1
|
Sun QJ, Liu T. Subcellular distribution of prohibitin 1 in rat liver during liver regeneration and its cellular implication. World J Hepatol 2024; 16:65-74. [PMID: 38313239 PMCID: PMC10835489 DOI: 10.4254/wjh.v16.i1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The function of prohibitin 1 (Phb1) during liver regeneration (LR) remains relatively unexplored. Our previous research identified downregulation of Phb1 in rat liver mitochondria 24 h after 70% partial hepatectomy (PHx), as determined by subcellular proteomic analysis. AIM To investigate the potential role of Phb1 during LR. METHODS We examined changes in Phb1 mRNA and protein levels, subcellular distribution, and abundance in rat liver during LR following 70% PHx. We also evaluated mitochondrial changes and apoptosis using electron microscopy and flow cytometry. RNA-interference-mediated knockdown of Phb1 (PHBi) was performed in BRL-3A cells. RESULTS Compared with sham-operation control groups, Phb1 mRNA and protein levels in 70% PHx test groups were downregulated at 24 h, then upregulated at 72 and 168 h. Phb1 was mainly located in mitochondria, showed a reduced abundance at 24 h, significantly increased at 72 h, and almost recovered to normal at 168 h. Phb1 was also present in nuclei, with continuous increase in abundance observed 72 and 168 h after 70% PHx. The altered ultrastructure and reduced mass of mitochondria during LR had almost completely recovered to normal at 168 h. PHBi in BRL-3A cells resulted in increased S-phase entry, a higher number of apoptotic cells, and disruption of mitochondrial membrane potential. CONCLUSION Phb1 may contribute to maintaining mitochondrial stability and could play a role in regulating cell proliferation and apoptosis of rat liver cells during LR.
Collapse
Affiliation(s)
- Qing-Ju Sun
- Department of Clinical Laboratory, Navy No. 971 Hospital, Qingdao 266072, Shandong Province, China
| | - Tao Liu
- Department of Infectious Diseases, Navy No. 971 Hospital, Qingdao 266071, Shandong Province, China.
| |
Collapse
|
2
|
Zhang J, Zhang X, Li C, Yue L, Ding N, Riordan T, Yang L, Li Y, Jen C, Lin S, Zhou D, Chen F. Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells. RNA Biol 2019; 16:220-232. [PMID: 30614753 DOI: 10.1080/15476286.2019.1565284] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Circular RNA (circRNA) is a novel RNA molecule that has become a research focus recently. Although some research indicated that the circRNAs in different subcellular compartments could execute different regulatory functions, a panoramic analysis of the subcellular distribution and the transport mechanism of circRNA is still required. In this study, we comprehensively analyzed the subcellular distribution/characteristics and the transport mechanism, through systemically investigating the circRNA profiles among the subcellular fractions of HepG2 cell (nucleus, cytoplasm, mitochondria, ribosome, cytosol and exosome). CircRNAs were widely distributed among the subcellular fractions except in the mitochondria, with differences in the subcellular distribution/characteristics in terms of classification, length, GC content, alternative circularization and parental gene function. Further analysis indicated this might be due to the selective transportation mediated by the transport-related RNA binding proteins (RBPs). The circRNAs may follow the same transportation mechanism of linear RNAs, in which the RBPs specially recognize/transport the RNAs with the corresponding binding motifs. Interestingly, we found that the exosome could selectively package the circRNAs containing the purine-rich 5'-GMWGVWGRAG-3' motif, with the characteristic of 'garbage dumping' and 'intercellular signaling' functions. Besides, although we observed numerous circRNAs enriched in the ribosome, we did not reliably identify any unique-peptides from circRNAs using 3D-LC-MS/MS strategy. This suggests that circRNAs rarely function as translation templates in vivo like lincRNA. Our findings not only indicates the differential distributions/characteristics among the subcellular fractions, but also reveals the possible transportation mechanism. This provides an improved understanding of the life history and molecular behavior of circRNA in cells.
Collapse
Affiliation(s)
- Ju Zhang
- a CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , China
| | - Xiuli Zhang
- a CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Cuidan Li
- a CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Liya Yue
- a CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , China
| | - Nan Ding
- a CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , China
| | - Tim Riordan
- c Research and Development Department , NanoString Technologies, lnc , Seattle , WA , USA
| | - Li Yang
- a CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yang Li
- d Inspection Center , Beijing Protein Innovation Co., Ltd , Beijing , P.R. China
| | - Charles Jen
- e Marketing Department , Cold Spring (Beijing) Trading Co., Ltd , Beijing , P.R. China
| | - Sen Lin
- e Marketing Department , Cold Spring (Beijing) Trading Co., Ltd , Beijing , P.R. China
| | - Dongsheng Zhou
- f State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Fei Chen
- a CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
3
|
Li N, Li H, Cao L, Zhan X. Quantitative analysis of the mitochondrial proteome in human ovarian carcinomas. Endocr Relat Cancer 2018; 25:909-931. [PMID: 29997262 DOI: 10.1530/erc-18-0243] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Mitochondria play important roles in growth, signal transduction, division, tumorigenesis and energy metabolism in epithelial ovarian carcinomas (EOCs) without an effective biomarker. To investigate the proteomic profile of EOC mitochondrial proteins, a 6-plex isobaric tag for relative and absolute quantification (iTRAQ) proteomics was used to identify mitochondrial expressed proteins (mtEPs) in EOCs relative to controls, followed by an integrative analysis of the identified mtEPs and the Cancer Genome Atlas (TCGA) data from 419 patients. A total of 5115 quantified proteins were identified from purified mitochondrial samples, and 262 proteins were significantly related to overall survival in EOC patients. Furthermore, 63 proteins were identified as potential biomarkers for the development of an EOC, and our findings were consistent with previous reports on a certain extent. Pathway network analysis identified 70 signaling pathways. Interestingly, the results demonstrated that cancer cells exhibited an increased dependence on mitophagy, such as peroxisome, phagosome, lysosome, valine, leucine and isoleucine degradation and fatty acid degradation pathways, which might play an important role in EOC invasion and metastasis. Five proteins (GLDC, PCK2, IDH2, CPT2 and HMGCS2) located in the mitochondrion and enriched pathways were selected for further analysis in an EOC cell line and tissues, and the results confirmed reliability of iTRAQ proteomics. These findings provide a large-scale mitochondrial proteomic profiling with quantitative information, a certain number of potential protein biomarkers and a novel vision in the mitophagy bio-mechanism of a human ovarian carcinoma.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug DesignXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer DrugsXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huanni Li
- Department of Obstetrics and GynecologyXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lanqin Cao
- Department of Obstetrics and GynecologyXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug DesignXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer DrugsXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- The Laboratory of Medical GeneticsCentral South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
4
|
Zhan X, Zhou T, Li N, Li H. The differentially mitochondrial proteomic dataset in human ovarian cancer relative to control tissues. Data Brief 2018; 20:459-462. [PMID: 30186894 PMCID: PMC6123609 DOI: 10.1016/j.dib.2018.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 07/21/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022] Open
Abstract
This data article presents a differentially mitochondrial proteomic dataset in human ovarian cancer tissues relative to control tissues. The mitochondrial samples were prepared from human ovarian cancer and control ovary tissues, and were digested with trypsin. The tryptic peptides from ovarian cancer and control mitochondrial samples were labeled by isobaric tags for relative and absolute quantification (iTRAQ) reagents, followed by strong-cation exchange (SCX) chromatography, liquid chromatography (LC)-tandem mass spectrometry (MS/MS), and bioinformatic analysis. This data article is related to a published article (Li et al., 2018) [1].
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
- The Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan 410008, PR China
- Corresponding author at: Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Tian Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Huanni Li
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
5
|
Zhou Y, Gao J, Zhu H, Xu J, He H, Gu L, Wang H, Chen J, Ma D, Zhou H, Zheng J. Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach. Anal Chem 2018; 90:2434-2439. [PMID: 29376338 DOI: 10.1021/acs.analchem.7b03710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.
Collapse
Affiliation(s)
- Yanting Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, China , 200237.,Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China , 201203
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China , 201203
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China , 201203
| | - Jingjing Xu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China , 201203
| | - Han He
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China , 201203
| | - Lei Gu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, China , 200237
| | - Hui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, China , 200237
| | - Jie Chen
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China , 201203
| | - Danjun Ma
- College of Mechanical Engineering, Dongguan University of Technology , Guangdong, China , 523808.,Qingzi Biotechnology (Shenzhen) LLC, 4026 Shen Nan Middle Road, Shenzhen, Guangdong, China , 518039
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, China , 201203
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, China , 200237
| |
Collapse
|
6
|
Szkudelska K, Deniziak M, Roś P, Gwóźdź K, Szkudelski T. Resveratrol alleviates ethanol-induced hormonal and metabolic disturbances in the rat. Physiol Res 2016; 66:135-145. [PMID: 27782737 DOI: 10.33549/physiolres.933335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenol found in different plant species and having numerous health-promoting properties in animals and humans. However, its protective action against deleterious effects of ethanol is poorly elucidated. In the present study, the influence of resveratrol (10 mg/kg/day) on some hormones and metabolic parameters was determined in rats ingesting 10 % ethanol solution for two weeks. Blood levels of insulin, glucagon and adiponectin were affected by ethanol, however, resveratrol partially ameliorated these changes. Moreover, in ethanol drinking rats, liver lipid accumulation was increased, whereas resveratrol was capable of reducing liver lipid content, probably due to decrease in fatty acid synthesis. Resveratrol decreased also blood levels of triglycerides and free fatty acids and reduced gamma-glutamyl transferase activity in animals ingesting ethanol. These results show that resveratrol, already at low dose, alleviates hormonal and metabolic changes induced by ethanol in the rat and may be useful in preventing and treating some consequences of alcohol consumption.
Collapse
Affiliation(s)
- K Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Apoptosis triggered by ricin toxin (RT) has previously been associated with certain cellular organellar compartments, but the diversity in the composition of the organellar proteins remains unclear. Here, we applied a shotgun proteomics strategy to examine the differential expression of proteins in the mitochondria, nuclei, and cytoplasm of HeLa cells treated and not treated with RT. Data were combined with a global bioinformatics analysis and experimental confirmations. A total of 3107 proteins were identified. Bioinformatics predictors (Proteome Analyst, WoLF PSORT, TargetP, MitoPred, Nucleo, MultiLoc, and k-nearest neighbor) and a Bayesian model that integrated these predictors were used to predict the locations of 1349 distinct organellar proteins. Our data indicate that the Bayesian model was more efficient than the individual implementation of these predictors. Additionally, a Biomolecular Interaction Network (BIN) analysis was used to identify 149 BIN subnetworks. Our experimental confirmations indicate that certain apoptosis-related proteins (e.g. cytochrome c, enolase, lamin B, Bax, and Drp1) were found to be translocated and had variable expression levels. These results provide new insights for the systematic understanding of RT-induced apoptosis responses.
Collapse
Affiliation(s)
- Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, People's Republic of China Institute of Military Veterinary Science, Academy of Military Medical Science, Changchun, Jilin Province, People's Republic of China
| | - Yunhu Li
- Hunan Biological and Electromechanical Polytechnic, The Party and Government Office, Changsha, Hunan Province, People's Republic of China
| | - Hongyang Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, People's Republic of China
| | - Wensen Liu
- Institute of Military Veterinary Science, Academy of Military Medical Science, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
8
|
Couto N, Schooling SR, Dutcher JR, Barber J. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms. J Proteome Res 2015; 14:4207-22. [PMID: 26303878 DOI: 10.1021/acs.jproteome.5b00312] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations.
Collapse
Affiliation(s)
- Narciso Couto
- Michael Barber Centre for Mass Spectrometry, Manchester Institute for Biotechnology, University of Manchester , Princess Road, Manchester, M1 7DN, U.K
| | - Sarah R Schooling
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph , Guelph, ON N1G 2W1, Canada.,Department of Physics, University of Guelph , Guelph, ON N1G 2W1, Canada
| | - John R Dutcher
- Department of Physics, University of Guelph , Guelph, ON N1G 2W1, Canada
| | - Jill Barber
- Michael Barber Centre for Mass Spectrometry, Manchester Institute for Biotechnology, University of Manchester , Princess Road, Manchester, M1 7DN, U.K.,Manchester Pharmacy School, University of Manchester , Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| |
Collapse
|
9
|
Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods. PLoS One 2013; 8:e76399. [PMID: 24098488 PMCID: PMC3788734 DOI: 10.1371/journal.pone.0076399] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 08/30/2013] [Indexed: 01/08/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification (PTM) consisting of a single N-acetylglucosamine moiety attached via an O-β-glycosidic linkage to serine and threonine residues. Glycosylation with O-GlcNAc occurs on myriad nuclear and cytosolic proteins from almost all functional classes. However, with respect to O-GlcNAcylated proteins special in mitochondria, little attention has been paid. In this study, we combined mass spectrometry and immunological methods to perform global exploration of O-GlcNAcylated proteins specific in mitochondria of rat liver. First, highly purified mitochondrial proteins were obviously shown to be O-GlcNAcylated by immunoblot profiling. Then, β-elimination followed by Michael Addition with Dithiothreitol (BEMAD) treatment and LC-MS/MS were performed to enrich and identify O-GlcNAcylated mitochondrial proteins, resulting in an unambiguous assignment of 14 O-GlcNAcylation sites, mapping to 11 O-GlcNAcylated proteins. Furthermore, the identified O-GlcNAcylated mitochondrial proteins were fully validated by both electron transfer dissociation tandem mass spectrometry (ETD/MS/MS) and western blot. Thus, for the first time, our study definitely not only identified but also validated that some mitochondrial proteins in rat liver are O-GlcNAcylated. Interestingly, all of these O-GlcNAcylated mitochondrial proteins are enzymes, the majority of which are involved in a wide variety of biological processes, such as urea cycle, tricarboxylic acid cycle and lipid metabolism, indicating a role for protein O-GlcNAcylation in mitochondrial function.
Collapse
|
10
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1030] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Liu Y, Lin Y, Yan Y, Li J, He Q, Chen P, Wang X, Liang S. Electrophoretically driven SDS removal and protein fractionation in the shotgun analysis of membrane proteomes. Electrophoresis 2012; 33:316-324. [PMID: 22222976 DOI: 10.1002/elps.201100364] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SDS is mostly used to enhance the solubilization and extraction of membrane proteins due to its strong detergency and low cost. Nevertheless, SDS interferes with the subsequent procedures and needs to be removed from the samples. In this work, a special gradient gel electrophoresis (GGE) system was developed to remove SDS from the SDS-solubilized protein samples. As a proof-of-principle experiment, the GGE system was designed to be composed of an agarose loading layer, six polyacrylamide fractionation layers with different concentrations and a high-concentration polyacrylamide sealing layer. The advantages of the GGE system are that it not only can electrophoretically remove SDS efficiently so that the protein loss resulted from the repeated gel washing after electrophoresis was avoided, but also can reduce the complexity of the sample, prevent the precipitation of proteins after loading and avoid the loss of proteins with low molecular weight during the electrophoresis. Using GGE system, about 85% of SDS in the sample and gel was electrophoretically removed and the proteins were fractionated. Compared with the two representative gel-based sample cleanup methods reported in literature, GGE-based strategy significantly improved the identification efficiency of proteins in terms of the number and coverage of the identified proteins.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of National Education Committee, College of Life Sciences, Hunan Normal University, Changsha, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim DW, Yoo WG, Lee MR, Kim YJ, Cho SH, Lee WJ, Ju JW. 2DSpotDB: A Database for the Annotated Two-dimensional Polyacrylamide Gel Electrophoresis of Pathogen Proteins. Genomics Inform 2011. [DOI: 10.5808/gi.2011.9.4.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Alvergnas M, Rouleau A, Lucchi G, Heyd B, Ducoroy P, Richert L, Martin H. Proteomic mapping of bezafibrate-treated human hepatocytes in primary culture using two-dimensional liquid chromatography. Toxicol Lett 2011; 201:123-9. [DOI: 10.1016/j.toxlet.2010.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 12/21/2010] [Indexed: 10/25/2022]
|
14
|
Dai Z, Yin J, He H, Li W, Hou C, Qian X, Mao N, Pan L. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics 2010; 10:3789-99. [DOI: 10.1002/pmic.200900685] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Zhang Y, Wang Y, Sun W, Jia L, Ma S, Gao Y. Strategy for studying the liver secretome on the organ level. J Proteome Res 2010; 9:1894-901. [PMID: 20148517 DOI: 10.1021/pr901057k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Secretome study presents new possibilities for understanding liver secretory function in a comprehensive and exploratory way. Perfusates from isolated perfused rat liver are good targets for liver secretome study on the organ level. There are two major concerns in this type of study, cytosolic and blood contaminations in the perfusates. Therefore, the perfusion conditions were carefully controlled and alanine aminotransferase levels in the perfusates were monitored as indicators of liver integrity and cytosolic contamination. The protein pattern of perfusate was significantly different from cell lysate, which showed low cytosolic contamination. The amount of immunoglobulins in the perfusates identified by both Western blot and MS/MS indicated low serum contamination. In total, 357 secretory protein candidates were identified by the Enrichment Index method or N-terminal signal peptide prediction. Secretory proteins annotated by Swiss-Prot were 5-fold enriched in the perfusates and around 10-fold enriched in the portion identified by the Enrichment Index method. Some cytokines, secretory proteins from liver interstitial cells, and components of the liver microenvironment were found in the perfusates, highlighting the advantages of studying the liver secretome on the organ level. The strategy can be used in physiology research and biomarker discovery for diseases in the liver as well as other organs.
Collapse
Affiliation(s)
- Yang Zhang
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
16
|
Zhang X, Liu B, Zhang L, Zou H, Cao J, Gao M, Tang J, Liu Y, Yang P, Zhang Y. Recent advances in proteolysis and peptide/protein separation by chromatographic strategies. Sci China Chem 2010; 53:685-694. [PMID: 32214996 PMCID: PMC7089403 DOI: 10.1007/s11426-010-0135-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/28/2010] [Indexed: 11/05/2022]
Abstract
This review gives a broad glance on the progress of recent advances on proteolysis and peptide/protein separation by chromatographic strategies in the past ten years, covering the main research in these areas especially in China. The reviewed research focused on enzymatic micro-reactors and peptide separation in bottom-up approaches, and protein and peptide separation in top-down approaches. The new enzymatic micro-reactor is able to accelerate proteolytic reaction rate from conventionally a couple of hours to a few seconds, and the multiple dimensional chromatographic-separation with various models or arrays could sufficiently separate the proteomic mixture. These advances have significantly promoted the research of protein/peptide separation and identification in proteomics.
Collapse
Affiliation(s)
- XiangMin Zhang
- 1Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433 China
| | - BaoHong Liu
- 1Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433 China
| | - LiHua Zhang
- 2Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - HanFa Zou
- 2Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jing Cao
- 1Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433 China
| | - MingXia Gao
- 1Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433 China
| | - Jia Tang
- 1Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433 China
| | - Yun Liu
- 1Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433 China
| | - PengYuan Yang
- 1Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433 China
| | - YuKui Zhang
- 2Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
17
|
Tan Q, Dong D, Ye L, Huo C, Huang F, Li R. Pre-fractionation of rat liver cytosol proteins prior to mass spectrometry-based proteomic analysis using tandem biomimetic affinity chromatography. J Mol Recognit 2010; 23:93-100. [PMID: 19862701 DOI: 10.1002/jmr.995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Efficient and high resolution separation of the protein mixture prior to trypsin digestion and mass spectrometry (MS) analysis is generally used to reduce the complexity of samples, an approach that highly increases the probability of detecting low-copy-number proteins. Our laboratory has constructed an affinity ligand library composed of thousands of ligands with different protein absorbance effects. Structural differences between these ligands result in different non-bonded protein-ligand interactions, thus each ligand exhibits a specific affinity to some protein groups. In this work, we first selected out several synthetic affinity ligands showing large band distribution differences in proteins absorbance profiles, and a tandem composition of these affinity ligands was used to distribute complex rat liver cytosol into simple subgroups. Ultimately, all the fractions collected from tandem affinity pre-fractionation were digested and then analyzed by LC-MS/MS, which resulted in high confidence identification of 665 unique rat protein groups, 1.8 times as many proteins as were detected in the un-fractionated sample (371 protein groups). Of these, 375 new proteins were identified in tandem fractions, and most of the proteins identified in un-fractionated sample (290, 80%) also emerged in tandem fractions. Most importantly, 430 unique proteins (64.7%) only characterized in specific fractions, indicating that the crude tissue extract was well distributed by tandem affinity fractionation. All detected proteins were bioinformatically annotated according to their physicochemical characteristics (such as MW, pI, GRAVY value, TM Helices). This approach highlighted the sensitivity of this method to a wide variety of protein classes. Combined usage of tandem affinity pre-fractionation with MS-based proteomic analysis is simple, low-cost, and effective, providing the prospect of broad application in proteomics.
Collapse
Affiliation(s)
- Qingqiao Tan
- MOE Key Laboratory of Microbial Metabolism, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200241, China
| | | | | | | | | | | |
Collapse
|
18
|
Falcón-Pérez JM, Lu SC, Mato JM. Sub-proteome approach to the knowledge of liver. Proteomics Clin Appl 2010; 4:407-15. [PMID: 21137060 DOI: 10.1002/prca.200900123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 08/12/2009] [Indexed: 11/08/2022]
Abstract
In the recent years, global proteomics approaches have been widely used to characterize a number of tissue proteomes including plasma and liver; however, the elevated complexity of these samples in combination with the high abundance of some specific proteins make the study of the lowest abundant proteins difficult. This review is focused on different strategies that have been developed to extend the proteome focused on these two tissues, as, for example, the analysis of sub-cellular proteomes. In this regard, two special kind of extracellular vesicles--exosomes and membrane plasma shedding vesicles--are emerging as excellent biological source both to extend the liver and plasma proteomes and to be applied in the discovery of non-invasive liver-specific disease biomarkers.
Collapse
Affiliation(s)
- Juan M Falcón-Pérez
- Metabolomics Unit, CICbioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Bizkaia, Spain.
| | | | | |
Collapse
|
19
|
XIONG X, SHEN JY, LI JJ, ZHANG H, WANG XC, LIANG SP. Aqueous Polymer Two-phase Partition for The Proteomic Analysis of Plasma Membrane From Rat Dorsal Root Ganglion Neurons*. PROG BIOCHEM BIOPHYS 2009; 36:1458-1468. [DOI: 10.3724/sp.j.1206.2009.00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
A novel fractionation method prior to MS-based proteomics analysis using cascade biomimetic affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3799-805. [DOI: 10.1016/j.jchromb.2009.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/18/2022]
|
21
|
Radulovic M, Crane E, Crawford M, Godovac-Zimmermann J, Yu VPCC. CKS proteins protect mitochondrial genome integrity by interacting with mitochondrial single-stranded DNA-binding protein. Mol Cell Proteomics 2009; 9:145-52. [PMID: 19786724 DOI: 10.1074/mcp.m900078-mcp200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase subunit (CKS) proteins interact with cyclin-dependent kinases (CDKs) with high affinity. Mammalian CKS1 and CKS2 bind CDK1 and CDK2 and partake in the control of cell cycle progression. We identified CKS-interacting proteins by affinity purification followed by mass spectrometry in the human lymphocytic cell line Ramos. Apart from known interactors, such as CDKs, we identified a novel CDK-dependent interaction between CKS proteins and the mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB bound both CKS1 and CKS2 and underwent CDK-dependent phosphorylation. mtSSB is known to participate in replication of mitochondrial DNA. We demonstrated that mitochondrial morphology and DNA integrity were compromised in cells depleted of both CKS proteins or that had inhibited CDK activity. These features are consistent with the hypothesis of CKS-dependent regulation of mtSSB function and support a direct role of cell cycle proteins in controlling mitochondrial DNA replication.
Collapse
Affiliation(s)
- Marko Radulovic
- Eukaryotic Chromatin Dynamics Group, Medical Research Council Clinical Sciences Centre, Imperial College Hammersmith Campus, Du Cane Road, London, UK
| | | | | | | | | |
Collapse
|
22
|
Gazzana G, Borlak J. An update on the mouse liver proteome. Proteome Sci 2009; 7:35. [PMID: 19737410 PMCID: PMC2752743 DOI: 10.1186/1477-5956-7-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/08/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing.This methodology was now applied to develop a mouse liver protein database. RESULTS Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein) could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. CONCLUSION Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.
Collapse
Affiliation(s)
- Giuseppe Gazzana
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.
| | | |
Collapse
|
23
|
Deng WJ, Nie S, Dai J, Wu JR, Zeng R. Proteome, phosphoproteome, and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages. Mol Cell Proteomics 2009; 9:100-16. [PMID: 19700791 DOI: 10.1074/mcp.m900020-mcp200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has been proposed that mitochondrial dysfunction is involved in the pathogenesis of type 2 diabetes (T2D). To dissect the underlying mechanisms, we performed a multiplexed proteomics study on liver mitochondria isolated from a spontaneous diabetic rat model before/after they were rendered diabetic. Altogether, we identified 1091 mitochondrial proteins, 228 phosphoproteins, and 355 hydroxyproteins. Mitochondrial proteins were found to undergo expression changes in a highly correlated fashion during T2D development. For example, proteins involved in beta-oxidation, the tricarboxylic acid cycle, oxidative phosphorylation, and other bioenergetic processes were coordinately up-regulated, indicating that liver cells confronted T2D by increasing energy expenditure and activating pathways that rid themselves of the constitutively increased flux of glucose and lipid. Notably, activation of oxidative phosphorylation was immediately related to the overproduction of reactive oxygen species, which caused oxidative stress within the cells. Increased oxidative stress was also evidenced by our post-translational modification profiles such that mitochondrial proteins were more heavily hydroxylated during T2D development. Moreover, we observed a distinct depression of antiapoptosis and antioxidative stress proteins that might reflect a higher apoptotic index under the diabetic stage. We suggest that such changes in systematic metabolism were causally linked to the development of T2D. Comparing proteomics data against microarray data, we demonstrated that many T2D-related alterations were unidentifiable by either proteomics or genomics approaches alone, underscoring the importance of integrating different approaches. Our compendium could help to unveil pathogenic events in mitochondria leading to T2D and be useful for the discovery of diagnosis biomarker and therapeutic targets of T2D.
Collapse
Affiliation(s)
- Wen-Jun Deng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
24
|
Temporal and spatial profiling of nuclei-associated proteins upon TNF-alpha/NF-kappaB signaling. Cell Res 2009; 19:651-64. [PMID: 19399029 DOI: 10.1038/cr.2009.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The tumor necrosis factor (TNF)-alpha/NF-kappaB-signaling pathway plays a pivotal role in various processes including apoptosis, cellular differentiation, host defense, inflammation, autoimmunity and organogenesis. The complexity of the TNF-alpha/NF-kappaB signaling is in part due to the dynamic protein behaviors of key players in this pathway. In this present work, a dynamic and global view of the signaling components in the nucleus at the early stages of TNF-alpha/NF-kappaB signaling was obtained in HEK293 cells, by a combination of subcellular fractionation and stable isotope labeling by amino acids in cell culture (SILAC). The dynamic profile patterns of 547 TNF-alpha-induced nuclei-associated proteins were quantified in our studies. The functional characters of all the profiles were further analyzed using that Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Additionally, many previously unknown effectors of TNF-alpha/NF-kappaB signaling were identified, quantified and clustered into differential activation profiles. Interestingly, levels of Fanconi anemia group D2 protein (FANCD2), one of the Fanconi anemia family proteins, was found to be increased in the nucleus by SILAC quantitation upon TNF-alpha stimulation, which was further verified by western blotting and immunofluorescence analysis. This indicates that FANCD2 might be involved in TNF-alpha/NF-kappaB signaling through its accumulation in the nucleus. In summary, the combination of subcellular proteomics with quantitative analysis not only allowed for a dissection of the nuclear TNF-alpha/NF-kappaB-signaling pathway, but also provided a systematic strategy for monitoring temporal and spatial changes in cell signaling.
Collapse
|
25
|
Codarin E, Renzone G, Poz A, Avellini C, Baccarani U, Lupo F, di Maso V, Crocè SL, Tiribelli C, Arena S, Quadrifoglio F, Scaloni A, Tell G. Differential Proteomic Analysis of Subfractioned Human Hepatocellular Carcinoma Tissues. J Proteome Res 2009; 8:2273-84. [DOI: 10.1021/pr8009275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erika Codarin
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Giovanni Renzone
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Alessandra Poz
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Avellini
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Umberto Baccarani
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Francesco Lupo
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Vittorio di Maso
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Saveria Lory Crocè
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Tiribelli
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Simona Arena
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Franco Quadrifoglio
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Andrea Scaloni
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| |
Collapse
|
26
|
Çelebi B, Elçin YM. Proteome Analysis of Rat Bone Marrow Mesenchymal Stem Cell Subcultures. J Proteome Res 2009; 8:2164-72. [DOI: 10.1021/pr800590g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Betül Çelebi
- Ankara University, Faculty of Science and Biotechnology Institute, AU-TEBNL, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Y. Murat Elçin
- Ankara University, Faculty of Science and Biotechnology Institute, AU-TEBNL, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| |
Collapse
|
27
|
Huang C, Huang X, Kong Y, Wu W. Coupled Chromatography for Assay of the Venom Proteome of the Snake Agkistrodon acutus: An Effective Strategy for Discovery of Active Components. Chromatographia 2009. [DOI: 10.1365/s10337-009-0987-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Scaloni A, Codarin E, Di Maso V, Arena S, Renzone G, Tiribelli C, Quadrifoglio F, Tell G. Modern strategies to identify new molecular targets for the treatment of liver diseases: The promising role of Proteomics and Redox Proteomics investigations. Proteomics Clin Appl 2009; 3:242-62. [DOI: 10.1002/prca.200800169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Indexed: 12/16/2022]
|
29
|
Newberg J, Hua J, Murphy RF. Location proteomics: systematic determination of protein subcellular location. Methods Mol Biol 2009; 500:313-332. [PMID: 19399439 DOI: 10.1007/978-1-59745-525-1_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteomics seeks the systematic and comprehensive understanding of all aspects of proteins, and location proteomics is the relatively new subfield of proteomics concerned with the location of proteins within cells. This review provides a guide to the widening selection of methods for studying location proteomics and integrating the results into systems biology. Automated and objective methods for determining protein subcellular location have been described based on extracting numerical features from fluorescence microscope images and applying machine learning approaches to them. Systems to recognize all major protein subcellular location patterns in both two-dimensional and three-dimensional HeLa cell images with high accuracy (over 95% and 98%, respectively) have been built. The feasibility of objectively grouping proteins into subcellular location families, and in the process of discovering new subcellular patterns, has been demonstrated using cluster analysis of images from a library of randomly tagged protein clones. Generative models can be built to effectively capture and communicate the patterns in these families. While automated methods for high-resolution determination of subcellular location are now available, the task of applying these methods to all expressed proteins in many different cell types under many conditions represents a very significant challenge.
Collapse
Affiliation(s)
- Justin Newberg
- Department of Biomedical Engineering and Center for Bioimage Informatics, Carnegie Mellon University, Pittsburg, PA, USA
| | | | | |
Collapse
|
30
|
Ruiz-Romero C, Blanco FJ. Mitochondrial proteomics and its application in biomedical research. MOLECULAR BIOSYSTEMS 2009; 5:1130-42. [DOI: 10.1039/b906296n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Dail MB, Shack LA, Chambers JE, Burgess SC. Global liver proteomics of rats exposed for 5 days to phenobarbital identifies changes associated with cancer and with CYP metabolism. Toxicol Sci 2008; 106:556-69. [PMID: 18796496 PMCID: PMC2581678 DOI: 10.1093/toxsci/kfn198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/10/2008] [Indexed: 12/14/2022] Open
Abstract
A global proteomics approach was applied to model the hepatic response elicited by the toxicologically well-characterized xenobiotic phenobarbital (PB), a prototypical inducer of hepatic xenobiotic metabolizing enzymes and a well-known nongenotoxic liver carcinogen in rats. Differential detergent fractionation two-dimensional liquid chromatography electrospray ionization tandem mass spectrometry and systems biology modeling were used to identify alterations in toxicologically relevant hepatic molecular functions and biological processes in the livers of rats following a 5-day exposure to PB at 80 mg/kg/day or a vehicle control. Of the 3342 proteins identified, expression of 121 (3.6% of the total proteins) was significantly increased and 127 (3.8%) significantly decreased in the PB group compared to controls. The greatest increase was seen for cytochrome P450 (CYP) 2B2 (167-fold). All proteins with statistically significant differences from control were then analyzed using both Gene Ontology (GO) and Ingenuity Pathways Analysis (IPA, 5.0 IPA-Tox) for cellular location, function, network connectivity, and possible disease processes, especially as they relate to CYP-mediated metabolism and nongenotoxic carcinogenesis mechanisms. The GO results suggested that PB's mechanism of nongenotoxic carcinogenesis involves both increased xenobiotic metabolism, especially induction of the 2B subfamily of CYP enzymes, and increased cell cycle activity. Apoptosis, however, also increased, perhaps, as an attempt to counter the rising cancer threat. Of the IPA-mapped proteins, 41 have functions which are procarcinogenic and 14 anticarcinogenic according to the hypothesized nongenotoxic mechanism of imbalance between apoptosis and cellular proliferation. Twenty-two additional IPA nodes can be classified as procarcinogenic by the competing theory of increased metabolism resulting in the formation of reactive oxygen species. Since the systems biology modeling corresponded well to PB effects previously elucidated via more traditional methods, the global proteomic approach is proposed as a new screening methodology that can be incorporated into future toxicological studies.
Collapse
Affiliation(s)
- Mary B. Dail
- Center for Environmental Health Sciences, College of Veterinary Medicine
- Department of Basic Sciences, College of Veterinary Medicine
| | - L. Allen Shack
- Department of Basic Sciences, College of Veterinary Medicine
| | - Janice E. Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine
- Department of Basic Sciences, College of Veterinary Medicine
| | - Shane C. Burgess
- Department of Basic Sciences, College of Veterinary Medicine
- Mississippi Agriculture and Forestry Experiment Station
- Institute for Digital Biology
- Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, Mississippi 39762
| |
Collapse
|
32
|
Dai J, Wang LS, Wu YB, Sheng QH, Wu JR, Shieh CH, Zeng R. Fully Automatic Separation and Identification of Phosphopeptides by Continuous pH-Gradient Anion Exchange Online Coupled with Reversed-Phase Liquid Chromatography Mass Spectrometry. J Proteome Res 2008; 8:133-41. [DOI: 10.1021/pr800381w] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jie Dai
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lian-Shui Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Bo Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Quan-Hu Sheng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Rui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chia-Hui Shieh
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
33
|
Abstract
Proteome--the protein complement of a genome--has become the protein renaissance and a key research tool in the post-genomic era. The basic technology involves the routine usage of gel electrophoresis and spectrometry procedures for deciphering the primary protein sequence/structure as well as knowing certain unique post-translational modifications that a particular protein has undergone to perform a specific function in the cell. However, the recent advancements in protein analysis have ushered this science to provide deeper, bigger and more valuable perspectives regarding performance of subtle protein-protein interactions. Applications of this branch of molecular biology are as vast as the subject is and include clinical diagnostics, pharmaceutical and biotechnological industries. The 21st century hails the use of products, procedures and advancements of this science as finer touches required for the grooming of fast-paced technology.
Collapse
Affiliation(s)
- Anu Kalia
- Department of Microbiology Punjab Agricultural University, Ludhiana, Punjab, India.
| | | |
Collapse
|
34
|
Li X, Cao J, Jin Q, Xie C, He Q, Cao R, Xiong J, Chen P, Wang X, Liang S. A proteomic study reveals the diversified distribution of plasma membrane-associated proteins in rat hepatocytes. J Cell Biochem 2008; 104:965-84. [PMID: 18247341 DOI: 10.1002/jcb.21680] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To investigate the heterogeneous protein composition of highly polarized hepatocyte plasma membrane (PM), three PM-associated subfractions were obtained from freshly isolated rat hepatocytes using density gradient centrifugation. The origins of the three subfractions were determined by morphological analysis and western blotting. The proteins were subjected to either one-dimensional (1-D) SDS-PAGE or two-dimensional (2-D) benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE before nano-Liquid Chromatography-Electrospray Ionization--tandem mass spectrometry analysis (LC-ESI-MS/MS). A total of 613 non-redundant proteins were identified, among which 371 (60.5%) proteins were classified as PM or membrane-associated proteins according to GO annotations and the literatures and 32.4% had transmembrane domains. PM proteins from microsomal portion possessed the highest percentage of transmembrane domain, about 46.5% of them containing at least one transmembrane domain. In addition to proteins known to be located at polarized liver PM regions, such as asialoglycoprotein receptor 2, desmoplakin and bile salt export pump, several proteins which had the potential to become novel subfraction-specific proteins were also identified, such as annexin a6, pannexin and radixin. Our analysis also evaluated the application of 1-D SDS-PAGE and 2-D 16-BAC/SDS-PAGE on the separation of integral membrane proteins.
Collapse
Affiliation(s)
- Xuanwen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Committee, College of Life Sciences, Hunan Normal University, Changsha 410081, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sun Q, Miao M, Jia X, Guo W, Wang L, Yao Z, Liu C, Jiao B. Subproteomic analysis of the mitochondrial proteins in rats 24 h after partial hepatectomy. J Cell Biochem 2008; 105:176-84. [DOI: 10.1002/jcb.21811] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Tang J, Gao M, Deng C, Zhang X. Recent development of multi-dimensional chromatography strategies in proteome research. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:123-32. [PMID: 18289947 PMCID: PMC7185551 DOI: 10.1016/j.jchromb.2008.01.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 01/15/2008] [Accepted: 01/18/2008] [Indexed: 11/23/2022]
Abstract
As a complementary approach to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), multi-dimensional chromatography separation methods have been widely applied in all kinds of biological sample investigations. Multi-dimensional liquid chromatography (MDLC) coupled with bio-mass spectrometry (MS) is playing important roles in proteome research due to its high speed, high resolution and high sensitivity. Proteome analysis strategies mainly include bottom-up and top-down approaches which carry out biological sample separation based on peptide and protein levels, respectively. Electrophoretic methods combined with liquid chromatography like IEF-HPLC and HPLC-SDS-PAGE have been successful applied for protein separations. As for MDLC strategy, ion-exchange chromatography (IEX) together with reversed phase liquid chromatography (RPLC) is still a most widely used chromatography in proteome analysis, other chromatographic methods are also frequently used in protein pre-fractionations, while affinity chromatography is usually adopted for specific functional protein analysis. Recent MDLC technologies and applications to variety of proteome analysis have been achieved great development. A digest peptide-based approach as so-called "bottom-up" and intact protein-based approach "top-down" analysis of proteome samples were briefly reviewed in this paper. The diversity of combinations of different chromatography modes to set up MDLC systems was demonstrated and discussed. Novel developments of MDLC techniques such as high-abundance protein depletion and chromatography array were also included in this review.
Collapse
Affiliation(s)
- Jia Tang
- Department of Chemistry Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xiangming Zhang
- Department of Chemistry Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
37
|
Zhou H, Dai J, Sheng QH, Li RX, Shieh CH, Guttman A, Zeng R. A fully automated 2-D LC-MS method utilizing online continuous pH and RP gradients for global proteome analysis. Electrophoresis 2008; 28:4311-9. [PMID: 17987634 DOI: 10.1002/elps.200700463] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The conventional 2-D LC-MS/MS setup for global proteome analysis was based on online and offline salt gradients (step and continuous) using strong-cation-exchange chromatography in conjunction with RP chromatography and MS. The use of the online system with step salt elution had the possibility of resulting in peptide overlapping across fractions. The offline mode had the option to operate with continuous salt gradient to decrease peak overlap, but exhibited decreased robustness, lower reproducibility, and sample loss during the process. Due to the extensive washing requirement between the chromatography steps, online continuous gradient was not an option for salt elution. In this report, a fully automated, online, and continuous gradient (pH continuous online gradient, pCOG) 2-D LC-MS/MS system is introduced that provided excellent separation and identification power. The pH gradient-based elution provided more basic peptides than that of salt-based elution. Fraction overlap was significantly minimized by combining pH and continuous gradient elutions. This latter approach also increased sequence coverage and the concomitant confidence level in protein identification. The salt and pH elution-based 2-D LC-MS/MS approaches were compared by analyzing the mouse liver proteome.
Collapse
Affiliation(s)
- Hu Zhou
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Cao R, He Q, Zhou J, He Q, Liu Z, Wang X, Chen P, Xie J, Liang S. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification. J Proteome Res 2008; 7:535-45. [PMID: 18166008 DOI: 10.1021/pr070411f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In-gel digestion is commonly used after proteins are resolved by polyacrylamide gel electrophoresis (SDS-PAGE, 2-DE). It can also be used on its own in conjunction with tandem mass spectrometry (MS/MS) for the direct analysis of complex proteins. Here, we describe a strategy combining isolation of purified plasma membrane, efficient digestion of plasma membrane proteins in polyacrylamide gel, and high-sensitivity analysis by advanced mass spectrometry to create a new rapid and high-throughput method. The plasma membrane protein mixture is directly incorporated into a polyacrylamide gel matrix, After formation of the gel, proteins in the gel section are digested with trypsin, and the resulting peptides are subjected to reversed-phase, high-performance liquid chromatography followed by electrospray ion-trap tandem mass analysis. Using this optimized strategy, we have identified 883 rat liver membrane proteins, of which 490 had a gene ontology (GO) annotation indicating a cellular component, and 294 (60%) of the latter were known integral membrane proteins or membrane proteins. In total, 333 proteins are predicted by the TMHMM 2.0 algorithm to have transmembrane domains (TMDs) and 52% (175 of 333) proteins to contain 2-16 TMDs. The identified membrane proteins provide a broad representation of the rat plasma membrane proteome with little bias evident due to protein p I and molecular weight (MW). Also, membrane proteins with a high GRAVY score (grand average hydrophobicity score) were identified, and basic and acidic membrane proteins were evenly represented. This study not only offered an efficient and powerful method in shotgun proteomics for the identification of proteins of complex plasma membrane samples but also allowed in-depth study of liver membrane proteomes, such as of rat models of liver-related disease. This work represents one of the most comprehensive proteomic analyses of the membrane subproteome of rat liver plasma membrane in general.
Collapse
Affiliation(s)
- Rui Cao
- College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wallentine JC, Kim KK, Seiler CE, Vaughn CP, Crockett DK, Tripp SR, Elenitoba-Johnson KSJ, Lim MS. Comprehensive identification of proteins in Hodgkin lymphoma-derived Reed-Sternberg cells by LC-MS/MS. J Transl Med 2007; 87:1113-24. [PMID: 17876297 DOI: 10.1038/labinvest.3700672] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mass spectrometry-based proteomics in conjunction with liquid chromatography and bioinformatics analysis provides a highly sensitive and high-throughput approach for the identification of proteins. Hodgkin lymphoma is a form of malignant lymphoma characterized by the proliferation of Reed-Sternberg cells and background reactive lymphocytes. Comprehensive analysis of proteins expressed and released by Reed-Sternberg cells would assist in the discovery of potential biomarkers and improve our understanding of its pathogenesis. The subcellular proteome of the three cellular compartments from L428 and KMH2 Hodgkin lymphoma-derived cell lines were fractionated, and analyzed by reverse-phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Additionally, proteins released by Hodgkin lymphoma-derived L428 cells were extracted from serum-free culture media and analyzed. Peptide spectra were analyzed using TurboSEQUEST against the UniProt protein database (5.26.05; 188 712 entries). A subset of the identified proteins was validated by Western blot analysis, immunofluorescence microscopy and immunohistochemistry. A total of 1945 proteins were identified with 785 from the cytosolic fraction, 305 from the membrane fraction, 441 from the nuclear fraction and 414 released proteins using a minimum of two peptide identifications per protein and an error rate of <5.0%. Identification of proteins from diverse functional groups reflected the functional complexity of the Reed-Sternberg proteome. Proteins with previously reported oncogenic function in other cancers and from signaling pathways implicated in Hodgkin lymphoma were identified. Selected proteins without previously demonstrated expression in Hodgkin lymphoma were validated by Western blot analysis (B-RAF, Erb-B3), immunofluorescence microscopy (Axin1, Tenascin-X, Mucin-2) and immunohistochemistry using a tissue microarray (BRAF, PIM1). This study represents the first comprehensive inventory of proteins expressed by Reed-Sternberg cells of Hodgkin lymphoma and demonstrates the utility of combining cellular subfractionation, protein precipitation, tandem mass spectrometry and bioinformatics analysis for comprehensive identification of proteins that may represent potential biomarkers of the disease.
Collapse
Affiliation(s)
- Jeremy C Wallentine
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Webster RP, Myatt L. Elucidation of the molecular mechanisms of preeclampsia using proteomic technologies. Proteomics Clin Appl 2007; 1:1147-55. [PMID: 21136764 DOI: 10.1002/prca.200700128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Indexed: 01/30/2023]
Abstract
Preeclampsia, a disease of pregnancy, is a multisystem disorder associated with elevated maternal blood pressure, proteinurea, oedema, and fetal abnormalities. It is a major cause of mortality, morbidity, perinatal death, and premature delivery. Despite active research in the past decade, there is yet no definitive cure for preeclampsia. The disease has been treated symptomatically with antihypertensives, antieclamptics, bed rest, and a whole gamut of isolated therapies. In an attempt to understand the molecular basis of this disease and many other fatal diseases including cancer and heart disease, the scientific community has been turning to understanding the genome and more lately the "proteome". Proteomics enables researchers to identify all proteins expressed in a cell or organ and detect any PTM in the protein expression patterns. Deciphering the placental proteome and studying the differences in protein expression patterns in the normal as against the preeclamptic proteome might possibly in future lead to early detection and therapeutic targeting of preeclampsia.
Collapse
Affiliation(s)
- Rose P Webster
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
41
|
Jin J, Davis J, Zhu D, Kashima DT, Leroueil M, Pan C, Montine KS, Zhang J. Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells. BMC Neurosci 2007; 8:67. [PMID: 17705834 PMCID: PMC2000881 DOI: 10.1186/1471-2202-8-67] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 08/16/2007] [Indexed: 12/21/2022] Open
Abstract
Background Many studies have shown that mitochondrial dysfunction, complex I inhibition in particular, is involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a specific inhibitor of mitochondrial complex I, has been shown to produce neurodegeneration in rats as well as in many cellular models that closely resemble PD. However, the mechanisms through which complex I dysfunction might produce neurotoxicity are as yet unknown. A comprehensive analysis of the mitochondrial protein expression profile affected by rotenone can provide important insight into the role of mitochondrial dysfunction in PD. Results Here, we present our findings using a recently developed proteomic technology called SILAC (stable isotope labeling by amino acids in cell culture) combined with polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry to compare the mitochondrial protein profiles of MES cells (a dopaminergic cell line) exposed to rotenone versus control. We identified 1722 proteins, 950 of which are already designated as mitochondrial proteins based on database search. Among these 950 mitochondrial proteins, 110 displayed significant changes in relative abundance after rotenone treatment. Five of these selected proteins were further validated for their cellular location and/or treatment effect of rotenone. Among them, two were confirmed by confocal microscopy for mitochondrial localization and three were confirmed by Western blotting (WB) for their regulation by rotenone. Conclusion Our findings represent the first report of these mitochondrial proteins affected by rotenone; further characterization of these proteins may shed more light on PD pathogenesis.
Collapse
Affiliation(s)
- Jinghua Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jeanne Davis
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - David Zhu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel T Kashima
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Marc Leroueil
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Catherine Pan
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathleen S Montine
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
42
|
Wang N, Mackenzie L, De Souza AG, Zhong H, Goss G, Li L. Proteome profile of cytosolic component of zebrafish liver generated by LC-ESI MS/MS combined with trypsin digestion and microwave-assisted acid hydrolysis. J Proteome Res 2007; 6:263-72. [PMID: 17203970 DOI: 10.1021/pr060367o] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The zebrafish genome has recently been sequenced and annotated allowing for high-throughput proteomic analysis. Here, we report for the first time a proteomic subset of zebrafish liver, an important organ for metabolizing toxins. Using a newly developed analytical procedure, we have identified 1204 proteins from the cytosolic component of a zebrafish liver tissue sample. Our methods involve cell-compartment fractionation of liver tissue samples, four levels of protein digestion, and off-line two-dimensional liquid chromatography (2-D LC) separations of resultant peptides. Proteins are identified using an electrospray ionization quadrupole time-of-flight tandem mass spectrometer (ESI-QTOF MS/MS), which provides high-resolution and high-accuracy mass measurement of peptide ions and their fragment ions. We demonstrate that greater proteome coverage can be achieved by combining the results obtained from four methods of protein digestion: three tryptic digests (one in buffer, one in methanol, and another in SDS), and a microwave-assisted acid hydrolysate of the protein extracts. Identified proteins--which included several groups of established protein biomarkers--were functionally classified. We discuss the functions and implications of these biomarkers within the context of zebrafish toxicology.
Collapse
Affiliation(s)
- Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Zhang L, Wang X, Peng X, Wei Y, Cao R, Liu Z, Xiong J, Ying X, Chen P, Liang S. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis. J Proteome Res 2007; 6:34-43. [PMID: 17203946 DOI: 10.1021/pr060069r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasma membrane (PM) has very important roles in cell-cell interaction and signal transduction, and it has been extensively targeted for drug design. A major prerequisite for the analysis of PM proteome is the preparation of PM with high purity. Density gradient centrifugation has been commonly employed to isolate PM, but it often occurred with contamination of internal membrane. Here we describe a method for plasma membrane purification using second antibody superparamagnetic beads that combines subcellular fractionation and immunoisolation strategies. Four methods of immunoaffinity were compared, and the variation of crude plasma membrane (CPM), superparamagnetic beads, and antibodies was studied. The optimized method and the number of CPM, beads, and antibodies suitable for proteome analysis were obtained. The PM of mouse liver was enriched 3-fold in comparison with the density gradient centrifugation method, and contamination from mitochondria was reduced 2-fold. The PM protein bands were extracted and trypsin-digested, and the resulting peptides were resolved and characterized by MALDI-TOF-TOF and ESI-Q-TOF, respectively. Mascot software was used to analyze the data against IPI-mouse protein database. Nonredundant proteins (248) were identified, of which 67% are PM or PM-related proteins. No endoplasmic reticulum (ER) or nuclear proteins were identified according to the GO annotation in the optimized method. Our protocol represents a simple, economic, and reproducible tool for the proteomic characterization of liver plasma membrane.
Collapse
Affiliation(s)
- Lijun Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of National Education Committee, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The availability and accessibility of high-throughput and biological legacy data have allowed mathematical analyses of genome-scale metabolic networks and models. Model formulation is centered on the conservation principles of mass and charge. Thermodynamic information is generally incorporated by means of reaction reversibility. If further experimental data are available, such as kinetic parameters, models describing system evolution over time can be developed. The type of data available largely determines the type of model (and subsequently the type of analysis) that can be performed. Different modeling approaches offer different advantages. Detailed kinetic models can make specific predictions about network functional states given knowledge about the enzyme parameter variations resulting from single-nucleotide polymorphisms (SNPs). They also require a large amount of experimental data, which is rarely available. On the other hand, although current formulations using the constraint-based optimization framework do not offer information about metabolite concentrations or time-dependent changes, it is a remarkably flexible modeling framework and permits the integration of a large amount of very different data types.
Collapse
Affiliation(s)
- Neema Jamshidi
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
45
|
Shi R, Kumar C, Zougman A, Zhang Y, Podtelejnikov A, Cox J, Wiśniewski JR, Mann M. Analysis of the mouse liver proteome using advanced mass spectrometry. J Proteome Res 2007; 6:2963-72. [PMID: 17608399 DOI: 10.1021/pr0605668] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a large-scale analysis of mouse liver tissue comprising a novel fractionation approach and high-accuracy mass spectrometry techniques. Two fractions enriched for soluble and membrane proteins from 20 mg of frozen tissue were separated by one-dimensional electrophoresis followed by LC-MS/MS on the hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer. Confident identification of 2210 proteins relied on at least two peptides. We combined this proteome with our previously reported organellar map (Foster et al. Cell 2006, 125, 187-199) to generate a very high confidence mouse liver proteome of 3244 proteins. The identified proteins represent the liver proteome with no discernible bias due to protein physicochemical properties, subcellular distribution, or biological function. Forty-seven percent of identified proteins were annotated as membrane-bound, and for 35.3%, transmembrane domains were predicted. For potential application in toxicology or clinical studies, we demonstrate that it is possible to consistently identify more than 1000 proteins in a single run.
Collapse
Affiliation(s)
- Rong Shi
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gazzana G, Borlak J. Improved Method for Proteome Mapping of the Liver by 2-DE MALDI-TOF MS. J Proteome Res 2007; 6:3143-51. [PMID: 17579388 DOI: 10.1021/pr070097p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identifying the liver proteome has been the subject of intensified research. Notably, due to their strong heterogeneity in size, charge, solubility, and relative abundance, different strategies of pre-fractionation must be employed to increase the number of identifiable proteins. In our efforts, we used two different lysis buffers in sequence, a liquid-phase IEF pre-fractionation and separation of protein mixtures at three different pH ranges (3-10, 5-8, and 7-10). Then, >15 000 gel digested proteins were investigated. We report an identification of 590 different gene products, including some isoforms. More than 150 proteins have not been reported so far by two-dimensional electrophoresis (2-DE) proteome mapping. We further studied the transcript expression of more than 33 000 genes in rat liver to explore correlations between transcript and protein expression. Overall, we report a method for the separation of rat liver proteins and their identification by mass spectrometry. The newly identified proteins will enable an improved understanding of liver biology.
Collapse
Affiliation(s)
- Giuseppe Gazzana
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
47
|
Adachi J, Kumar C, Zhang Y, Mann M. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol Cell Proteomics 2007; 6:1257-73. [PMID: 17409382 DOI: 10.1074/mcp.m600476-mcp200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adipocytes are central players in energy metabolism and the obesity epidemic, yet their protein composition remains largely unexplored. We investigated the adipocyte proteome by combining high accuracy, high sensitivity protein identification technology with subcellular fractionation of nuclei, mitochondria, membrane, and cytosol of 3T3-L1 adipocytes. We identified 3,287 proteins while essentially eliminating false positives, making this one of the largest high confidence proteomes reported to date. Comprehensive bioinformatics analysis revealed that the adipocyte proteome, despite its specialized role, is very complex. Comparison with microarray data showed that the mRNA abundance of detected versus non-detected proteins differed by less than 2-fold and that proteomics covered as large a proportion of the insulin signaling pathway. We used the Endeavour gene prioritization algorithm to associate a number of factors with vesicle transport in response to insulin stimulation, a key function of adipocytes. Our data and analysis can serve as a model for cellular proteomics. The adipocyte proteome is available as supplemental material and from the Max-Planck Unified Proteome database.
Collapse
Affiliation(s)
- Jun Adachi
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
48
|
Gao M, Deng C, Lin S, Hu F, Tang J, Yao N, Zhang X. Recent developments and contributions from Chinese scientists in multidimensional separations for proteomics and traditional Chinese medicines. J Sep Sci 2007; 30:785-91. [PMID: 17536722 PMCID: PMC7167053 DOI: 10.1002/jssc.200600372] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 12/07/2006] [Indexed: 11/11/2022]
Abstract
The most basic task in proteomics remains the detection and identification of proteins from a biological sample, and the most traditional way to achieve this goal consists in protein separations performed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Yet the 2-D PAGE-mass spectrometry (MS) approach has its drawbacks with regard to automation, sensitivity, and throughput. Consequently, considerable effort has been devoted to the development of non-gel-based proteome separation technologies in an effort to alleviate the shortcomings of 2-D PAGE. In addition, traditional Chinese medicines (TCMs), due to their long period of clinical testing and reliable therapeutic efficacy, are attracting increased global attention. However, hundreds or even thousands of components are usually present in TCMs, which results in great difficulties of separation. As a mainstream separation tool, multidimensional liquid separation systems have shown powerful separation ability, high peak capacity, and excellent detectability in the analysis of complex samples including biological samples and TCMs, etc. Therefore, this review emphasizes the most recent advances in multidimensional liquid chromatography and capillary electrophoresis-based separation techniques, and the corresponding applications in proteomics and TCMs. In view of the significant contributions from Chinese scientists, this review focuses mainly on the work of Chinese scientists in the above fields.
Collapse
Affiliation(s)
- Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai, China. Fax: +86‐21‐6564‐1740
- Research Center of Proteome, Fudan University, Shanghai, China
| | - Chunhui Deng
- Department of Chemistry, Fudan University, Shanghai, China. Fax: +86‐21‐6564‐1740
- Research Center of Proteome, Fudan University, Shanghai, China
| | - Shuang Lin
- Department of Chemistry, Fudan University, Shanghai, China. Fax: +86‐21‐6564‐1740
- Research Center of Proteome, Fudan University, Shanghai, China
| | - Fengli Hu
- Department of Chemistry, Fudan University, Shanghai, China. Fax: +86‐21‐6564‐1740
- Research Center of Proteome, Fudan University, Shanghai, China
| | - Jia Tang
- Department of Chemistry, Fudan University, Shanghai, China. Fax: +86‐21‐6564‐1740
- Research Center of Proteome, Fudan University, Shanghai, China
| | - Ning Yao
- Department of Chemistry, Fudan University, Shanghai, China. Fax: +86‐21‐6564‐1740
- Research Center of Proteome, Fudan University, Shanghai, China
| | - Xiangmin Zhang
- Research Center of Proteome, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Dai J, Shieh CH, Sheng QH, Zhou H, Zeng R. Proteomic analysis with integrated multiple dimensional liquid chromatography/mass spectrometry based on elution of ion exchange column using pH steps. Anal Chem 2007; 77:5793-9. [PMID: 16159108 DOI: 10.1021/ac050251w] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel integrated multidimensional liquid chromatography (IMDL) method is demonstrated for the separation of peptide mixtures by two-dimensional HPLC coupled with ion trap mass spectrometry. The method uses an integrated column, containing both strong cation exchange and reversed-phase sections for two-dimensional liquid chromatography. The peptide mixture was fractionated by a pH step using a series of pH buffers, followed by reversed-phase chromatography. Since no salt was used during separation, the integrated multidimensional liquid chromatography can be directly connected to mass spectrometry for peptide analysis. The pH buffers were injected from an autosampler, and the entire process can be carried out on a one-dimensional liquid chromatography system. In a single analysis, the IMDL system, coupled with linear ion trap mass spectrometry, identified more than 2000 proteins in mouse liver. The peptides were eluted according to their pI distribution. The resolution of the pH fractionation is approximately 0.5 pH unit. The method has low overlapping across pH fractions, good resolution of peptide mixture, and good correlation of peptide pIs with pH steps. This method provides a technique for large-scale protein identification using existing one-dimensional HPLC systems.
Collapse
Affiliation(s)
- Jie Dai
- Research Center for Proteome Analysis, Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
50
|
He J, Liu Y, He S, Wang Q, Pu H, Tong Y, Ji J. Comparison of two-dimensional gel electrophoresis based and shotgun strategies in the study of plasma membrane proteome. Proteomics Clin Appl 2007; 1:231-41. [DOI: 10.1002/prca.200600004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Indexed: 11/09/2022]
|