Intrinsic differences between the catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1 fusion protein kinases. Leukemia 2008; 22:2208-16. [PMID: 18784740 DOI: 10.1038/leu.2008.242] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The NUP214-ABL1 fusion kinase has recently been identified in 6% of patients with T-cell acute lymphoblastic leukemia. In contrast to the more common oncogenic ABL1 fusion BCR-ABL1, NUP214-ABL1 localizes to the nuclear pore complexes and has attenuated transforming properties in hematopoietic cells and in mouse bone marrow transplant models. We have performed a thorough biochemical comparative analysis of NUP214-ABL1 and BCR-ABL1 and show that, despite their common tyrosine kinase domain, the two fusion proteins differ in many critical catalytic properties. NUP214-ABL1 has lower in vitro tyrosine kinase activity, which is in agreement with the absence of phosphorylation on its activation loop. NUP214-ABL1 was more sensitive to imatinib (Glivec) than BCR-ABL1 in vitro and in cells, indicating a different activation state and conformation of the two ABL1 fusion kinases. Using a peptide array, we identified differences in the spectrum and efficiency of substrate peptide phosphorylation and a differential involvement of Src kinases in downstream signaling. These results clearly indicate that different fusion partners of the same kinase can determine not only localization, but also critical functional properties of the enzyme such as inhibitor sensitivity and substrate preference, with subsequent differences in downstream signaling effectors and likely consequences in disease pathogenesis.
Collapse
Affiliation(s)
- K De Keersmaecker
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | | | | | | | | |
Collapse
|
18
|
Schuchardt S, Borlak J. Quantitative mass spectrometry to investigate epidermal growth factor receptor phosphorylation dynamics. MASS SPECTROMETRY REVIEWS 2008; 27:51-65. [PMID: 18023079 DOI: 10.1002/mas.20155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Identifying proteins of signaling networks has received much attention, because an array of biological processes are entirely dependent on protein cross-talk and protein-protein interactions. Protein posttranslational modifications (PTM) add an additional layer of complexity, resulting in complex signaling networks. Of particular interest to our working group are the signaling networks of epidermal growth factor (EGF) receptor, a transmembrane receptor tyrosine kinase involved in various cellular processes, including cell proliferation, differentiation, and survival. Ligand binding to the N-terminal residue of the extracellular domain of EGF receptor induces conformational changes, dimerization, and (auto)-phosphorylation of intracellular tyrosine residues. In addition, activated EGF receptor may positively affect survival pathways, and thus determines the pathways for tumor growth and progression. Notably, in many human malignancies exaggerated EGF receptor activities are commonly observed. An understanding of the mechanism that results in aberrant phosphorylation of EGF receptor tyrosine residues and derived signaling cascades is crucial for an understanding of molecular mechanisms in cancer development. Here, we summarize recent labeling methods and discuss the difficulties in quantitative MS-based phosphorylation assays to probe for receptor tyrosine kinase (RTK) activity. We also review recent advances in sample preparation to investigate membrane-bound RTKs, MS-based detection of phosphopeptides, and the diligent use of different quantitative methods for protein labeling.
Collapse
Affiliation(s)
- Sven Schuchardt
- Department of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, Hannover, Germany
| | | |
Collapse
|
19
|
Abstract
Proteomics technologies are emerging as a useful tool in the identification of disease biomarkers, and in defining and characterising both normal physiological and disease processes. Many cellular changes in protein expression in response to an external stimulus or mutation can only be characterised at the proteome level. In these cases protein expression is often controlled by altered rates of translation and/or degradation, making proteomics an important tool in the analysis of biological systems. In the leukaemias, post-translational modification of proteins (e.g. phosphorylation, acetylation) plays a key role in the molecular pathology of the disease: such modifications can now be detected with novel proteomic methods. In a clinical setting, serum remains a relatively un-mined source of information for prognosis and response to therapy. This protein rich fluid represents an opportunity for proteomics research to benefit hematologists and others. In this review, we discuss the technologies available for the study of the proteome that offer realistic opportunities in haematology.
Collapse
Affiliation(s)
- Richard D Unwin
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Christie Hospital, Kinnaird House, Kinnaird Road, Withington, Manchester, UK M20 4QL.
| | | |
Collapse
|
20
|
Hung CW, Schlosser A, Wei J, Lehmann WD. Collision-induced reporter fragmentations for identification of covalently modified peptides. Anal Bioanal Chem 2007; 389:1003-16. [PMID: 17690871 DOI: 10.1007/s00216-007-1449-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/18/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Collision-induced reporter fragmentations of the currently most important covalent peptide modifications as detected by tandem mass spectrometry are summarized. These fragmentations comprise the formation of reporter ions, which are preferentially immonium ions, immonium ion-derived fragments or side chain fragments. In addition, the reporter neutral loss reactions for covalently modified amino acid residues are summarized. For each individual covalent modification which can be recognized by a reporter fragmentation, the accurate mass shift and the gross formula shift of the modified amino acid residue are given. The same set of data is provided for the reporter fragmentations. Finally, an extensive accurate mass and gross formula list is presented as supplementary material, describing mostly regular and modified y(1) and dipeptide a and b ions, which are helpful for identification of the peptide ends of covalently modified peptides.
Collapse
Affiliation(s)
- Chien-Wen Hung
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
21
|
Walsh CT, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2007; 44:7342-72. [PMID: 16267872 DOI: 10.1002/anie.200501023] [Citation(s) in RCA: 1151] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
22
|
Ross ARS. Identification of histidine phosphorylations in proteins using mass spectrometry and affinity-based techniques. Methods Enzymol 2007; 423:549-72. [PMID: 17609151 DOI: 10.1016/s0076-6879(07)23027-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Histidine phosphorylation plays a key role in prokaryotic signaling and accounts for approximately 6% of the protein phosphorylation events in eukaryotics. Phosphohistidines generally act as intermediates in the transfer of phosphate groups from donor to acceptor molecules. Examples include the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) and the histidine kinases found in two-component signal transduction pathways. The latter are utilized by bacteria and plants to sense and adapt to changing environmental conditions. Despite the importance of histidine phosphorylation in two-component signaling systems, relatively few proteins have so far been identified as containing phosphorylated histidine residues. This is largely due to the instability of phosphohistidines, which, unlike the phosphoesters formed by serine, threonine, and tyrosine, are labile and susceptible to acid hydrolysis. Nevertheless, it is possible to preserve and identify phosphorylated histidine residues in target proteins using appropriate sample preparation, affinity purification, and mass spectrometric techniques. This chapter provides a brief overview of such techniques, describes their use in confirming histidine phosphorylation of a known PTS protein (HPr), and suggests how this approach might be adapted for large-scale identification of histidine-phosphorylated proteins in two-component systems.
Collapse
Affiliation(s)
- Andrew R S Ross
- Plant biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
23
|
Tan F, Zhang Y, Wang J, Wei J, Qin P, Cai Y, Qian X. Specific capture of phosphopeptides on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry targets modified by magnetic affinity nanoparticles. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2407-14. [PMID: 17582624 DOI: 10.1002/rcm.3100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Specific capture of phosphopeptides from protein digests is a critical step for identification of phosphoproteins by mass spectrometry. In this study, we report a novel phosphopeptide-capture approach based on the specific interaction of phosphopeptides with a stainless steel target modified with magnetic affinity nanoparticles. The modification which was carried out by loading the suspension of nanoparticles into sample wells of the target did not require any pretreatment procedure to the target and did not involve chemical binding reactions. To isolate phosphopeptides, digests were loaded into the wells of the modified target for 10 min incubation, followed by rinsing with washing buffer to remove unbound species; matrix was then added to the captured phosphopeptides prior to analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Capturing the phosphopeptides on the modified target simplified significantly analytical operations and reduced sample loss. This approach has been applied to solution digests of alpha-casein, beta-casein, and a mixture of five proteins; a number of phosphopeptides were confidently detected. Phosphopeptides from digests of 10 fmol beta-casein could be isolated and detected by MALDI-TOFMS with this method. In addition, this approach has been applied successfully to the isolation of phosphopeptides from in-gel digestive products of sub-pmol phosphoproteins after separation by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE).
Collapse
Affiliation(s)
- Feng Tan
- State Key Laboratory of Proteomics-Beijing Proteome Research Center, 33 Life Park Road, Zhongguancun, Beijing 102206, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Krutchinsky AN, Cohen H, Chait BT. A novel high-capacity ion trap-quadrupole tandem mass spectrometer. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2007; 268:93-105. [PMID: 18347735 PMCID: PMC2268102 DOI: 10.1016/j.ijms.2007.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe a prototype tandem mass spectrometer that is designed to increase the efficiency of linked-scan analyses by >100-fold over conventional linked-scan instruments. The key element of the mass spectrometer is a novel high ion capacity ion trap, combined in tandem configuration with a quadrupole collision cell and a quadrupole mass analyzer (i.e. a TrapqQ configuration). This ion trap can store >10(6) ions without significant degradation of its performance. The current mass resolution of the trap is 100-450 full width at half maximum for ions in the range 800-4000 m/z, yielding a 10-20 m/z selection window for ions ejected at any given time into the collision cell. The sensitivity of the mass spectrometer for detecting peptides is in the low femtomole range. We can envisage relatively straightforward modifications to the instrument that should improve both its resolution and sensitivity. We tested the tandem mass spectrometer for collecting precursor ion spectra of all the ions stored in the trap and demonstrated that we can selectively detect a phosphopeptide in a mixture of non-phosphorylated peptides. Based on this prototype instrument, we plan to construct a fully functional model of the mass spectrometer for detecting modification sites on proteins and profiling their abundances with high speed and sensitivity.
Collapse
Affiliation(s)
- Andrew N Krutchinsky
- Department of Pharmaceutical Chemistry, UCSF, MC 2280, Mission Bay, GH, Room S512F, 600 16th Street, San Francisco, CA 94158-2517, USA
| | | | | |
Collapse
|
25
|
Larsen MR, Trelle MB, Thingholm TE, Jensen ON. Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 2006; 40:790-8. [PMID: 16774123 DOI: 10.2144/000112201] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial-temporal distribution in cells and tissues. Most PTMs can be detected by protein andpeptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful for the characterization of modified proteins via amino acid sequencing and specific detection of posttranslationally modified amino acid residues. Large-scale, quantitative analysis of proteins by MS/MS is beginning to reveal novel patterns and functions of PTMs in cellular signaling networks and bio-molecular structures.
Collapse
|
26
|
Kulkarni PP, She YM, Smith SD, Roberts EA, Sarkar B. Proteomics of Metal Transport and Metal-Associated Diseases. Chemistry 2006; 12:2410-22. [PMID: 16134204 DOI: 10.1002/chem.200500664] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteomics technology has the potential to identify groups of proteins that have similar biological function. However, few attempts have been made to identify and characterize metal-binding proteins by using proteomics strategies. Many transition metals are essential to sustain life. Copper, iron, and zinc are the most abundant transition metals relevant to biological systems. In addition to their important biological functions, metals can also catalyze the formation of damaging free radical species. Hence, their intracellular transport is tightly regulated. Despite recent insights into the intracellular transport of copper and other metals, our overall understanding of intracellular metal metabolism remains incomplete and it is likely that many metal-binding proteins remain undiscovered. Furthermore, the protein targets for metals during metal-associated disease states or during exposure to toxic levels of environmental metals are yet to be unravelled. A proteomics strategy for the analysis of metal-transporting or metal-binding proteins has the potential to uncover how a large number of proteins function in normal or metal-associated diseased states. Here we discuss the principal aspects of metal metabolism, and the recent developments in the area of the proteomics of metal transport.
Collapse
Affiliation(s)
- Prasad P Kulkarni
- Department of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
27
|
Zhang G, Neubert TA. Use of detergents to increase selectivity of immunoprecipitation of tyrosine phosphorylated peptides prior to identification by MALDI quadrupole-TOF MS. Proteomics 2006; 6:571-8. [PMID: 16342243 DOI: 10.1002/pmic.200500267] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identification of tyrosine phosphorylation by MS is challenging due to its low abundance in biological samples. Therefore, specific enrichment of tyrosine phosphorylated peptides prior to their analysis is highly desirable. The application of immunopurification of phosphotyrosine (pY) peptides using pY antibodies has been greatly limited by poor selectivity. In the present study, we have shown that the selectivity of pY peptide immunopurification can be dramatically improved by adding detergents to immunoprecipitation buffers. Optimum selectivity and sensitivity were achieved using an immunoprecipitation buffer containing n-octyl glucoside with a concentration above its critical micelle concentration (0.7%). The optimized method was used to identify in vivo tyrosine phosphorylation on proteins isolated from cell extract by anti-pY protein immunoprecipitation. After immunopurification, non-pY-containing peptides from protein digests were readily removed and pY peptides became the dominant peaks in MALDI quadrupole-TOF mass spectra. In addition, the signal intensities from pY-containing peptides were enhanced significantly after enrichment, allowing characterization of tyrosine phosphorylation sites with greater sensitivity.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Pharmacology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
28
|
Goss VL, Lee KA, Moritz A, Nardone J, Spek EJ, MacNeill J, Rush J, Comb MJ, Polakiewicz RD. A common phosphotyrosine signature for the Bcr-Abl kinase. Blood 2006; 107:4888-97. [PMID: 16497976 PMCID: PMC1895816 DOI: 10.1182/blood-2005-08-3399] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Bcr-Abl fusion kinase drives oncogenesis in chronic myeloid leukemia (CML). CML patients are currently treated with the Abl tyrosine kinase inhibitor imatinib, which is effective in early stages of the disease. However, resistance to imatinib arises in later disease stages primarily because of a Bcr-Abl mutation. To gain deeper insight into Bcr-Abl signaling pathways, we generated phosphotyrosine profiles for 6 cell lines that represent 3 Bcr-Abl fusion types by using immunoaffinity purification of tyrosine phosphopeptides followed by tandem mass spectrometry. We identified 188 nonredundant tyrosine-phosphorylated sites, 77 of which are novel. By comparing the profiles, we found a number of phosphotyrosine sites common to the 6 cell lines regardless of cellular background and fusion type, several of which are decreased by imatinib treatment. Comparison of this Bcr-Abl signature with the profile of cells expressing an alternative imatinib-sensitive fusion kinase, FIP1L1-PDGFRalpha, revealed that these kinases signal through different pathways. This phosphoproteomic study of the Bcr-Abl fusion kinase highlights novel disease markers and potential drug-responsive biomarkers and adds novel insight into the oncogenic signals driven by the Bcr-Abl kinase.
Collapse
MESH Headings
- Benzamides
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Oncogene Proteins, Fusion/metabolism
- Phosphotyrosine/analysis
- Phosphotyrosine/metabolism
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proteomics
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Signal Transduction/drug effects
- mRNA Cleavage and Polyadenylation Factors/metabolism
Collapse
Affiliation(s)
- Valerie L Goss
- Cell Signaling Technology, 3 Trask Ln, Danvers, MA 01923, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Walsh CT, Garneau-Tsodikova S, Gatto GJ. Posttranslationale Proteinmodifikation: die Chemie der Proteomdiversifizierung. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501023] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Boeri Erba E, Bergatto E, Cabodi S, Silengo L, Tarone G, Defilippi P, Jensen ON. Systematic Analysis of the Epidermal Growth Factor Receptor by Mass Spectrometry Reveals Stimulation-dependent Multisite Phosphorylation. Mol Cell Proteomics 2005; 4:1107-21. [DOI: 10.1074/mcp.m500070-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Kim JE, Tannenbaum SR, White FM. Global Phosphoproteome of HT-29 Human Colon Adenocarcinoma Cells. J Proteome Res 2005; 4:1339-46. [PMID: 16083285 DOI: 10.1021/pr050048h] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation events in cellular signaling cascades triggered by a variety of cellular stimuli modulate protein function, leading to diverse cellular outcomes including cell division, growth, death, and differentiation. Abnormal regulation of protein phosphorylation due to mutation or overexpression of signaling proteins often results in various disease states. We provide here a list of protein phosphorylation sites identified from HT-29 human colon adenocarcinoma cell line by immobilized metal affinity chromatography (IMAC) combined with liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis. In this study, proteins extracted from HT-29 whole cell lysates were digested with trypsin and carboxylate groups on the resulting peptides were converted to methyl esters. Derivatized phosphorylated peptides were enriched using Fe(3+)-chelated metal affinity resin. Phosphopeptides retained by IMAC were separated by high performance liquid chromatography (HPLC) and analyzed by electrospray ionization-quadrupole-time-of-flight (ESI-Q-TOF) mass spectrometry. We identified 238 phosphorylation sites, 213 of which could be conclusively localized to a single residue, from 116 proteins by searching MS/MS spectra against the human protein database using MASCOT. Peptide identification and phosphorylation site assignment were confirmed by manual inspection of the MS/MS spectra. Many of the phosphorylation sites identified in our results have not been described previously in the scientific literature. We attempted to ascribe functionality to the sites identified in this work by searching for potential kinase motifs with Scansite (http://scansite.mit.edu) and obtaining information on kinase substrate selectivity from Pattern Explorer (http://scansite.mit.edu/pe). The list of protein phosphorylation sites identified in the present experiment provides broad information on phosphorylated proteins under normal (asynchronous) cell culture conditions. Sites identified in this study may be utilized as surrogate bio-markers to assess the activity of selected kinases and signaling pathways from different cell states and exogenous stimuli.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massassachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
32
|
Carr SA, Annan RS, Huddleston MJ. Mapping Posttranslational Modifications of Proteins by MS‐Based Selective Detection: Application to Phosphoproteomics. Methods Enzymol 2005; 405:82-115. [PMID: 16413312 DOI: 10.1016/s0076-6879(05)05005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This chapter outlines general principals that apply to the analysis of posttranslational modifications of proteins, with an emphasis on phosphoproteins. Mass spectrometry (MS)-based approaches for selective detection and site-specific analysis of posttranslationally modified peptides are described, and an MS-based method that relies on production and detection of fragment ions specific for the modification(s) of interest and that was developed in the authors' laboratory is described in detail. The method is applicable to selective detection of N- and O-linked carbohydrates in glycoproteins, O-linked sulfate, and N- and O-linked lipids. Detailed procedures for application of this strategy to phosphorylation-site mapping are presented here.
Collapse
Affiliation(s)
- Steven A Carr
- GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, USA
| | | | | |
Collapse
|
33
|
Gembitsky DS, Lawlor K, Jacovina A, Yaneva M, Tempst P. A prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation. Mol Cell Proteomics 2004; 3:1102-18. [PMID: 15358805 DOI: 10.1074/mcp.m400075-mcp200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein phosphorylation is a key regulatory process in all living cells. Deregulation of modification control mechanisms, especially in the case of tyrosine, may lead to malignant transformation and disease. Phosphotyrosine (p-Tyr) accounts for only 0.05% of the total cellular phospho-amino acid content, yet plays an unusually prominent role in eukaryotic signaling, development, and growth. Tracking temporal and positional p-Tyr changes across the cellular proteome, i.e. tyrosine phosphoproteomics, is therefore tremendously valuable. Here, we describe and evaluate a prototype antibody (Ab) microarray platform to monitor changes in protein Tyr phosphorylation. Availability permitting, a virtually unlimited number of Abs, each recognizing a specific cellular protein, may be arrayed on a chip, incubated with total cell or tissue extracts or with biological fluids, and then probed with a fluorescently labeled p-Tyr-specific monoclonal Ab, PY-KD1, specifically generated for this assay as part of the current study. The optimized protocol allowed detection of changes in the Tyr phosphorylation state of selected proteins using submicrogram to low nanogram of total protein extract, amounts that may conceivably be obtained from a thousand to a hundred thousand cells, or less, depending on the cell or tissue type. The assay platform was evaluated by assessing changes in a rationally selected subset of the Tyr phosphoproteome of Bcr-Abl-expressing cells treated with a specific inhibitor, Gleevec, and of epidermal growth factor (EGF)-treated HeLa cells. The results, ratiometric rather than strictly quantitative in nature, conformed with previous identifications of several Bcr-Abl and EGF receptor targets, and associated proteins, as detected by exhaustive mass spectrometric analyses. The Ab microarray method described here offers advantages of low sample and reagent consumption, scalability, detection multiplexing, and potential compatibility with microfluidic devices and automation. The system may hold particular promise for dissecting signaling pathways, molecular classification of tumors, and profiling of novel target-cancer drugs.
Collapse
Affiliation(s)
- Dmitry S Gembitsky
- Protein Center, and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Abstract
The recent sequencing of a number of genomes has raised the level of opportunities for studies on proteins. This area of research has been described with the all-embracing term, proteomics. In proteomics, the use of mass spectrometric techniques enables genomic databases to be used to establish the identity of proteins with relatively little data, compared to the era before genome sequencing. The use of related analytical techniques also offers the opportunity to gain information on regulation, via posttranslational modification, and potential new diagnostic and prognostic indicators. Relative quantification of proteins and peptides in cellular and extracellular material remains a challenge for proteomics and mass spectrometry. This review presents an analysis of the present and future impact of these proteomic technologies with emphasis on relative quantification for hematologic research giving an appraisal of their potential benefits.
Collapse
Affiliation(s)
- Ileana M Cristea
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester, United Kingdom
| | | | | |
Collapse
|
35
|
Greene MW, Morrice N, Garofalo RS, Roth RA. Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase Cdelta. Biochem J 2004; 378:105-16. [PMID: 14583092 PMCID: PMC1223928 DOI: 10.1042/bj20031493] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 10/28/2003] [Accepted: 10/29/2003] [Indexed: 12/31/2022]
Abstract
Non-esterified fatty acid (free fatty acid)-induced activation of the novel PKC (protein kinase C) isoenzymes PKCdelta and PKCtheta correlates with insulin resistance, including decreased insulin-stimulated IRS-1 (insulin receptor substrate-1) tyrosine phosphorylation and phosphoinositide 3-kinase activation, although the mechanism(s) for this resistance is not known. In the present study, we have explored the possibility of a novel PKC, PKCdelta, to modulate directly the ability of the insulin receptor kinase to tyrosine-phosphorylate IRS-1. We have found that expression of either constitutively active PKCdelta or wild-type PKCdelta followed by phorbol ester activation both inhibit insulin-stimulated IRS-1 tyrosine phosphorylation in vivo. Activated PKCdelta was also found to inhibit the IRS-1 tyrosine phosphorylation in vitro by purified insulin receptor using recombinant full-length human IRS-1 and a partial IRS-1-glutathione S-transferase-fusion protein as substrates. This inhibition in vitro was not observed with a non-IRS-1 substrate, indicating that it was not the result of a general decrease in the intrinsic kinase activity of the receptor. Consistent with the hypothesis that PKCdelta acts directly on IRS-1, we show that IRS-1 can be phosphorylated by PKCdelta on at least 18 sites. The importance of three of the PKCdelta phosphorylation sites in IRS-1 was shown in vitro by a 75-80% decrease in the incorporation of phosphate into an IRS-1 triple mutant in which Ser-307, Ser-323 and Ser-574 were replaced by Ala. More importantly, the mutation of these three sites completely abrogated the inhibitory effect of PKCdelta on IRS-1 tyrosine phosphorylation in vitro. These results indicate that PKCdelta modulates the ability of the insulin receptor to tyrosine-phosphorylate IRS-1 by direct phosphorylation of the IRS-1 molecule.
Collapse
Affiliation(s)
- Michael W Greene
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
36
|
Desplat V, Lagarde V, Belloc F, Chollet C, Leguay T, Pasquet JM, Praloran V, Mahon FX. Rapid detection of phosphotyrosine proteins by flow cytometric analysis in Bcr-Abl-positive cells. ACTA ACUST UNITED AC 2004; 62:35-45. [PMID: 15468123 DOI: 10.1002/cyto.a.20030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Constitutive tyrosine phosphorylation derived from Bcr-Abl kinase activity is the major characteristic of Bcr-Abl positive cells. In this study, we developed a method to detect the phosphotyrosine proteins by flow cytometry and we asked whether phosphorylation was affected by imatinib mesylate treatment. METHODS Cells were treated or not with imatinib mesylate, fixed and permeabilized by PFA followed by saponin, then stained with anti-phosphotyrosine (p-tyr) monoclonal antibody and analyzed by flow cytometry. RESULTS Optimal staining parameters were performed with p-tyr antibody using K562 and LAMA84 lines that displayed high levels of tyrosine phosphorylation as compared to the control line, HL60. Tyrosine phosphorylation was inhibited by imatinib in a dose-dependent manner, but not modified by other inhibitors demonstrating that the staining detected is specific to Bcr-Abl phosphorylation. The staining of imatinib-resistant cell lines such as the mutated BaF/Bcr-AblT315I cell line or resistant CML patient cells, showed that hyperphosphorylation was not affected by imatinib treatment. In one CML patient, our technique permitted us to detect a small hyperphosphorylated population resistant to imatinib that appeared hyperphosphorylated and amplified at the time of relapse. CONCLUSIONS We have developed a flow cytometric technique presenting several advantages such as rapidity and sensitivity, which requires fewer cells than the Western blot.
Collapse
MESH Headings
- Animals
- Benzamides
- Biomarkers, Tumor/metabolism
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/pathology
- Cell Line, Tumor
- Cell Separation/methods
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Flow Cytometry/methods
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Intracellular Signaling Peptides and Proteins/pharmacology
- Intracellular Signaling Peptides and Proteins/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/pathology
- Mice
- Phosphorylation
- Phosphotyrosine/analysis
- Phosphotyrosine/metabolism
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Vanessa Desplat
- Laboratoire Hématopoïèse Normale et Pathologique, FRE CNRS 2617, Université Victor Ségalen, rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr–Abl tyrosine kinases. Nat Rev Mol Cell Biol 2004; 5:33-44. [PMID: 14708008 DOI: 10.1038/nrm1280] [Citation(s) in RCA: 374] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The prototypic non-receptor tyrosine kinase c-Abl is implicated in various cellular processes. Its oncogenic counterpart, the Bcr-Abl fusion protein, causes certain human leukaemias. Recent insights into the structure and regulation of the c-Abl and Bcr-Abl tyrosine kinases have changed the way we look at these enzymes.
Collapse
Affiliation(s)
- Oliver Hantschel
- Developmental Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|