1
|
Nikhil P, Aishwarya D, Dhingra S, Pandey K, Ravichandiran V, Peraman R. Comparative analysis of plasma affinity depletion methods: Impact on protein composition and phosphopeptide abundance in human plasma. Electrophoresis 2024; 45:1860-1873. [PMID: 39031703 DOI: 10.1002/elps.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 07/22/2024]
Abstract
Affinity-based protein depletion and TiO2 enrichment methods play a crucial role in detection of low-abundant proteins and phosphopeptides enrichment, respectively. Here, we assessed the effectiveness of HSA/IgG (HU2) and Human 7 (HU7) depletion methods and their impact on phosphopeptides coverage through comparative proteome analysis, utilizing in-solution digestion and nano-LC-Orbitrap mass spectrometry (MS). Our results demonstrated that both HU2 and HU7 affinity depletion significantly decreased high-abundant proteins by 1.5-7.8-fold (p < 0.001). A total of 1491 proteins were identified, with 48 proteins showing significant expression in the depleted groups. Notably, cadherin-13, neutrophil defensin 1, APM1, and desmoplakin variant protein were exclusively detected in the HU2/HU7-depleted groups. Furthermore, study on effect of depletion on phosphopeptides revealed an increase in tandem MS spectral counts with notable decrease (∼50%) in peptide spectrum matching in depleted groups, which was attributed to significant reduction in protein counts. Our post translation modification workflow for phosphoproteomics detected 42 phosphorylated peptides, corresponding to 12 phosphoproteins with unique peptide match ≥2 (high false discovery rates confidence). Among them, 10 phosphorylated proteins are highly expressed in depleted groups. Overall, these findings offer valuable insights in selection of protein depletion methods for comprehensive plasma proteomics analysis.
Collapse
Affiliation(s)
- Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Krishna Pandey
- Division of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
2
|
Ouyang M, Wu J, Yan Y, Ding CF. Efficient Enrichment of Global Phosphopeptides Using Magnetic Tannic Acid – Titanium(IV)/Zirconium(IV) Functionalized Spheres as a Novel Sorbent for Immobilized Metal Ion Affinity Chromatography (IMAC). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Menglin Ouyang
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Jiani Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Yinghua Yan
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Chuan-Fan Ding
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Brandi J, Noberini R, Bonaldi T, Cecconi D. Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications. J Chromatogr A 2022; 1678:463352. [PMID: 35896048 DOI: 10.1016/j.chroma.2022.463352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Post-translational modifications (PTMs) occur during or after protein biosynthesis and increase the functional diversity of proteome. They comprise phosphorylation, acetylation, methylation, glycosylation, ubiquitination, sumoylation (among many other modifications), and influence all aspects of cell biology. Mass-spectrometry (MS)-based proteomics is the most powerful approach for PTM analysis. Despite this, it is challenging due to low abundance and labile nature of many PTMs. Hence, enrichment of modified peptides is required for MS analysis. This review provides an overview of most common PTMs and a discussion of current enrichment methods for MS-based proteomics analysis. The traditional affinity strategies, including immunoenrichment, chromatography and protein pull-down, are outlined together with their strengths and shortcomings. Moreover, a special attention is paid to chemical enrichment strategies, such as capture by chemoselective probes, metabolic and chemoenzymatic labelling, which are discussed with an emphasis on their recent progress. Finally, the challenges and future trends in the field are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy.
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milano, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy.
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
4
|
Viengkhou B, White MY, Cordwell SJ, Campbell IL, Hofer MJ. A novel phosphoproteomic landscape evoked in response to type I interferon in the brain and in glial cells. J Neuroinflammation 2021; 18:237. [PMID: 34656141 PMCID: PMC8520650 DOI: 10.1186/s12974-021-02277-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Type I interferons (IFN-I) are key responders to central nervous system infection and injury and are also increased in common neurodegenerative diseases. Their effects are primarily mediated via transcriptional regulation of several hundred interferon-regulated genes. In addition, IFN-I activate several kinases including members of the MAPK and PI3K families. Yet, how changes to the global protein phosphoproteome contribute to the cellular response to IFN-I is unknown. METHODS The cerebral phosphoproteome of mice with brain-targeted chronic production of the IFN-I, IFN-α, was obtained. Changes in phosphorylation were analyzed by ontology and pathway analysis and kinase enrichment predictions. These were verified by phenotypic analysis, immunohistochemistry and immunoblots. In addition, primary murine microglia and astrocytes, the brain's primary IFN-I-responding cells, were acutely treated with IFN-α and the global phosphoproteome was similarly analyzed. RESULTS We identified widespread protein phosphorylation as a novel mechanism by which IFN-I mediate their effects. In our mouse model for IFN-I-induced neurodegeneration, protein phosphorylation, rather than the proteome, aligned with the clinical hallmarks and pathological outcome, including impaired development, motor dysfunction and seizures. In vitro experiments revealed extensive and rapid IFN-I-induced protein phosphorylation in microglia and astrocytes. Response to acute IFN-I stimulation was independent of gene expression and mediated by a small number of kinase families. The changes in the phosphoproteome affected a diverse range of cellular processes and functional analysis suggested that this response induced an immediate reactive state and prepared cells for subsequent transcriptional responses. CONCLUSIONS Our studies reveal a hitherto unappreciated role for changes in the protein phosphorylation landscape in cellular responses to IFN-I and thus provide insights for novel diagnostic and therapeutic strategies for neurological diseases caused by IFN-I.
Collapse
Affiliation(s)
- Barney Viengkhou
- School of Life and Environmental Sciences, Charles Perkins Centre and Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Melanie Y White
- School of Life and Environmental Sciences, School of Medical Sciences, Charles Perkins Centre and Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, School of Medical Sciences, Charles Perkins Centre and Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, Charles Perkins Centre and Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre and Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Borcherding DC, He K, Amin NV, Hirbe AC. TYK2 in Cancer Metastases: Genomic and Proteomic Discovery. Cancers (Basel) 2021; 13:4171. [PMID: 34439323 PMCID: PMC8393599 DOI: 10.3390/cancers13164171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in genomic analysis and proteomic tools have rapidly expanded identification of biomarkers and molecular targets important to cancer development and metastasis. On an individual basis, personalized medicine approaches allow better characterization of tumors and patient prognosis, leading to more targeted treatments by detection of specific gene mutations, overexpression, or activity. Genomic and proteomic screens by our lab and others have revealed tyrosine kinase 2 (TYK2) as an oncogene promoting progression and metastases of many types of carcinomas, sarcomas, and hematologic cancers. TYK2 is a Janus kinase (JAK) that acts as an intermediary between cytokine receptors and STAT transcription factors. TYK2 signals to stimulate proliferation and metastasis while inhibiting apoptosis of cancer cells. This review focuses on the growing evidence from genomic and proteomic screens, as well as molecular studies that link TYK2 to cancer prevalence, prognosis, and metastasis. In addition, pharmacological inhibition of TYK2 is currently used clinically for autoimmune diseases, and now provides promising treatment modalities as effective therapeutic agents against multiple types of cancer.
Collapse
Affiliation(s)
- Dana C. Borcherding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Kevin He
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Neha V. Amin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
7
|
Liu B, Yan Y, Liang H, Tang K, Ding CF. One-step preparation of carbonaceous spheres rich in phosphate groups via hydrothermal carbonization for effective phosphopeptides enrichment. J Chromatogr A 2021; 1651:462285. [PMID: 34090058 DOI: 10.1016/j.chroma.2021.462285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/29/2023]
Abstract
A green strategy was developed to prepare carbonaceous spheres rich in phosphoric acid groups on the surface with D-Glucose 6-phosphate sodium salt (called G6PNa2) as a sole carbon source through one-step hydrothermal carbonization method. The method is simple and facile and meets the standards of green chemistry as water is the sole solvent employed. Following the hydrothermal carbonization synthesis, the carbonaceous spheres were further functionalized with Ti4+. The main factors including reaction temperature, reaction time, and concentration of G6PNa2 were systematically studied in order to obtain the desirable morphology and the optimum phosphopeptides enrichment, for the resulting Ti4+ functionalized carbonaceous spheres (CS-Ti4+). The performance evaluation of the CS-Ti4+ prepared under the optimum conditions demonstrated excellent selectivity (1:1000), low detection limit (1 fmol) and high recovery rate (85%) towards phosphopeptides. Furthermore, 24 low-abundance phosphopeptides were captured from human saliva using CS-Ti4+, indicating its great potential in mass spectrometry-based phosphoproteome studies.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
8
|
Qi H, Li Z, Zheng H, Jia Q. Carnosine functionalized magnetic metal-organic framework nanocomposites for synergistic enrichment of phosphopeptides. Anal Chim Acta 2021; 1157:338383. [PMID: 33832591 DOI: 10.1016/j.aca.2021.338383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Protein phosphorylation regulates the conformations and function of proteins, which plays an important part in organisms. However, systematic and in-depth analysis of phosphorylation often hinders on account of the low abundance and suppressed ionization of phosphopeptides. Various materials based on single enrichment mechanism show potential in phosphopeptides enrichment, but the enrichment performance is typically not satisfactory. Herein, we developed a carnosine (Car) functionalized magnetic metal organic framework designed as Fe3O4@NH2@ZIF-90@Car. Benefiting from the multiple recognition groups of Car and massive metal ions site of ZIF-90, the as-fabricated Fe3O4@NH2@ZIF-90@Car was utilized as a multifunctional material with synergistic effect for phosphopeptides enrichment. On the basis of combined immobilized metal ion affinity chromatography (IMAC) and amine-based affinity enrichment mechanism, Fe3O4@NH2@ZIF-90@Car exhibited higher enrichment performance of phosphopeptides compared with Fe3O4@NH2@ZIF-90 (single IMAC mechanism). Besides, the feasibility of Fe3O4@NH2@ZIF-90@Car nanocomposites in complicated samples was further verified by enriching phosphopeptides from nonfat milk, human fluids such as serum and saliva, demonstrating its bright application prospects in phosphoproteomics analysis.
Collapse
Affiliation(s)
- He Qi
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Yan S, Luo B, He J, Lan F, Wu Y. Phytic acid functionalized magnetic bimetallic metal-organic frameworks for phosphopeptide enrichment. J Mater Chem B 2021; 9:1811-1820. [PMID: 33503098 DOI: 10.1039/d0tb02517h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Highly specific enrichment of phosphopeptides from complex biological samples was a precondition for further studying its physiological and pathological processes due to the important and trace amounts of phosphopeptides. In this work, phytic acid (PA) functionalized magnetic cerium and zirconium bimetallic metal-organic framework nanocomposites (denoted as Fe3O4@SiO2@Ce-Zr-MOF@PA) were fabricated by a facile yet efficient method. The as-prepared nanomaterial exhibited high sensitivity (0.1 fmol μL-1), high selectivity toward phosphopeptides from β-casein tryptic digests/BSA (1 : 800), and good reusability of five cycles for enriching phosphopeptides. This affinity probe was applied to biological samples, and 19, 4 and 15 phosphopeptides were identified from non-fat milk, human serum and human saliva, respectively. The above marked advantages are attributed to the strong affinity of the abundant Ce-O and Zr-O nanoclusters on the surface of the MOF shell with the improved hydrophilicity from a great number of phosphate groups. Therefore, the novel Fe3O4@SiO2@Ce-Zr-MOF@PA nanospheres could not only enrich phosphopeptides effectively, but also reduce the adsorption of phosphopeptides, manifesting great potential in the identification and further analysis of low abundance phosphopeptides in complex biological samples.
Collapse
Affiliation(s)
- Shuang Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Jia He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
10
|
Du J, Yan Y, Tang K, Ding C. Modified Carbon Nanotubes Decorated with ZIFs as New Immobilized Metal Ion Affinity Chromatography Platform for Enrichment of Phosphopeptides. ChemistrySelect 2021. [DOI: 10.1002/slct.202004650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jianglong Du
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Chuan‐Fan Ding
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| |
Collapse
|
11
|
Liu B, Wang B, Yan Y, Tang K, Ding CF. Efficient separation of phosphopeptides employing a Ti/Nb-functionalized core-shell structure solid-phase extraction nanosphere. Mikrochim Acta 2021; 188:32. [PMID: 33415462 DOI: 10.1007/s00604-020-04652-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023]
Abstract
A strategy for effectively enriching global phosphopeptides was successfully developed by using ammonia methyl phosphate (APA) as a novel chelating ligand and Ti4+ and Nb5+ as double functional ions (referred to as Fe3O4@mSiO2@APA@Ti4+/Nb5+). With the advantage of large specific surface area (151.1 m2/g), preeminent immobilized ability for metal ions (about 8% of total atoms), and unbiased enrichment towards phosphopeptides, Fe3O4@mSiO2@APA@Ti4+/Nb5+ displays high selectivity (maximum mass ratio β-casein to BSA is 1:1500), low limit of detection (LOD, as low as 0.05 fmol), good relative standard deviation (RSD, lower than 7%), recovery rate of 87% (18O isotope labeling method), outstanding phosphopeptide loading capacity (330 μg/mg), and at least five times re-use abilities. In the examination of the actual sample, 24 phosphopeptides were successfully detected in saliva and 4 phosphopeptides were also selectively extracted from human serum. All experiments have shown that Fe3O4@mSiO2@APA@Ti4+/Nb5+ exhibits exciting potential in view of the challenge of low abundance of phosphopeptides. Graphical abstract.
Collapse
Affiliation(s)
- Bin Liu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Baichun Wang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yinghua Yan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
12
|
Li Y, Liu L, Wu H, Deng C. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva. Anal Chim Acta 2019; 1079:111-119. [DOI: 10.1016/j.aca.2019.06.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
|
13
|
Jiang D, Li Z, Jia Q. A sensitive and selective phosphopeptide enrichment strategy by combining polyoxometalates and cysteamine hydrochloride-modified chitosan through layer-by-layer assembly. Anal Chim Acta 2019; 1066:58-68. [DOI: 10.1016/j.aca.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/04/2023]
|
14
|
Phosphorylation of Drebrin and Its Role in Neuritogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:49-60. [PMID: 28865014 DOI: 10.1007/978-4-431-56550-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Neuritogenesis is an early event in neuronal development in which newborn neurons first form growth cones, as a prerequisite for the formation of axons and dendrites. Growth cones emerge from segmented regions of the lamellipodium of embryonic neurons and grow away from the cell body leaving behind a neurite that will eventually polarise into an axon or dendrite. Growth cones also function to navigate precise routes through the embryo to locate an appropriate synaptic partner. Dynamic interactions between two components of the neuronal cytoskeleton, actin filaments and microtubules, are known to be essential for growth cone formation and hence neuritogenesis. The molecular mechanisms that coordinate interactions between actin filaments and dynamic microtubules during neuritogenesis are beginning to be understood. One candidate pathway coupling actin filaments to microtubules consists of the actin filament-binding protein drebrin and the microtubule-binding +TIP protein EB3. This pathway is regulated proximally by cyclin-dependent kinase 5 phosphorylation of drebrin but the upstream elements in the pathway have yet to be identified.
Collapse
|
15
|
Leitner NR, Witalisz-Siepracka A, Strobl B, Müller M. Tyrosine kinase 2 - Surveillant of tumours and bona fide oncogene. Cytokine 2015; 89:209-218. [PMID: 26631911 DOI: 10.1016/j.cyto.2015.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 10/29/2015] [Indexed: 12/16/2022]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family, which transduces cytokine and growth factor signalling. Analysis of TYK2 loss-of-function revealed its important role in immunity to infection, (auto-) immunity and (auto-) inflammation. TYK2-deficient patients unravelled high similarity between mice and men with respect to cellular signalling functions and basic immunology. Genome-wide association studies link TYK2 to several autoimmune and inflammatory diseases as well as carcinogenesis. Due to its cytokine signalling functions TYK2 was found to be essential in tumour surveillance. Lately TYK2 activating mutants and fusion proteins were detected in patients diagnosed with leukaemic diseases suggesting that TYK2 is a potent oncogene. Here we review the cell intrinsic and extrinsic functions of TYK2 in the characteristics preventing and enabling carcinogenesis. In addition we describe an unexpected function of kinase-inactive TYK2 in tumour rejection.
Collapse
Affiliation(s)
- Nicole R Leitner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
16
|
Identification of Glioblastoma Phosphotyrosine-Containing Proteins with Two-Dimensional Western Blotting and Tandem Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134050. [PMID: 26090378 PMCID: PMC4450212 DOI: 10.1155/2015/134050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/24/2022]
Abstract
To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma.
Collapse
|
17
|
Kumar A, Baycin-Hizal D, Shiloach J, Bowen MA, Betenbaugh MJ. Coupling enrichment methods with proteomics for understanding and treating disease. Proteomics Clin Appl 2015; 9:33-47. [PMID: 25523641 DOI: 10.1002/prca.201400097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Owing to recent advances in proteomics analytical methods and bioinformatics capabilities there is a growing trend toward using these capabilities for the development of drugs to treat human disease, including target and drug evaluation, understanding mechanisms of drug action, and biomarker discovery. Currently, the genetic sequences of many major organisms are available, which have helped greatly in characterizing proteomes in model animal systems and humans. Through proteomics, global profiles of different disease states can be characterized (e.g. changes in types and relative levels as well as changes in PTMs such as glycosylation or phosphorylation). Although intracellular proteomics can provide a broad overview of physiology of cells and tissues, it has been difficult to quantify the low abundance proteins which can be important for understanding the diseased states and treatment progression. For this reason, there is increasing interest in coupling comparative proteomics methods with subcellular fractionation and enrichment techniques for membranes, nucleus, phosphoproteome, glycoproteome as well as low abundance serum proteins. In this review, we will provide examples of where the utilization of different proteomics-coupled enrichment techniques has aided target and biomarker discovery, understanding the drug targeting mechanism, and mAb discovery. Taken together, these improvements will help to provide a better understanding of the pathophysiology of various diseases including cancer, autoimmunity, inflammation, cardiovascular disease, and neurological conditions, and in the design and development of better medicines for treating these afflictions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD, USA; Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
18
|
Tao WA. Soluble polymer-based isotopic labeling (SoPIL): a new strategy to discover protein biomarkers? Expert Rev Proteomics 2014; 4:603-7. [DOI: 10.1586/14789450.4.5.603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Ding SJ, Qian WJ, Smith RD. Quantitative proteomic approaches for studying phosphotyrosine signaling. Expert Rev Proteomics 2014; 4:13-23. [PMID: 17288512 DOI: 10.1586/14789450.4.1.13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein tyrosine phosphorylation is a fundamental mechanism for controlling many aspects of cellular processes, as well as aspects of human health and diseases. Compared with phosphoserine and phosphothreonine, phosphotyrosine signaling is more tightly regulated, but often more challenging to characterize, due to significantly lower levels of tyrosine phosphorylation (i.e., a relative abundance of 1800:200:1 was estimated for phosphoserine/phosphothreonine/phosphotyrosine in vertebrate cells). In this review, we outline recent advances in analytical methodologies for enrichment, identification and accurate quantitation of tyrosine-phosphorylated proteins and peptides. Advances in antibody-based technologies, capillary liquid chromatography coupled with mass spectrometry, and various stable isotope labeling strategies are discussed, as well as non-mass spectrometry-based methods, such as those using protein/peptide arrays. As a result of these advances, powerful tools now have the power to crack signal transduction codes at the system level, and provide a basis for discovering novel drug targets for human diseases.
Collapse
Affiliation(s)
- Shi-Jian Ding
- Pacific Northwest National Laboratory, Biological Science Division & Environmental Molecular Sciences Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|
20
|
Kreis P, Hendricusdottir R, Kay L, Papageorgiou IE, van Diepen M, Mack T, Ryves J, Harwood A, Leslie NR, Kann O, Parsons M, Eickholt BJ. Phosphorylation of the actin binding protein Drebrin at S647 is regulated by neuronal activity and PTEN. PLoS One 2013; 8:e71957. [PMID: 23940795 PMCID: PMC3733845 DOI: 10.1371/journal.pone.0071957] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/04/2013] [Indexed: 01/24/2023] Open
Abstract
Defects in actin dynamics affect activity-dependent modulation of synaptic transmission and neuronal plasticity, and can cause cognitive impairment. A salient candidate actin-binding protein linking synaptic dysfunction to cognitive deficits is Drebrin (DBN). However, the specific mode of how DBN is regulated at the central synapse is largely unknown. In this study we identify and characterize the interaction of the PTEN tumor suppressor with DBN. Our results demonstrate that PTEN binds DBN and that this interaction results in the dephosphorylation of a site present in the DBN C-terminus--serine 647. PTEN and pS647-DBN segregate into distinct and complimentary compartments in neurons, supporting the idea that PTEN negatively regulates DBN phosphorylation at this site. We further demonstrate that neuronal activity increases phosphorylation of DBN at S647 in hippocampal neurons in vitro and in ex vivo hippocampus slices exhibiting seizure activity, potentially by inducing rapid dissociation of the PTEN:DBN complex. Our results identify a novel mechanism by which PTEN is required to maintain DBN phosphorylation at dynamic range and signifies an unusual regulation of an actin-binding protein linked to cognitive decline and degenerative conditions at the CNS synapse.
Collapse
Affiliation(s)
- Patricia Kreis
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Rita Hendricusdottir
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Louise Kay
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ismini E. Papageorgiou
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Michiel van Diepen
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
- Novartis Pharmaceuticals UK Limited, Horsham, United Kingdom
| | - Till Mack
- Cluster of Excellence NeuroCure and Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonny Ryves
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Adrian Harwood
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Maddy Parsons
- The Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Britta J. Eickholt
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
- Cluster of Excellence NeuroCure and Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Identification and quantitation of signal molecule-dependent protein phosphorylation. Methods Mol Biol 2013; 1016:121-37. [PMID: 23681576 DOI: 10.1007/978-1-62703-441-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving (15)N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins).
Collapse
|
22
|
Goel R, Harsha HC, Pandey A, Keshava Prasad TS. Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. MOLECULAR BIOSYSTEMS 2012; 8:453-63. [PMID: 22159132 PMCID: PMC3804167 DOI: 10.1039/c1mb05340j] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human Protein Reference Database (HPRD) is a rich resource of experimentally proven features of human proteins. Protein information in HPRD includes protein-protein interactions, post-translational modifications, enzyme/substrate relationships, disease associations, tissue expression, and subcellular localization of human proteins. Although, protein-protein interaction data from HPRD has been widely used by the scientific community, its phosphoproteome data has not been exploited to its full potential. HPRD is one of the largest documentations of human phosphoproteins in the public domain. Currently, phosphorylation data in HPRD comprises of 95,016 phosphosites mapped on to 13,041 proteins. Additionally, enzyme-substrate reactions responsible for 5930 phosphorylation events were also documented. Significant improvements in technologies and high-throughput platforms in biomedical investigations led to an exponential increase of biological data and phosphoproteomic data in recent years. Human Proteinpedia, a community annotation portal developed by us, has also contributed to the significant increase in phosphoproteomic data in HPRD. A large number of phosphorylation events have been mapped on to reference sequences available in HPRD and Human Proteinpedia along with associated protein features. This will provide a platform for systems biology approaches to determine the role of protein phosphorylation in protein function, cell signaling, biological processes and their implication in human diseases. This review aims to provide a composite view of phosphoproteomic data pertaining to human proteins in HPRD and Human Proteinpedia.
Collapse
Affiliation(s)
- Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
- Department of Biotechnology, Kuvempu University, Shankaraghatta, Karnataka, 577 451, India
| | - H. C. Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, Maryland
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, 21205, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, 21205, Maryland
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
- Centre of Excellence in Bioinformatics, Bioinformatics Centre, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, India
| |
Collapse
|
23
|
Affinity-based proteomic profiling: Problems and achievements. Proteomics 2012; 12:621-37. [DOI: 10.1002/pmic.201100373] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 11/07/2022]
|
24
|
Kettenbach AN, Gerber SA. Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem 2011; 83:7635-44. [PMID: 21899308 DOI: 10.1021/ac201894j] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reversible protein phosphorylation is an essential regulatory component of virtually every cellular process and is frequently dysregulated in cancer. However, significant analytical barriers persist that hamper the routine application of phosphoproteomics in translational settings. Here, we present a straightforward and reproducible approach for the broadscale analysis of protein phosphorylation that relies on a single phosphopeptide enrichment step using titanium dioxide microspheres from whole cell lysate digests and compared it to the well-established SCX-TiO(2) workflow for phosphopeptide purification on a proteome-wide scale. We demonstrate the scaleabilty of our approach from 200 μg to 5 mg of total NCI-H23 non-small cell lung adenocarcinoma cell lysate digest and determine its quantitative reproducibility by label-free analysis of phosphopeptide peak areas from replicate purifications (median CV: 20% RSD). Finally, we combine this approach with immunoaffinity phosphotyrosine enrichment, enabling the identification of 3168 unique nonredundant phosphotyrosine peptides in two LC-MS/MS runs from 8 mg of HeLa peptides, each with 80% phosphotyrosine selectivity, at a peptide FDR of 0.2%. Taken together, we establish and validate a robust approach for proteome-wide phosphorylation analysis in a variety of scenarios that is easy to implement in biomedical research and translational settings.
Collapse
Affiliation(s)
- Arminja N Kettenbach
- Department of Genetics, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
25
|
Abstract
The response to extracellular stimuli often alters the phosphorylation state of plasma membrane- associated proteins. In this regard, generation of a comprehensive membrane phosphoproteome can significantly enhance signal transduction and drug mechanism studies. However, analysis of this subproteome is regarded as technically challenging, given the low abundance and insolubility of integral membrane proteins, combined with difficulties in isolating, ionizing and fragmenting phosphopeptides. In this article, we highlight recent advances in membrane and phosphoprotein enrichment techniques resulting in improved identification of these elusive peptides. We also describe the use of alternative fragmentation techniques, and assess their current and future value to the field of membrane phosphoproteomics.
Collapse
Affiliation(s)
- Benjamin C Orsburn
- Drug Mechanism Group, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Luke H Stockwin
- Drug Mechanism Group, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Dianne L Newton
- Drug Mechanism Group, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
26
|
Abstract
Phosphorylation is one of the most important processes in cell signal transduction. Detection of phosphorylated proteins in cancer tissue is useful for prognosis and diagnosis, and it might be very helpful in monitoring treatment using targeted therapy. For these reasons, the in situ quantitative measurement and subcellular localization of phosphoproteins will likely be important. However, phosphoproteins are extremely labile, a likely explanation for inconsistent or contradictory reports. Thus, the development of new paradigms for tissue handling, immunostaining, and quality control are needed.
Collapse
Affiliation(s)
- J Bodo
- Department of Clinical Pathology, Cleveland Clinic, OH 44195, USA
| | | |
Collapse
|
27
|
Bodo J, Hsi ED. Selection and validation of antibodies for signal transduction immunohistochemistry. Methods Mol Biol 2011; 717:45-53. [PMID: 21370023 DOI: 10.1007/978-1-61779-024-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The in situ expression levels and subcellular localization of molecules involved in signal transduction using specific antibodies can be useful for prognosis and diagnosis of human diseases such as cancer. In addition, it has the potential to be helpful in monitoring biologic response to targeted therapies. The increasing availability of such antibodies makes these studies feasible. However, compared to typical immunohistochemical stains in which stabile molecules such as cytokeratins are targeted, additional -validation may be required for signal transduction immunohistochemistry.
Collapse
Affiliation(s)
- Juraj Bodo
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
28
|
Intersectin multidomain adaptor proteins: Regulation of functional diversity. Gene 2011; 473:67-75. [DOI: 10.1016/j.gene.2010.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 12/17/2022]
|
29
|
Pflieger D, Gonnet F, de la Fuente van Bentem S, Hirt H, de la Fuente A. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry. MASS SPECTROMETRY REVIEWS 2011; 30:268-297. [PMID: 21337599 DOI: 10.1002/mas.20278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 05/30/2023]
Abstract
Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks.
Collapse
Affiliation(s)
- Delphine Pflieger
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry Val d'Essonne, CNRS UMR 8587, Evry, France
| | | | | | | | | |
Collapse
|
30
|
Rosenqvist H, Ye J, Jensen ON. Analytical strategies in mass spectrometry-based phosphoproteomics. Methods Mol Biol 2011; 753:183-213. [PMID: 21604124 DOI: 10.1007/978-1-61779-148-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phosphoproteomics, the systematic study of protein phosphorylation events and cell signaling networks in cells and tissues, is a rapidly evolving branch of functional proteomics. Current phosphoproteomics research provides a large toolbox of strategies and protocols that may assist researchers to reveal key regulatory events and phosphorylation-mediated processes in the cell and in whole organisms. We present an overview of sensitive and robust analytical methods for phosphopeptide analysis, including calcium phosphate precipitation and affinity enrichment methods such as IMAC and TiO(2). We then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large-scale experiments for studies of phosphorylation-mediated protein regulation.
Collapse
Affiliation(s)
- Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | | | | |
Collapse
|
31
|
Condina MR, Klingler‐Hoffmann M, Hoffmann P. Tyrosine Phosphorylation Enrichment and Subsequent Analysis by MALDI‐TOF/TOF MS/MS and LC‐ESI‐IT‐MS/MS. ACTA ACUST UNITED AC 2010; Chapter 13:Unit13.11. [DOI: 10.1002/0471140864.ps1311s62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mark R. Condina
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, University of Adelaide Adelaide Australia
| | - Manuela Klingler‐Hoffmann
- Chemokine Biology Laboratory, School of Molecular and Biomedical Science, University of Adelaide Adelaide Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, University of Adelaide Adelaide Australia
| |
Collapse
|
32
|
T-cell receptor early signalling complex activation in response to interferon-alpha receptor stimulation. Biochem J 2010; 428:429-37. [PMID: 20388118 PMCID: PMC2888567 DOI: 10.1042/bj20091660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signalling through the IFNalphaR (interferon-alpha receptor) and TCR (T-cell receptor) in Jurkat T lymphocytes results in distinct immune responses. Despite this both receptors elicit ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) phosphorylation. Vav and Slp76 are shown to be required for IFNalpha (interferon-alpha)-stimulated ERK activity. These form a subset of proteins which behave identically on stimulation of both receptors. TCR deletion abrogates IFNalphaR-stimulated MAPK activity, whereas the canonical JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway is unaffected. Thus recruitment of the intact TCR ESC (early signalling complex) is necessary for this downstream MAPK response. Despite using a common ESC, stimulation of the IFNalphaR does not produce the transcriptional response associated with TCR. Up-regulation of the MAPK pathway by IFNalphaR might be important to ensure that the cell responds to only one stimulant.
Collapse
|
33
|
The use of liquid phase deposition prepared phosphonate grafted silica nanoparticle-deposited capillaries in the enrichment of phosphopeptides. J Sep Sci 2010; 33:1806-15. [DOI: 10.1002/jssc.201000029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Wu F, Wang P, Zhang J, Young LC, Lai R, Li L. Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteomics 2010; 9:1616-32. [PMID: 20393185 DOI: 10.1074/mcp.m000153-mcp201] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), found exclusively in a subset of ALK-positive anaplastic large cell lymphoma, promotes tumorigenesis by exerting its constitutively active tyrosine kinase activity. Thus, characterization of the NPM-ALK-induced changes in the phosphoproteome will likely provide insights into the biology of this oncoprotein. To achieve this goal, we used a strategy of combining sequential affinity purification of phosphopeptides and LC/MS. GP293 cells transfected with either NPM-ALK or an NPM-ALK mutant with decreased tyrosine kinase activity (negative control) were used. We identified 506 phosphoproteins detectable in NPM-ALK-expressing cells but not in the negative control. Bioinformatics analysis revealed that these phosphoproteins carry a wide diversity of biological functions, some of which have not been described in association with NPM-ALK, such as the tumor necrosis factor (TNF)/Fas/tumor necrosis factor-related apoptosis-induced ligand (TRAIL) signaling pathway and the ubiquitin proteasome degradation pathway. In particular, modulations of the TNF/Fas/TRAIL pathway by NPM-ALK were supported by our antibody microarray data. Further validation of the TNF/Fas/TRAIL pathway was performed in ALK(+) anaplastic large cell lymphoma (ALCL) cell lines with knockdown of NPM-ALK using short interference RNA, resulting in the loss of the tyrosine phosphorylation of tumor necrosis factor receptor-associated protein 1 (TRAP1) and receptor-interacting protein 1, two crucial TNF signaling molecules. Functional analyses revealed that knockdown of TRAP1 facilitated cell death induced by TRAIL or doxorubicin in ALK(+) ALCL cells. This suggests that down-regulation of TRAP1 in combination with TRAIL or doxorubicin might be a potential novel therapeutic strategy for ALK(+) ALCL. These findings demonstrated that our strategy allowed the identification of novel proteins downstream of NPM-ALK that contribute to the maintenance of neoplastic phenotype and holds great potential for future studies of cellular tyrosine kinases in normal states and diseases.
Collapse
Affiliation(s)
- Fang Wu
- double daggerDepartment of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Wu CJ, Hsu JL, Huang SY, Chen SH. Mapping N-terminus phosphorylation sites and quantitation by stable isotope dimethyl labeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:460-471. [PMID: 20093040 DOI: 10.1016/j.jasms.2009.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/20/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
We have previously coupled stable isotope dimethyl labeling with IMAC enrichment for quantifying the extent of protein phosphorylation in vivo. The enhanced a(1) signal of dimethylated peptides served as a unique mass tag for unequivocal identification of the N-terminal amino acids. In this study, we demonstrate that the a(1) ion could further assist in mapping the precise phosphorylation site near the N-terminal region and allow the determination of the exact site and level of phosphorylation in one step by stable isotope dimethyl labeling. We show that the a(1) ion signal was suppressed for dimethylated peptides with a phosphorylation site at the N-terminus Ser/Thr residue (N-p*Ser/Thr) but was still enhanced for N-terminus Tyr residue (N-p*Tyr) or internal Ser/Thr residues (-p*Ser/Thr). Based on the dominant de-phosphorylated molecular ions and b-H(3)PO(4) ions for N-p*Ser/Thr, we propose that dimethyl labeling increases the basicity of the N-terminus and accelerates the de-phosphorylation for N-p*Ser/Thr precursors, which, however, suppresses the a(1) ion enhancement due to the resulting unsaturated covalent bond on C(alpha) of the N-terminus amino acid. Using this method, we excluded three Ser/Thr phosphorylation sites in A431 cells, two of which, however, were previously reported to be phosphorylation sites; we confirmed three known phosphorylation sites in A431 cells and quantified their ratios upon EGF treatment. Notably, we identified a novel phosphorylation site on Ser43 residue at N-terminus of the tryptic peptide derived from SVH protein in pregnant rat uteri. SVH protein has not been reported or implied with any phosphorylation event, and our data show that the Ser43 of SVH is an intrinsic phosphorylation site in pregnant rat uteri and that its phosphorylation level was slightly decreased upon c-AMP treatment.
Collapse
Affiliation(s)
- Chin-Jen Wu
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
36
|
Zhang PH, Yang LR, Li LL, Zeng JZ, Ren LC, Liang PF, Huang XY. Proteomic change of peripheral lymphocytes from scald injury and Pseudomonas aeruginosa sepsis in rabbits. Burns 2009; 36:82-8. [PMID: 19857930 DOI: 10.1016/j.burns.2009.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 03/20/2009] [Accepted: 03/22/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Increased susceptibility to infection has been related to impairment of lymphocyte-regulated immune responses after severe burn. The aim of this study is to identify the differential expression of proteins in circulating lymphocytes from scald injury and Pseudomonas aeruginosa sepsis in rabbits to provide a basis for pathogenesis of burns and sepsis. METHODS Rabbits were subjected to sham burn (A), 30% scald (B), A+bacterial challenge (C) or B+bacterial challenge (D). Bacterial challenge was inflicted by an injection of 2.0x10(8) CFU P. aeruginosa (ATCC27853) in the auricular vein 22 h after the burn procedure. The animals were sacrificed 24 h later. Lymphocytes were isolated, and the differential proteins in the lymphocytes from the experimental and control animals were identified by two-dimensional electrophoresis (2-DE) coupled with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), two of which were confirmed by Western blotting. RESULTS Nineteen differential protein spots were found by 2-DE and 12 spots (11 proteins) were identified. Differential expression of peroxiredoxin and annexin I was validated by Western blotting. Among the identified proteins, the expression levels of cofilin, cyclophilin A, ubiquitin, nucleoside diphosphate kinase, glutamate dehydrogenase and annexin I were down-regulated in group B, excessively down-regulated in group D, but mildly in group C, and peroxiredoxin was up-regulated in groups B and D. CONCLUSIONS Proteome changes in lymphocytes from P. aeruginosa sepsis in the scalded rabbits were revealed, which are related to immune suppression and the pathogenesis of sepsis after scald injury.
Collapse
Affiliation(s)
- Pi-hong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Heibeck TH, Ding SJ, Opresko LK, Zhao R, Schepmoes AA, Yang F, Tolmachev AV, Monroe ME, Camp DG, Smith RD, Wiley HS, Qian WJ. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. J Proteome Res 2009; 8:3852-61. [PMID: 19534553 DOI: 10.1021/pr900044c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein tyrosine phosphorylation represents a central regulatory mechanism in cell signaling. Here, we present an extensive survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying antiphosphotyrosine peptide immunoaffinity purification coupled with high sensitivity capillary liquid chromatography tandem mass spectrometry. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and acute stimulation with epidermal growth factor (EGF). The estimated false discovery rate was 1.0% as determined by searching against a scrambled database. Comparison of these data with existing literature showed significant agreement for previously reported sites. However, we observed 281 sites that were not previously reported for HMEC cultures and 29 of which have not been reported for any human cell or tissue system. The analysis showed that a majority of highly phosphorylated proteins were relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed, raising the possibility of more important functional roles for such highly phosphorylated pTyr sites. By mapping to major signaling networks, such as the EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which provides interesting targets for future hypothesis-driven and targeted quantitative studies involving tyrosine phosphorylation in HMEC or other human systems.
Collapse
Affiliation(s)
- Tyler H Heibeck
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Boersema PJ, Foong LY, Ding VMY, Lemeer S, van Breukelen B, Philp R, Boekhorst J, Snel B, den Hertog J, Choo ABH, Heck AJR. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics 2009; 9:84-99. [PMID: 19770167 DOI: 10.1074/mcp.m900291-mcp200] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several mass spectrometry-based assays have emerged for the quantitative profiling of cellular tyrosine phosphorylation. Ideally, these methods should reveal the exact sites of tyrosine phosphorylation, be quantitative, and not be cost-prohibitive. The latter is often an issue as typically several milligrams of (stable isotope-labeled) starting protein material are required to enable the detection of low abundance phosphotyrosine peptides. Here, we adopted and refined a peptidecentric immunoaffinity purification approach for the quantitative analysis of tyrosine phosphorylation by combining it with a cost-effective stable isotope dimethyl labeling method. We were able to identify by mass spectrometry, using just two LC-MS/MS runs, more than 1100 unique non-redundant phosphopeptides in HeLa cells from about 4 mg of starting material without requiring any further affinity enrichment as close to 80% of the identified peptides were tyrosine phosphorylated peptides. Stable isotope dimethyl labeling could be incorporated prior to the immunoaffinity purification, even for the large quantities (mg) of peptide material used, enabling the quantification of differences in tyrosine phosphorylation upon pervanadate treatment or epidermal growth factor stimulation. Analysis of the epidermal growth factor-stimulated HeLa cells, a frequently used model system for tyrosine phosphorylation, resulted in the quantification of 73 regulated unique phosphotyrosine peptides. The quantitative data were found to be exceptionally consistent with the literature, evidencing that such a targeted quantitative phosphoproteomics approach can provide reproducible results. In general, the combination of immunoaffinity purification of tyrosine phosphorylated peptides with large scale stable isotope dimethyl labeling provides a cost-effective approach that can alleviate variation in sample preparation and analysis as samples can be combined early on. Using this approach, a rather complete qualitative and quantitative picture of tyrosine phosphorylation signaling events can be generated.
Collapse
Affiliation(s)
- Paul J Boersema
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mass spectrometry identifies multiple organophosphorylated sites on tubulin. Toxicol Appl Pharmacol 2009; 240:149-58. [PMID: 19632257 DOI: 10.1016/j.taap.2009.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/17/2009] [Accepted: 07/17/2009] [Indexed: 11/20/2022]
Abstract
Acute toxicity of organophosphorus poisons (OP) is explained by inhibition of acetylcholinesterase in nerve synapses. Low-dose effects are hypothesized to result from modification of other proteins, whose identity is not yet established. The goal of the present work was to obtain information that would make it possible to identify tubulin as a target of OP exposure. Tubulin was selected for study because live mice injected with a nontoxic dose of a biotinylated organophosphorus agent appeared to have OP-labeled tubulin in brain as determined by binding to avidin beads and mass spectrometry. The experiments with live mice were not conclusive because binding to avidin beads could be nonspecific. To be convincing, it is necessary to find and characterize the OP-labeled tubulin peptide. The search for OP-labeled tubulin peptides was begun by identifying residues capable of making a covalent bond with OP. Pure bovine tubulin (0.012 mM) was treated with 0.01-0.5 mM chlorpyrifos oxon for 24 h at 37 degrees C in pH 8.3 buffer. The identity of labeled amino acids and percent labeling was determined by mass spectrometry. Chlorpyrifos oxon bound covalently to tyrosines 83, 103, 108, 161, 224, 262, 272, 357, and 399 in bovine alpha tubulin, and to tyrosines 50, 51, 59, 106, 159, 281, 310, and 340 in bovine beta tubulin. The most reactive were tyrosine 83 in alpha and tyrosine 281 in beta tubulin. In the presence of 1 mM GTP, percent labeling increased 2-fold. Based on the crystal structure of the tubulin heterodimer (PDB 1jff) tyrosines 83 and 281 are well exposed to solvent. In conclusion seventeen tyrosines in tubulin have the potential to covalently bind chlorpyrifos oxon. These results will be useful when searching for OP-labeled tubulin in live animals.
Collapse
|
40
|
Temporal and spatial profiling of nuclei-associated proteins upon TNF-alpha/NF-kappaB signaling. Cell Res 2009; 19:651-64. [PMID: 19399029 DOI: 10.1038/cr.2009.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The tumor necrosis factor (TNF)-alpha/NF-kappaB-signaling pathway plays a pivotal role in various processes including apoptosis, cellular differentiation, host defense, inflammation, autoimmunity and organogenesis. The complexity of the TNF-alpha/NF-kappaB signaling is in part due to the dynamic protein behaviors of key players in this pathway. In this present work, a dynamic and global view of the signaling components in the nucleus at the early stages of TNF-alpha/NF-kappaB signaling was obtained in HEK293 cells, by a combination of subcellular fractionation and stable isotope labeling by amino acids in cell culture (SILAC). The dynamic profile patterns of 547 TNF-alpha-induced nuclei-associated proteins were quantified in our studies. The functional characters of all the profiles were further analyzed using that Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Additionally, many previously unknown effectors of TNF-alpha/NF-kappaB signaling were identified, quantified and clustered into differential activation profiles. Interestingly, levels of Fanconi anemia group D2 protein (FANCD2), one of the Fanconi anemia family proteins, was found to be increased in the nucleus by SILAC quantitation upon TNF-alpha stimulation, which was further verified by western blotting and immunofluorescence analysis. This indicates that FANCD2 might be involved in TNF-alpha/NF-kappaB signaling through its accumulation in the nucleus. In summary, the combination of subcellular proteomics with quantitative analysis not only allowed for a dissection of the nuclear TNF-alpha/NF-kappaB-signaling pathway, but also provided a systematic strategy for monitoring temporal and spatial changes in cell signaling.
Collapse
|
41
|
Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJR, Mohammed S. Lys-N and Trypsin Cover Complementary Parts of the Phosphoproteome in a Refined SCX-Based Approach. Anal Chem 2009; 81:4493-501. [DOI: 10.1021/ac9004309] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharon Gauci
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and The Netherlands Proteomics Center
| | - Andreas O. Helbig
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and The Netherlands Proteomics Center
| | - Monique Slijper
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and The Netherlands Proteomics Center
| | - Jeroen Krijgsveld
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and The Netherlands Proteomics Center
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and The Netherlands Proteomics Center
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands and The Netherlands Proteomics Center
| |
Collapse
|
42
|
Chen G, Pramanik BN. Application of LC/MS to proteomics studies: current status and future prospects. Drug Discov Today 2009; 14:465-71. [DOI: 10.1016/j.drudis.2009.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/02/2009] [Accepted: 02/13/2009] [Indexed: 02/06/2023]
|
43
|
Tedford NC, Hall AB, Graham JR, Murphy CE, Gordon NF, Radding JA. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics. Proteomics 2009; 9:1469-87. [PMID: 19294625 DOI: 10.1002/pmic.200800468] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein phosphorylation is a primary form of information transfer in cell signaling pathways and plays a crucial role in regulating biological responses. Aberrant phosphorylation has been implicated in a number of diseases, and kinases and phosphatases, the cellular enzymes that control dynamic phosphorylation events, present attractive therapeutic targets. However, the innate complexity of signaling networks has presented many challenges to therapeutic target selection and successful drug development. Approaches in phosphoproteomics can contribute functional, systems-level datasets across signaling networks that can provide insight into suitable drug targets, more broadly profile compound activities, and identify key biomarkers to assess clinical outcomes. Advances in MS-based phosphoproteomics efforts now provide the ability to quantitate phosphorylation with throughput and sensitivity to sample a significant portion of the phosphoproteome in clinically relevant systems. This review will discuss recent work and examples of application data that demonstrate the utility of MS, with a particular focus on the use of quantitative phosphoproteomics and phosphotyrosine-directed signaling analyses to provide robust measurement for functional biological interpretation of drug action on signaling and phenotypic outcomes.
Collapse
|
44
|
|
45
|
Schreiber TB, Mäusbacher N, Breitkopf SB, Grundner-Culemann K, Daub H. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research. Proteomics 2008; 8:4416-32. [PMID: 18837465 DOI: 10.1002/pmic.200800132] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation is the most important type of reversible post-translational modification involved in the regulation of cellular signal-transduction processes. In addition to controlling normal cellular physiology on the molecular level, perturbations of phosphorylation-based signaling networks and cascades have been implicated in the onset and progression of various human diseases. Recent advances in mass spectrometry-based proteomics helped to overcome many of the previous limitations in protein phosphorylation analysis. Improved isotope labeling and phosphopeptide enrichment strategies in conjunction with more powerful mass spectrometers and advances in data analysis have been integrated in highly efficient phosphoproteomics workflows, which are capable of monitoring up to several thousands of site-specific phosphorylation events within one large-scale analysis. Combined with ongoing efforts to define kinase-substrate relationships in intact cells, these major achievements have considerable potential to assess phosphorylation-based signaling networks on a system-wide scale. Here, we provide an overview of these exciting developments and their potential to transform signal-transduction research into a technology-driven, high-throughput science.
Collapse
Affiliation(s)
- Thiemo B Schreiber
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
46
|
Carrascal M, Ovelleiro D, Casas V, Gay M, Abian J. Phosphorylation Analysis of Primary Human T Lymphocytes Using Sequential IMAC and Titanium Oxide Enrichment. J Proteome Res 2008; 7:5167-76. [DOI: 10.1021/pr800500r] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Montserrat Carrascal
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Facultad de Medicina, Campus UAB, 08193 Bellaterra, Spain
| | - David Ovelleiro
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Facultad de Medicina, Campus UAB, 08193 Bellaterra, Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Facultad de Medicina, Campus UAB, 08193 Bellaterra, Spain
| | - Marina Gay
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Facultad de Medicina, Campus UAB, 08193 Bellaterra, Spain
| | - Joaquin Abian
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Facultad de Medicina, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
47
|
Sopko R, Andrews BJ. Linking the kinome and phosphorylome--a comprehensive review of approaches to find kinase targets. MOLECULAR BIOSYSTEMS 2008; 4:920-33. [PMID: 18704230 DOI: 10.1039/b801724g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein phosphorylation is associated with most cell signaling and developmental processes in eukaryotes. Despite the vast extent of the phosphoproteome within the cell, connecting specific kinases with relevant targets remains a significant experimental frontier. The challenge of linking kinases and their substrates reflects the complexity of kinase function. For example, kinases tend to exert their biological effects through supernumerary, redundant phosphorylation, often on multiple protein complex components. Although these types of phosphorylation events are biologically significant, those kinases responsible are often difficult to identify. Recent methods for global analysis of protein phosphorylation promise to substantially accelerate efforts to map the dynamic phosphorylome. Here, we review both conventional methods to identify kinase targets and more comprehensive genomic and proteomic approaches to connect the kinome and phosphorylome.
Collapse
Affiliation(s)
- Richelle Sopko
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
48
|
Kristjansdottir K, Wolfgeher D, Lucius N, Angulo DS, Kron SJ. Phosphoprotein profiling by PA-GeLC-MS/MS. J Proteome Res 2008; 7:2812-24. [PMID: 18510356 DOI: 10.1021/pr700816k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant consequence of protein phosphorylation is to alter protein-protein interactions, leading to dynamic regulation of the components of protein complexes that direct many core biological processes. Recent proteomic studies have populated databases with extensive compilations of cellular phosphoproteins and phosphorylation sites and a similarly deep coverage of the subunit compositions and interactions in multiprotein complexes. However, considerably less data are available on the dynamics of phosphorylation, composition of multiprotein complexes or that define their interdependence. We describe a method to identify candidate phosphoprotein complexes by combining phosphoprotein affinity chromatography, separation by size, denaturing gel electrophoresis, protein identification by tandem mass spectrometry, and informatics analysis. Toward developing phosphoproteome profiling, we have isolated native phosphoproteins using a phosphoprotein affinity matrix, Pro-Q Diamond resin (Molecular Probes-Invitrogen). This resin quantitatively retains phosphoproteins and associated proteins from cell extracts. Pro-Q Diamond purification of a yeast whole cell extract followed by 1-D PAGE separation, proteolysis and ESI LC-MS/MS, a method we term PA-GeLC-MS/MS, yielded 108 proteins, a majority of which were known phosphoproteins. To identify proteins that were purified as parts of phosphoprotein complexes, the Pro-Q eluate was separated into two fractions by size, <100 kDa and >100 kDa, before analysis by PAGE and ESI LC-MS/MS and the component proteins queried against databases to identify protein-protein interactions. The <100 kDa fraction was enriched in phosphoproteins indicating the presence of monomeric phosphoproteins. The >100 kDa fraction contained 171 proteins of 20-80 kDa, nearly all of which participate in known protein-protein interactions. Of these 171, few are known phosphoproteins, consistent with their purification by participation in protein complexes. By comparing the results of our phosphoprotein profiling with the informational databases on phosphoproteomics, protein-protein interactions and protein complexes, we have developed an approach to examining the correlation between protein interactions and protein phosphorylation.
Collapse
Affiliation(s)
- Kolbrun Kristjansdottir
- Department of Molecular Genetics and Cell Biology, and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
49
|
Gakovic M, Ragimbeau J, Francois V, Constantinescu SN, Pellegrini S. The Stat3-activating Tyk2 V678F mutant does not up-regulate signaling through the type I interferon receptor but confers ligand hypersensitivity to a homodimeric receptor. J Biol Chem 2008; 283:18522-9. [PMID: 18456658 DOI: 10.1074/jbc.m801427200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tyk2 is a Jak family member involved in cytokine signaling through heterodimeric-type receptors. Here, we analyzed the impact of the Val(678)-to-Phe substitution on Tyk2 functioning. This mutation is homologous to the Jak2 Val(617)-to-Phe mutation, implicated in myeloproliferative disorders. We studied ligand-independent and ligand-dependent Jak/Stat signaling in cells expressing Tyk2 V678F. Moreover, the effect of Tyk2 V678F was monitored in the context of the native heterodimeric interferon alpha receptor and in the context of a homodimeric receptor chimera, EpoR/R1, containing the ectodomain of the erythropoietin receptor. We show that Tyk2 V678F has increased catalytic potential in vivo and in vitro and more so when it is anchored to the homodimeric receptor. Tyk2 V678F leads to constitutive Stat3 phosphorylation but has no notable effect on the canonical interferon alpha-induced signaling. However, if anchored to the homodimeric EpoR/R1, the mutant confers to the cell increased sensitivity to erythropoietin. Thus, despite the catalytic gain of function of Tyk2 V678F, the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor.
Collapse
Affiliation(s)
- Milica Gakovic
- Cytokine Signaling Unit, CNRS URA 1961, Institut Pasteur, Paris 75724, France
| | | | | | | | | |
Collapse
|
50
|
Malik R, Nigg EA, Körner R. Comparative conservation analysis of the human mitotic phosphoproteome. Bioinformatics 2008; 24:1426-32. [DOI: 10.1093/bioinformatics/btn197] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|