1
|
Sirisena S, Chan S, Roberts N, Dal Maso S, Gras SL, J O Martin G. Influence of yeast growth conditions and proteolytic enzymes on the amino acid profiles of yeast hydrolysates: Implications for taste and nutrition. Food Chem 2024; 437:137906. [PMID: 37939420 DOI: 10.1016/j.foodchem.2023.137906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
This study investigated the effects of aerobic and anaerobic growth and proteolytic enzymes on the amino acid content of yeast hydrolysates in relation to taste and nutrition. Saccharomyces cerevisiae ATCC5574 was grown under fed-batch aerobic or batch anaerobic conditions. Intracellular glutamic acid (Glu) concentrations were 18-fold higher in aerobic yeast. Hydrolysis with papain and alkaline protease released more amino acids (AA) than simple autolysis or hydrolysis with bromelain, most significantly when applied to aerobic yeast (∼2-fold increase). Autolysates and bromelain hydrolysates from aerobic yeast had low levels of bitter and essential AAs, with high levels of umami Glu. Papain and alkaline protease hydrolysates of aerobic yeast had high levels of umami, bitter and essential AAs. Autolysates/hydrolysates from anaerobic yeast had moderate, high, and low levels of bitter, essential and umami AAs. Selection of both yeast growth conditions and hydrolysis enzyme can manipulate the free AA profile and yield of hydrolysates.
Collapse
Affiliation(s)
- Sameera Sirisena
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sitha Chan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nic Roberts
- Bega Foods, 1 Vegemite Way, Port Melbourne, Victoria 3207, Australia
| | - Sandra Dal Maso
- Bega Foods, 1 Vegemite Way, Port Melbourne, Victoria 3207, Australia
| | - Sally L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Soares Rodrigues CI, den Ridder M, Pabst M, Gombert AK, Wahl SA. Comparative proteome analysis of different Saccharomyces cerevisiae strains during growth on sucrose and glucose. Sci Rep 2023; 13:2126. [PMID: 36746999 PMCID: PMC9902475 DOI: 10.1038/s41598-023-29172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Both the identity and the amount of a carbon source present in laboratory or industrial cultivation media have major impacts on the growth and physiology of a microbial species. In the case of the yeast Saccharomyces cerevisiae, sucrose is arguably the most important sugar used in industrial biotechnology, whereas glucose is the most common carbon and energy source used in research, with many well-known and described regulatory effects, e.g. glucose repression. Here we compared the label-free proteomes of exponentially growing S. cerevisiae cells in a defined medium containing either sucrose or glucose as the sole carbon source. For this purpose, bioreactor cultivations were employed, and three different strains were investigated, namely: CEN.PK113-7D (a common laboratory strain), UFMG-CM-Y259 (a wild isolate), and JP1 (an industrial bioethanol strain). These strains present different physiologies during growth on sucrose; some of them reach higher specific growth rates on this carbon source, when compared to growth on glucose, whereas others display the opposite behavior. It was not possible to identify proteins that commonly presented either higher or lower levels during growth on sucrose, when compared to growth on glucose, considering the three strains investigated here, except for one protein, named Mnp1-a mitochondrial ribosomal protein of the large subunit, which had higher levels on sucrose than on glucose, for all three strains. Interestingly, following a Gene Ontology overrepresentation and KEGG pathway enrichment analyses, an inverse pattern of enriched biological functions and pathways was observed for the strains CEN.PK113-7D and UFMG-CM-Y259, which is in line with the fact that whereas the CEN.PK113-7D strain grows faster on glucose than on sucrose, the opposite is observed for the UFMG-CM-Y259 strain.
Collapse
Affiliation(s)
- Carla Inês Soares Rodrigues
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil.,Cargill R&D Centre Europe, Havenstraat 84, 1800, Vilvoorde, Belgium.,DAB.bio, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands. .,Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Str. 3-5, 91052, Erlangen, Germany.
| |
Collapse
|
3
|
Role of ROX1, SKN7, and YAP6 Stress Transcription Factors in the Production of Secondary Metabolites in Xanthophyllomyces dendrorhous. Int J Mol Sci 2022; 23:ijms23169282. [PMID: 36012547 PMCID: PMC9409151 DOI: 10.3390/ijms23169282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a natural source of astaxanthin and mycosporines. This yeast has been isolated from high and cold mountainous regions around the world, and the production of these secondary metabolites may be a survival strategy against the stress conditions present in its environment. Biosynthesis of astaxanthin is regulated by catabolic repression through the interaction between MIG1 and corepressor CYC8–TUP1. To evaluate the role of the stress-associated transcription factors SKN7, ROX1, and YAP6, we employed an omic and phenotypic approach. Null mutants were constructed and grown in two fermentable carbon sources. The yeast proteome and transcriptome were quantified by iTRAQ and RNA-seq, respectively. The total carotenoid, sterol, and mycosporine contents were determined and compared to the wild-type strain. Each mutant strain showed significant metabolic changes compared to the wild type that were correlated to its phenotype. In a metabolic context, the principal pathways affected were glycolysis/gluconeogenesis, the pentose phosphate (PP) pathway, and the citrate (TCA) cycle. Additionally, fatty acid synthesis was affected. The absence of ROX1 generated a significant decline in carotenoid production. In contrast, a rise in mycosporine and sterol synthesis was shown in the absence of the transcription factors SKN7 and YAP6, respectively.
Collapse
|
4
|
Zhang J, Plowman JE, Tian B, Clerens S, On SLW. The influence of growth conditions on MALDI-TOF MS spectra of winemaking yeast: implications for industry applications. J Microbiol Methods 2021; 188:106280. [PMID: 34274408 DOI: 10.1016/j.mimet.2021.106280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Previous studies have shown MALDI-TOF MS to be a powerful tool in wine yeast identification and potential prediction of application. However, it is also established that substrate composition influences protein expression, but the degree to which this may affect MALDI-TOF spectra (and analytical results thereof) has not been fully explored. To further inform assay optimisation, the influence on MALDI-TOF spectra was determined using eight Saccharomyces strains of diverse origins cultivated on grape juices from Pinot Noir and Chardonnay varieties, synthetic grape juice, and laboratory-grade artificial culture media (YPD broth and agar). Our results demonstrated significant influences of culture media on strain MALDI-TOF spectra. Yeast culture on YPD agar is recommended for taxonomic studies, with YPD broth culture of S. cerevisiae offering improved intra-subspecific differentiation Furthermore, our data supported a correlation between MALDI spectra and the potential industrial application of individual yeast strains.
Collapse
Affiliation(s)
- Junwen Zhang
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand
| | | | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand
| | - Stefan Clerens
- AgResearch Ltd, Lincoln Research Centre, Lincoln, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand.
| |
Collapse
|
5
|
Klim J, Zielenkiewicz U, Kurlandzka A, Kaczanowski S, Skoneczny M. Slow Adaptive Response of Budding Yeast Cells to Stable Conditions of Continuous Culture Can Occur without Genome Modifications. Genes (Basel) 2020; 11:genes11121419. [PMID: 33261040 PMCID: PMC7759791 DOI: 10.3390/genes11121419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Continuous cultures assure the invariability of environmental conditions and the metabolic state of cultured microorganisms, whereas batch-cultured cells undergo constant changes in nutrients availability. For that reason, continuous culture is sometimes employed in the whole transcriptome, whole proteome, or whole metabolome studies. However, the typical method for establishing uniform growth of a cell population, i.e., by limited chemostat, results in the enrichment of the cell population gene pool with mutations adaptive for starvation conditions. These adaptive changes can skew the results of large-scale studies. It is commonly assumed that these adaptations reflect changes in the genome, and this assumption has been confirmed experimentally in rare cases. Here we show that in a population of budding yeast cells grown for over 200 generations in continuous culture in non-limiting minimal medium and therefore not subject to selection pressure, remodeling of transcriptome occurs, but not as a result of the accumulation of adaptive mutations. The observed changes indicate a shift in the metabolic balance towards catabolism, a decrease in ribosome biogenesis, a decrease in general stress alertness, reorganization of the cell wall, and transactions occurring at the cell periphery. These adaptive changes signify the acquisition of a new lifestyle in a stable nonstressful environment. The absence of underlying adaptive mutations suggests these changes may be regulated by another mechanism.
Collapse
Affiliation(s)
- Joanna Klim
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.K.); (U.Z.)
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.K.); (U.Z.)
| | - Anna Kurlandzka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
| | - Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-5921217
| |
Collapse
|
6
|
Lacerda MPF, Marcelino MY, Lourencetti NMS, Neto ÁB, Gattas EA, Mendes-Giannini MJS, Fusco-Almeida AM. Methodologies and Applications of Proteomics for Study of Yeast Strains: An Update. Curr Protein Pept Sci 2019; 20:893-906. [PMID: 31322071 DOI: 10.2174/1389203720666190715145131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Yeasts are one of the mostly used microorganisms as models in several studies. A wide range of applications in different processes can be attributed to their intrinsic characteristics. They are eukaryotes and therefore valuable expression hosts that require elaborate post-translational modifications. Their arsenal of proteins has become a valuable biochemical tool for the catalysis of several reactions of great value to the food (beverages), pharmaceutical and energy industries. Currently, the main challenge in systemic yeast biology is the understanding of the expression, function and regulation of the protein pool encoded by such microorganisms. In this review, we will provide an overview of the proteomic methodologies used in the analysis of yeasts. This research focuses on the advantages and improvements in their most recent applications with an understanding of the functionality of the proteins of these microorganisms, as well as an update of the advances of methodologies employed in mass spectrometry.
Collapse
Affiliation(s)
- Maria Priscila F Lacerda
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Mônica Yonashiro Marcelino
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Natália M S Lourencetti
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Álvaro Baptista Neto
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | - Edwil A Gattas
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | | | - Ana Marisa Fusco-Almeida
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| |
Collapse
|
7
|
Morales-Amparano MB, Ramos-Clamont Montfort G, Baqueiro-Peña I, Robles-Burgueño MDR, Vázquez-Moreno L, Huerta-Ocampo JÁ. Proteomic response of Saccharomyces boulardii to simulated gastrointestinal conditions and encapsulation. Food Sci Biotechnol 2019; 28:831-840. [PMID: 31093441 PMCID: PMC6484100 DOI: 10.1007/s10068-018-0508-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022] Open
Abstract
Probiotics are live microorganisms conferring health benefits when administered in adequate amounts. However, the passage through the gastrointestinal tract represents a challenge due to pH variations, proteases, and bile salts. This study aimed to evaluate the proteomic response of Saccharomyces boulardii to simulated gastrointestinal digestion and the influence of encapsulation on yeast viability. Different pH values and time periods simulating the passage through different sections of the gastrointestinal tract were applied to unencapsulated and encapsulated yeasts. Encapsulation in 0.5% calcium alginate did not improve yeast survival or induce changes in protein patterns whereas protein extracts from control and digested yeasts showed remarkable differences when separated by SDS-PAGE. Protein bands were analyzed by tandem mass spectrometry. Protein identification revealed unique proteins that changed acutely in abundance after simulated digestion. Carbohydrate metabolism, protein processing, and oxide-reduction were the biological processes most affected by simulated gastrointestinal digestion in S. boulardii.
Collapse
Affiliation(s)
- Martha Beatriz Morales-Amparano
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - Itzamná Baqueiro-Peña
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - María del Refugio Robles-Burgueño
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - Luz Vázquez-Moreno
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| | - José Ángel Huerta-Ocampo
- CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Apartado Postal 1735, 83304 Hermosillo, Sonora Mexico
| |
Collapse
|
8
|
Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 2019; 37:107378. [PMID: 30930107 DOI: 10.1016/j.biotechadv.2019.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
9
|
Xu H, Zhang Z, Li H, Yan Y, Shi J, Xu Z. Comparative proteomic analysis revealed the metabolic mechanism of excessive exopolysaccharide synthesis by Bacillus mucilaginosus under CaCO 3 addition. Prep Biochem Biotechnol 2019; 49:435-443. [PMID: 30861358 DOI: 10.1080/10826068.2018.1541806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The metabolic mechanism of excessive exopolysaccharide (BMPS) synthesis by Bacillus mucilaginosus CGMCC5766 under CaCO3 addition was investigated. Under CaCO3 (5 g/L), the maximum BMPS concentration reached 28.4 g/L, which was 11.2 folds higher than that of the control. Proteomics was then used to analyze the proteins with substantial differences expressed by B. mucilaginosus with and without CaCO3 addition. The proteomic results revealed that the enzymes related to the central metabolic pathway, amino acid biosynthesis, and nucleotide metabolism were depressed. By contrast, the UDP-glucose pyrophosphorylase involved in BMPS biosynthesis was overexpressed and converted metabolic flux from the biomass accumulation to the biosynthesis of BMPS. This research provides a new and widened perspective into understanding the mechanism of BMPS biosynthesis and applying theoretical and practical significance for the improvement of BMPS production from B. mucilaginosus.
Collapse
Affiliation(s)
- Hongyu Xu
- a National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology , Jiangnan University , Wuxi , P. R. China.,b Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , P. R. China
| | - Zhiwen Zhang
- b Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , P. R. China
| | - Hui Li
- b Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , P. R. China
| | - Yujie Yan
- b Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , P. R. China
| | - Jinsong Shi
- b Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , P. R. China
| | - Zhenghong Xu
- a National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology , Jiangnan University , Wuxi , P. R. China.,b Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , P. R. China.,c Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , P. R. China
| |
Collapse
|
10
|
Guerreiro F, Constantino A, Lima‐Costa E, Raposo S. A new combined approach to improved lipid production using a strictly aerobic and oleaginous yeast. Eng Life Sci 2019; 19:47-56. [PMID: 32624955 PMCID: PMC6999502 DOI: 10.1002/elsc.201800115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Microbial lipids have potential applications in energy, and food industry, because most of those lipids are triacylglycerol with long-chain fatty-acids that are comparable to conventional vegetable oils and can be obtained without arable land requirement. Rhodosporidium toruloides is a strictly aerobic strain, where oxygen plays a crucial role in growth, maintenance, and metabolite production, such as lipids and carotenoids. Dissolved oxygen concentration is one of the major factors affecting yeast physiological and biochemical characteristics. In this context, different approaches have been developed to increase available oxygen by the increasing the aeration and the addition of an oxygen-vector. The growth of R. toruloides in 2-L mechanical stirred tank reactor equipped with 1 or 2 porous spargers and a 70 C/N ratio, revealed a lipid content of 0.47 and 0.52 g/g and a lipidic productivity of 0.16 and 0.17 g/L day, respectively. The oxygen-vector addition, increased the lipidic productivity for 0.20 g/L day and a lipid contend of 0.51 g of lipids/g of biomass. The combined approach, combining high aeration (AA), and 1% of n-dodecane addition (DA), produced a significant improvement in the lipid accumulation (62%, w/w), when compared with the DA (51%, w/w) and the AA (52%, w/w) approaches. The increasing of lipids accumulation and smaller culture time are key factors for the success of scale-up and profitability of a bioprocess.
Collapse
Affiliation(s)
- Fábio Guerreiro
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Ana Constantino
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Emília Lima‐Costa
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Sara Raposo
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| |
Collapse
|
11
|
Hayakawa K, Matsuda F, Shimizu H. 13C-metabolic flux analysis of ethanol-assimilating Saccharomyces cerevisiae for S-adenosyl-L-methionine production. Microb Cell Fact 2018; 17:82. [PMID: 29855316 PMCID: PMC5977476 DOI: 10.1186/s12934-018-0935-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is a host for the industrial production of S-adenosyl-L-methionine (SAM), which has been widely used in pharmaceutical and nutritional supplement industries. It has been reported that the intracellular SAM content in S. cerevisiae can be improved by the addition of ethanol during cultivation. However, the metabolic state in ethanol-assimilating S. cerevisiae remains unclear. In this study, 13C-metabolic flux analysis (13C-MFA) was conducted to investigate the metabolic regulation responsible for the high SAM production from ethanol. RESULTS The comparison between the metabolic flux distributions of central carbon metabolism showed that the metabolic flux levels of the tricarboxylic acid cycle and glyoxylate shunt in the ethanol culture were significantly higher than that of glucose. Estimates of the ATP balance from the 13C-MFA data suggested that larger amounts of excess ATP was produced from ethanol via increased oxidative phosphorylation. The finding was confirmed by the intracellular ATP level under ethanol-assimilating condition being similarly higher than glucose. CONCLUSIONS These results suggest that the enhanced ATP regeneration due to ethanol assimilation was critical for the high SAM accumulation.
Collapse
Affiliation(s)
- Kenshi Hayakawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.,KANEKA Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Biotechnology Development Laboratories, Health Care Solutions Research Institute, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Ingalls B, Duncker B, Kim D, McConkey B. Systems Level Modeling of the Cell Cycle Using Budding Yeast. Cancer Inform 2017. [DOI: 10.1177/117693510700300020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Proteins involved in the regulation of the cell cycle are highly conserved across all eukaryotes, and so a relatively simple eukaryote such as yeast can provide insight into a variety of cell cycle perturbations including those that occur in human cancer. To date, the budding yeast Saccharomyces cerevisiae has provided the largest amount of experimental and modeling data on the progression of the cell cycle, making it a logical choice for in-depth studies of this process. Moreover, the advent of methods for collection of high-throughput genome, transcriptome, and proteome data has provided a means to collect and precisely quantify simultaneous cell cycle gene transcript and protein levels, permitting modeling of the cell cycle on the systems level. With the appropriate mathematical framework and sufficient and accurate data on cell cycle components, it should be possible to create a model of the cell cycle that not only effectively describes its operation, but can also predict responses to perturbations such as variation in protein levels and responses to external stimuli including targeted inhibition by drugs. In this review, we summarize existing data on the yeast cell cycle, proteomics technologies for quantifying cell cycle proteins, and the mathematical frameworks that can integrate this data into representative and effective models. Systems level modeling of the cell cycle will require the integration of high-quality data with the appropriate mathematical framework, which can currently be attained through the combination of dynamic modeling based on proteomics data and using yeast as a model organism.
Collapse
Affiliation(s)
- B.P. Ingalls
- Department of Applied Mathematics, University of Waterloo
| | | | - D.R. Kim
- Department of Biology, University of Waterloo
| | | |
Collapse
|
13
|
The proteome of baker's yeast mitochondria. Mitochondrion 2017; 33:15-21. [DOI: 10.1016/j.mito.2016.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 01/29/2023]
|
14
|
Banerjee S, Dutta T, Lahiri S, Sengupta S, Gangopadhyay A, Kumar Karri S, Chakraborty S, Bhattacharya D, Ghosh AK. Enzymatic attributes of an l-isoaspartyl methyltransferase from Candida utilis and its role in cell survival. Biochem Biophys Rep 2015; 4:59-75. [PMID: 29124188 PMCID: PMC5668901 DOI: 10.1016/j.bbrep.2015.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Spontaneous deamidation and isoaspartate (IsoAsp) formation contributes to aging and reduced longevity in cells. A protein-l-isoaspartate (d-aspartate) O-methyltransferase (PCMT) is responsible for minimizing IsoAsp moieties in most organisms. METHODS PCMT was purified in its native form from yeast Candida utilis. The role of the native PCMT in cell survival and protein repair was investigated by manipulating intracellular PCMT levels with Oxidized Adenosine (AdOx) and Lithium Chloride (LiCl). Proteomic Identification of possible cellular targets was carried out using 2-dimensional gel electrophoresis, followed by on-Blot methylation and mass spectrometric analysis. RESULTS The 25.4 kDa native PCMT from C. utilis was found to have a Km of 3.5 µM for AdoMet and 33.36 µM for IsoAsp containing Delta Sleep Inducing Peptide (DSIP) at pH 7.0. Native PCMT comprises of 232 amino acids which is coded by a 698 bp long nucleotide sequence. Phylogenetic comparison revealed the PCMT to be related more closely with the prokaryotic homologs. Increase in PCMT levels in vivo correlated with increased cell survival under physiological stresses. PCMT expression was seen to be linked with increased intracellular reactive oxygen species (ROS) concentration. Proteomic identification of possible cellular substrates revealed that PCMT interacts with proteins mainly involved with cellular housekeeping. PCMT effected both functional and structural repair in aged proteins in vitro. GENERAL SIGNIFICANCE Identification of PCMT in unicellular eukaryotes like C. utilis promises to make investigations into its control machinery easier owing to the familiarity and flexibility of the system.
Collapse
Affiliation(s)
- Shakri Banerjee
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Trina Dutta
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sagar Lahiri
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shinjinee Sengupta
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anushila Gangopadhyay
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suresh Kumar Karri
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sandeep Chakraborty
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debasish Bhattacharya
- Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anil K. Ghosh
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
15
|
Robinson DG, Wang JY, Storey JD. A nested parallel experiment demonstrates differences in intensity-dependence between RNA-seq and microarrays. Nucleic Acids Res 2015; 43:e131. [PMID: 26130709 PMCID: PMC4787771 DOI: 10.1093/nar/gkv636] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/08/2015] [Indexed: 12/03/2022] Open
Abstract
Understanding the differences between microarray and RNA-Seq technologies for measuring gene expression is necessary for informed design of experiments and choice of data analysis methods. Previous comparisons have come to sometimes contradictory conclusions, which we suggest result from a lack of attention to the intensity-dependent nature of variation generated by the technologies. To examine this trend, we carried out a parallel nested experiment performed simultaneously on the two technologies that systematically split variation into four stages (treatment, biological variation, library preparation and chip/lane noise), allowing a separation and comparison of the sources of variation in a well-controlled cellular system, Saccharomyces cerevisiae. With this novel dataset, we demonstrate that power and accuracy are more dependent on per-gene read depth in RNA-Seq than they are on fluorescence intensity in microarrays. However, we carried out quantitative PCR validations which indicate that microarrays may demonstrate greater systematic bias in low-intensity genes than in RNA-seq.
Collapse
Affiliation(s)
- David G Robinson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jean Y Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - John D Storey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Center for Statistics and Machine Learning, Princeton University, Princeton, NJ 08544, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Martinez-Moya P, Niehaus K, Alcaíno J, Baeza M, Cifuentes V. Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMC Genomics 2015; 16:289. [PMID: 25887121 PMCID: PMC4404605 DOI: 10.1186/s12864-015-1484-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 11/27/2022] Open
Abstract
Background Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable). Results A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis. Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions. Conclusions The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic enzymes of the tricarboxylic acid and glyoxylate cycles. The high metabolite level generated in this pathway could increase the cellular respiration rate, producing reactive oxygen species, which induces carotenogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1484-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pilar Martinez-Moya
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Xu W, Wang J, Li Q. Comparative proteome and transcriptome analysis of lager brewer's yeast in the autolysis process. FEMS Yeast Res 2014; 14:1273-85. [DOI: 10.1111/1567-1364.12223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/31/2014] [Accepted: 10/14/2014] [Indexed: 01/29/2023] Open
Affiliation(s)
- Weina Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
18
|
Guan N, Shin HD, Chen RR, Li J, Liu L, Du G, Chen J. Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Sci Rep 2014; 4:6951. [PMID: 25377721 PMCID: PMC4223659 DOI: 10.1038/srep06951] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022] Open
Abstract
Propionic acid (PA) is an important platform chemical in the food, agriculture, and pharmaceutical industries and is mainly biosynthesized by propionibacteria. Acid tolerance in PA-producing strains is crucial. In previous work, we investigated the acid tolerance mechanism of Propionibacterium acidipropionici at microenvironmental levels by analyzing physiological changes in the parental strain and three PA-tolerant mutants obtained by genome shuffling. However, the molecular mechanism of PA tolerance in P. acidipropionici remained unclear. Here, we performed a comparative proteomics study of P. acidipropionici CGMCC 1.2230 and the acid-tolerant mutant P. acidipropionici WSH1105; MALDI-TOF/MS identified 24 proteins that significantly differed between the parental and shuffled strains. The differentially expressed proteins were mainly categorized as key components of crucial biological processes and the acid stress response. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to confirm differential expression of nine key proteins. Overexpression of the secretory protein glyceraldehyde-3-phosphate dehydrogenase and ATP synthase subunit α in Escherichia coli BL21 improved PA and acetic acid tolerance; overexpression of NADH dehydrogenase and methylmalonyl-CoA epimerase improved PA tolerance. These results provide new insights into the acid tolerance of P. acidipropionici and will facilitate the development of PA production through fermentation by propionibacteria.
Collapse
Affiliation(s)
- Ningzi Guan
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Rachel R Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jianghua Li
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Long Liu
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Guocheng Du
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jian Chen
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| |
Collapse
|
19
|
Mangado A, Tronchoni J, Morales P, Novo M, Quirós M, Gonzalez R. An impaired ubiquitin ligase complex favors initial growth of auxotrophic yeast strains in synthetic grape must. Appl Microbiol Biotechnol 2014; 99:1273-86. [PMID: 25620600 DOI: 10.1007/s00253-014-6126-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
We used experimental evolution in order to identify genes involved in the adaptation of Saccharomyces cerevisiae to the early stages of alcoholic fermentation. Evolution experiments were run for about 200 generations, in continuous culture conditions emulating the initial stages of wine fermentation. We performed whole-genome sequencing of four adapted strains from three independent evolution experiments. Mutations identified in these strains pointed to the Rsp5p-Bul1/2p ubiquitin ligase complex as the preferred evolutionary target under these experimental conditions. Rsp5p is a multifunctional enzyme able to ubiquitinate target proteins participating in different cellular processes, while Bul1p is an Rsp5p substrate adaptor specifically involved in the ubiquitin-dependent internalization of Gap1p and other plasma membrane permeases. While a loss-of-function mutation in BUL1 seems to be enough to confer a selective advantage under these assay conditions, this did not seem to be the case for RSP5 mutated strains, which required additional mutations, probably compensating for the detrimental effect of altered Rsp5p activity on essential cellular functions. The power of this experimental approach is illustrated by the identification of four independent mutants, each with a limited number of SNPs, affected within the same pathway. However, in order to obtain information relevant for a specific biotechnological process, caution must be taken in the choice of the background yeast genotype (as shown in this case for auxotrophies). In addition, the use of very stable continuous fermentation conditions might lead to the selection of a rather limited number of adaptive responses that would mask other possible targets for genetic improvement.
Collapse
Affiliation(s)
- Ana Mangado
- Instituto de Ciencias de la Vid y del Vino, ICVV, (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Madre de Dios 51, 26006, Logroño, La Rioja, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Stein K, Chiang HL. Exocytosis and Endocytosis of Small Vesicles across the Plasma Membrane in Saccharomyces cerevisiae. MEMBRANES 2014; 4:608-29. [PMID: 25192542 PMCID: PMC4194051 DOI: 10.3390/membranes4030608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/02/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022]
Abstract
When Saccharomyces cerevisiae is starved of glucose, the gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase, isocitrate lyase, and malate dehydrogenase, as well as the non-gluconeogenic enzymes glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A, are secreted into the periplasm. In the extracellular fraction, these secreted proteins are associated with small vesicles that account for more than 90% of the total number of extracellular structures observed. When glucose is added to glucose-starved cells, FBPase is internalized and associated with clusters of small vesicles in the cytoplasm. Specifically, the internalization of FBPase results in the decline of FBPase and vesicles in the extracellular fraction and their appearance in the cytoplasm. The clearance of extracellular vesicles and vesicle-associated proteins from the extracellular fraction is dependent on the endocytosis gene END3. This internalization is regulated when cells are transferred from low to high glucose. It is rapidly occurring and is a high capacity process, as clusters of vesicles occupy 10%–20% of the total volume in the cytoplasm in glucose re-fed cells. FBPase internalization also requires the VPS34 gene encoding PI3K. Following internalization, FBPase is delivered to the vacuole for degradation, whereas proteins that are not degraded may be recycled.
Collapse
Affiliation(s)
- Kathryn Stein
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Hui-Ling Chiang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
21
|
Borirak O, Bekker M, Hellingwerf KJ. Molecular physiology of the dynamic regulation of carbon catabolite repression in Escherichia coli. MICROBIOLOGY-SGM 2014; 160:1214-1223. [PMID: 24603062 DOI: 10.1099/mic.0.077289-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report on the use of the chemostat as an optimal device to create time-invariant conditions that allow accurate sampling for various omics assays in Escherichia coli, in combination with recording of the dynamics of the physiological transition in the organism under study that accompany the initiation of glucose repression. E. coli cells respond to the addition of glucose not only with the well-known transcriptional response, as was revealed through quantitative PCR analysis of the transcript levels of key genes from the CRP (cAMP receptor protein) regulon, but also with an increased growth rate and a transient decrease in the efficiency of its aerobic catabolism. Less than half of a doubling time is required for the organism to recover to maximal values of growth rate and efficiency. Furthermore, calculations based on our results show that the specific glucose uptake rate (qs) and the H(+)/e(-) ratio increase proportionally, up to a growth rate of 0.4 h(-1), whilst biomass yield on glucose (Yx / s) drops during the first 15 min, followed by a gradual recovery. Surprisingly, the growth yields after the recovery phase show values even higher than the maximum theoretical yield. Possible explanations for these high yields are discussed.
Collapse
Affiliation(s)
- Orawan Borirak
- Swammerdam Institute for Life Science and Netherlands Institute for System Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Bekker
- Swammerdam Institute for Life Science and Netherlands Institute for System Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Science and Netherlands Institute for System Biology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Giardina BJ, Stanley BA, Chiang HL. Glucose induces rapid changes in the secretome of Saccharomyces cerevisiae. Proteome Sci 2014; 12:9. [PMID: 24520859 PMCID: PMC3927832 DOI: 10.1186/1477-5956-12-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022] Open
Abstract
Background Protein secretion is a fundamental process in all living cells. Proteins can either be secreted via the classical or non-classical pathways. In Saccharomyces cerevisiae, gluconeogenic enzymes are in the extracellular fraction/periplasm when cells are grown in media containing low glucose. Following a transfer of cells to high glucose media, their levels in the extracellular fraction are reduced rapidly. We hypothesized that changes in the secretome were not restricted to gluconeogenic enzymes. The goal of the current study was to use a proteomic approach to identify extracellular proteins whose levels changed when cells were transferred from low to high glucose media. Results We performed two iTRAQ experiments and identified 347 proteins that were present in the extracellular fraction including metabolic enzymes, proteins involved in oxidative stress, protein folding, and proteins with unknown functions. Most of these proteins did not contain typical ER-Golgi signal sequences. Moreover, levels of many of these proteins decreased upon a transfer of cells from media containing low to high glucose media. Using an extraction procedure and Western blotting, we confirmed that the metabolic enzymes (glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, glucose-6-phosphate dehydrogenase, pyruvate decarboxylase), proteins involved in oxidative stress (superoxide dismutase and thioredoxin), and heat shock proteins (Ssa1p, Hsc82p, and Hsp104p) were in the extracellular fraction during growth in low glucose and that the levels of these extracellular proteins were reduced when cells were transferred to media containing high glucose. These proteins were associated with membranes in vesicle-enriched fraction. We also showed that small vesicles were present in the extracellular fraction in cells grown in low glucose. Following a transfer from low to high glucose media for 30 minutes, 98% of these vesicles disappeared from the extracellular fraction. Conclusions Our data indicate that transferring cells from low to high glucose media induces a rapid decline in levels of a large number of extracellular proteins and the disappearance of small vesicles from the extracellular fraction. Therefore, we conclude that the secretome undergoes dynamic changes during transition from glucose-deficient to glucose-rich media. Most of these extracellular proteins do not contain typical ER signal sequences, suggesting that they are secreted via the non-classical pathway.
Collapse
Affiliation(s)
| | | | - Hui-Ling Chiang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
23
|
Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteomics 2014; 101:102-12. [PMID: 24530623 DOI: 10.1016/j.jprot.2014.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/28/2013] [Accepted: 01/24/2014] [Indexed: 11/15/2022]
Abstract
In cultures containing multiple sources of nitrogen, Saccharomyces cerevisiae exhibits a sequential use of nitrogen sources through a mechanism known as nitrogen catabolite repression (NCR). To identify proteins differentially expressed due to NCR, proteomic analysis of S. cerevisiae S288C under different nitrogen source conditions was performed using two-dimensional gel electrophoresis (2-DE), revealing 169 candidate protein spots. Among these 169 protein spots, 121 were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins were closely associated with four main biological processes through Gene Ontology (GO) categorical analysis. The identification of the potential proteins and cellular processes related to NCR offer a global overview of changes elicited by different nitrogen sources, providing clues into how yeast adapt to different nutritional conditions. Moreover, by comparing our proteomic data with corresponding mRNA data, proteins regulated at the transcriptional and post-transcriptional level could be distinguished. Biological significance In S. cerevisiae, different nitrogen sources provide different growth characteristics and generate different metabolites. The nitrogen catabolite repression (NCR) process plays an important role for S. cerevisiae in the ordinal utilization of different nitrogen sources. NCR process can result in significant shift of global metabolic networks. Previous works on NCR primarily focused on transcriptomic level. The results obtained in this study provided a global atlas of the proteome changes triggered by different nitrogen sources and would facilitate the understanding of mechanisms for how yeast could adapt to different nutritional conditions.
Collapse
Affiliation(s)
- Shaohui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang 312000, China
| | - Jianwei Fu
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang 312000, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
24
|
Slibinskas R, Ražanskas R, Zinkevičiūtė R, Čiplys E. Comparison of first dimension IPG and NEPHGE techniques in two-dimensional gel electrophoresis experiment with cytosolic unfolded protein response in Saccharomyces cerevisiae. Proteome Sci 2013; 11:36. [PMID: 23889826 PMCID: PMC3729415 DOI: 10.1186/1477-5956-11-36] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 07/23/2013] [Indexed: 12/13/2022] Open
Abstract
Background Two-dimensional gel electrophoresis (2DE) is one of the most popular methods in proteomics. Currently, most 2DE experiments are performed using immobilized pH gradient (IPG) in the first dimension; however, some laboratories still use carrier ampholytes-based isoelectric focusing technique. The aim of this study was to directly compare IPG-based and non-equilibrium pH gradient electrophoresis (NEPHGE)-based 2DE techniques by using the same samples and identical second dimension procedures. We have used commercially available Invitrogen ZOOM IPGRunner and WITAvision systems for IPG and NEPHGE, respectively. The effectiveness of IPG-based and NEPHGE-based 2DE methods was compared by analysing differential protein expression during cytosolic unfolded protein response (UPR-Cyto) in Saccharomyces cerevisiae. Results Protein loss during 2DE procedure was higher in IPG-based method, especially for basic (pI > 7) proteins. Overall reproducibility of spots was slightly better in NEPHGE-based method; however, there was a marked difference when evaluating basic and acidic protein spots. Using Coomassie staining, about half of detected basic protein spots were not reproducible by IPG-based 2DE, whereas NEPHGE-based method showed excellent reproducibility in the basic gel zone. The reproducibility of acidic proteins was similar in both methods. Absolute and relative volume variability of separate protein spots was comparable in both 2DE techniques. Regarding proteomic analysis of UPR-Cyto, the results exemplified parameters of general comparison of the methods. New highly basic protein Sis1p, overexpressed during UPR-Cyto stress, was identified by NEPHGE-based 2DE method, whereas IPG-based method showed unreliable results in the basic pI range and did not provide any new information on basic UPR-Cyto proteins. In the acidic range, the main UPR-Cyto proteins were detected and quantified by both methods. The drawback of NEPHGE-based 2DE method is its failure to detect some highly acidic proteins. The advantage of NEPHGE is higher protein capacity with good reproducibility and quality of spots at high protein load. Conclusions Comparison of broad range (pH 3–10) gradient-based 2DE methods suggests that NEPHGE-based method is preferable over IPG (Invitrogen) 2DE method for the analysis of basic proteins. Nevertheless, the narrow range (pH 4–7) IPG technique is a method of choice for the analysis of acidic proteins.
Collapse
Affiliation(s)
- Rimantas Slibinskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V, Graiciuno 8, Vilnius LT-02241, Lithuania.
| | | | | | | |
Collapse
|
25
|
Insights into enzyme secretion by filamentous fungi: comparative proteome analysis of Trichoderma reesei grown on different carbon sources. J Proteomics 2013; 89:191-201. [PMID: 23796490 DOI: 10.1016/j.jprot.2013.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/20/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022]
Abstract
UNLABELLED Trichoderma reesei is the main industrial producer of lignocellulolytic enzymes, and the secretory behavior of this fungus strongly depends on the carbon sources. To gain insights into how the T. reesei adapts to various carbons and regulates enzyme production, the extra- and intracellular proteomes of T. reesei grown in defined medium with lactose or xylose as the carbon source were investigated. Results indicated that the composition of extracellular proteome differed considerably depending on the carbons. The main cellobiohydrolases, i.e. Cel7a/Cel6 were the most abundant cellulolytic enzymes identified in both media, and found to be more abundant in lactose-grown culture. As compared to lactose, xylose can serve as a potent inducer of xylanolytic enzymes. Interestingly, most identified intracellular proteins are involved in carbon metabolism. Enzymes involved in utilization of xylose, such as d-xylose reductase (Xyl1p) and d-xylose dehydrogenase (Xyl2p), were present at elevated levels in the culture growing on xylose but only in minor amounts in the lactose culture. However, lactose induction significantly activated the expression of key enzymes involved in glycolysis pathway and citrate cycle. Importantly, the protein Xyl1p which participates both in the lactose and the xylose catabolism was verified as a potential regulator for cellulase formation in T. reesei. BIOLOGICAL SIGNIFICANCE This study not only gives an overview of the ubiquitous cellular changes induced by the two conventional carbon substrates, but offers the framework for understanding the mechanisms behind the carbon-dependent induction of extracellular enzymes in T. reesei. Moreover, this study provides a potential target (Xyl1p) that could be tentatively used for metabolic engineering of T. reesei for cost-effective cellulase production.
Collapse
|
26
|
Kroll K, Pähtz V, Kniemeyer O. Elucidating the fungal stress response by proteomics. J Proteomics 2013; 97:151-63. [PMID: 23756228 DOI: 10.1016/j.jprot.2013.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/09/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
Abstract
Fungal species need to cope with stress, both in the natural environment and during interaction of human- or plant pathogenic fungi with their host. Many regulatory circuits governing the fungal stress response have already been discovered. However, there are still large gaps in the knowledge concerning the changes of the proteome during adaptation to environmental stress conditions. With the application of proteomic methods, particularly 2D-gel and gel-free, LC/MS-based methods, first insights into the composition and dynamic changes of the fungal stress proteome could be obtained. Here, we review the recent proteome data generated for filamentous fungi and yeasts. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Kristin Kroll
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany
| | - Vera Pähtz
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany.
| |
Collapse
|
27
|
Lu H, Kalyuzhnaya M, Chandran K. Comparative proteomic analysis reveals insights into anoxic growth ofMethyloversatilis universalis FAM5 on methanol and ethanol. Environ Microbiol 2012; 14:2935-45. [DOI: 10.1111/j.1462-2920.2012.02857.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/23/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Huijie Lu
- Department of Earth and Environmental Engineering; Columbia University; New York; NY; 10027; USA
| | - Marina Kalyuzhnaya
- Department of Microbiology; University of Washington; Seattle; WA; 98105; USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering; Columbia University; New York; NY; 10027; USA
| |
Collapse
|
28
|
Giardina BJ, Stanley BA, Chiang HL. Comparative proteomic analysis of transition of saccharomyces cerevisiae from glucose-deficient medium to glucose-rich medium. Proteome Sci 2012; 10:40. [PMID: 22691627 PMCID: PMC3607935 DOI: 10.1186/1477-5956-10-40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/29/2012] [Indexed: 12/26/2022] Open
Abstract
Background When glucose is added to Saccharomyces cerevisiae grown in non-fermentable carbon sources, genes encoding ribosomal, cell-cycle, and glycolytic proteins are induced. By contrast, genes involved in mitochondrial functions, gluconeogenesis, and the utilization of other carbon sources are repressed. Glucose also causes the activation of the plasma membrane ATPase and the inactivation of gluconeogenic enzymes and mitochondrial enzymes. The goals of this study were to use the iTRAQ-labeling mass spectrometry technique to identify proteins whose relative levels change in response to glucose re-feeding and to correlate changes in protein abundance with changes in transcription and enzymatic activities. We used an experimental condition that causes the degradation of gluconeogenic enzymes when glucose starved cells are replenished with glucose. Identification of these enzymes as being down-regulated by glucose served as an internal control. Furthermore, we sought to identify new proteins that were either up-regulated or down-regulated by glucose. Results We have identified new and known proteins that change their relative levels in cells that were transferred from medium containing low glucose to medium containing high glucose. Up-regulated proteins included ribosomal subunits, proteins involved in protein translation, and the plasma membrane ATPase. Down-regulated proteins included small heat shock proteins, mitochondrial proteins, glycolytic enzymes, and gluconeogenic enzymes. Ach1p is involved in acetate metabolism and is also down-regulated by glucose. Conclusions We have identified known proteins that have previously been reported to be regulated by glucose as well as new glucose-regulated proteins. Up-regulation of ribosomal proteins and proteins involved in translation may lead to an increase in protein synthesis and in nutrient uptake. Down-regulation of glycolytic enzymes, gluconeogenic enzymes, and mitochondrial proteins may result in changes in glycolysis, gluconeogenesis, and mitochondrial functions. These changes may be beneficial for glucose-starved cells to adapt to the addition of glucose.
Collapse
Affiliation(s)
- Bennett J Giardina
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| | | | | |
Collapse
|
29
|
Jun H, Kieselbach T, Jönsson LJ. Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1. BMC Genomics 2012; 13:230. [PMID: 22681880 PMCID: PMC3476450 DOI: 10.1186/1471-2164-13-230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background The activity of the yeast activator protein 1 (Yap1p) increases under stress conditions, which leads to enhanced transcription of a number of genes encoding protective enzymes or other proteins. To obtain a global overview of changes in expression of Yap1p-targeted proteins, we compared a Yap1p-overexpressing transformant with a control transformant by triplicate analysis of the proteome using two-dimensional gel electrophoresis (2-DE). Proteins of interest were identified using MALDI-MS or LC-MS/MS. Results The relative quantities of 55 proteins were elevated significantly upon overexpression of Yap1p, and most of these proteins were found to have a Yap1p-binding site upstream of their coding sequences. Interestingly, the main metabolic enzymes in the glycolysis and pyruvate-ethanol pathways showed a significant increase in the Yap1p-overexpressing transformant. Moreover, a comparison of our proteome data with transcriptome data from the literature suggested which proteins were regulated at the level of the proteome, and which proteins were regulated at the level of the transcriptome. Eight proteins involved in stress response, including seven heat-shock and chaperone proteins, were significantly more abundant in the Yap1p-overexpressing transformant. Conclusions We have investigated the general protein composition in Yap1p-overexpressing S. cerevisiae using proteomic techniques, and quantified the changes in the expression of the potential Yap1p-targeted proteins. Identification of the potential Yap1p targets and analysis of their role in cellular processes not only give a global overview of the ubiquitous cellular changes elicited by Yap1p, but also provide the framework for understanding the mechanisms behind Yap1p-regulated stress response in yeast.
Collapse
Affiliation(s)
- He Jun
- Department of Chemistry, Umeå University, Sweden
| | | | | |
Collapse
|
30
|
Olsson N, James P, Borrebaeck CAK, Wingren C. Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry. Mol Cell Proteomics 2012; 11:342-54. [PMID: 22543061 PMCID: PMC3412966 DOI: 10.1074/mcp.m111.016238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of high-performance technology platforms for generating detailed protein expression profiles, or protein atlases, is essential. Recently, we presented a novel platform that we termed global proteome survey, where we combined the best features of affinity proteomics and mass spectrometry, to probe any proteome in a species independent manner while still using a limited set of antibodies. We used so called context-independent-motif-specific antibodies, directed against short amino acid motifs. This enabled enrichment of motif-containing peptides from a digested proteome, which then were detected and identified by mass spectrometry. In this study, we have demonstrated the quantitative capability, reproducibility, sensitivity, and coverage of the global proteome survey technology by targeting stable isotope labeling with amino acids in cell culture-labeled yeast cultures cultivated in glucose or ethanol. The data showed that a wide range of motif-containing peptides (proteins) could be detected, identified, and quantified in a highly reproducible manner. On average, each of six different motif-specific antibodies was found to target about 75 different motif-containing proteins. Furthermore, peptides originating from proteins spanning in abundance from over a million down to less than 50 copies per cell, could be targeted. It is worth noting that a significant set of peptides previously not reported in the PeptideAtlas database was among the profiled targets. The quantitative data corroborated well with the corresponding data generated after conventional strong cation exchange fractionation of the same samples. Finally, several differentially expressed proteins, with both known and unknown functions, many relevant for the central carbon metabolism, could be detected in the glucose- versus ethanol-cultivated yeast. Taken together, the study demonstrated the potential of our immunoaffinity-based mass spectrometry platform for reproducible quantitative proteomics targeting classes of motif-containing peptides.
Collapse
Affiliation(s)
- Niclas Olsson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
31
|
Kirik U, Cifani P, Albrekt AS, Lindstedt M, Heyden A, Levander F. Multimodel Pathway Enrichment Methods for Functional Evaluation of Expression Regulation. J Proteome Res 2012; 11:2955-67. [DOI: 10.1021/pr300038b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ufuk Kirik
- Department of Immunotechnology, Lund University Biomedical Centre D13, SE-221 84 Lund,
Sweden
| | - Paolo Cifani
- Department of Immunotechnology, Lund University Biomedical Centre D13, SE-221 84 Lund,
Sweden
| | - Ann-Sofie Albrekt
- Department of Immunotechnology, Lund University Biomedical Centre D13, SE-221 84 Lund,
Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University Biomedical Centre D13, SE-221 84 Lund,
Sweden
| | - Anders Heyden
- Centre for Mathematical
Sciences, Lund University Box 118, SE-22100,
Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University Biomedical Centre D13, SE-221 84 Lund,
Sweden
| |
Collapse
|
32
|
Kito K, Ito T. Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 2011; 9:263-74. [PMID: 19452043 PMCID: PMC2682933 DOI: 10.2174/138920208784533647] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/25/2008] [Accepted: 04/27/2008] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry has served as a major tool for the discipline of proteomics to catalogue proteins in an unprecedented scale. With chemical and metabolic techniques for stable isotope labeling developed over the past decade, it is now routinely used as a method for relative quantification to provide valuable information on alteration of protein abundance in a proteome-wide scale. More recently, absolute or stoichiometric quantification of proteome is becoming feasible, in particular, with the development of strategies with isotope-labeled standards composed of concatenated peptides. On the other hand, remarkable progress has been also made in label-free quantification methods based on the number of identified peptides. Here we review these mass spectrometry-based approaches for absolute quantification of proteome and discuss their implications.
Collapse
Affiliation(s)
- Keiji Kito
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan
| | | |
Collapse
|
33
|
Tripodi F, Cirulli C, Reghellin V, Brambilla L, Marin O, Coccetti P. Nutritional modulation of CK2 in Saccharomyces cerevisiae: regulating the activity of a constitutive enzyme. Mol Cell Biochem 2011; 356:269-75. [PMID: 21750980 DOI: 10.1007/s11010-011-0958-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 02/02/2023]
Abstract
CK2 is a highly conserved protein kinase involved in different cellular processes, which shows a higher activity in actively proliferating mammalian cells and in various types of cancer and cancer cell lines. We recently demonstrated that CK2 activity is strongly influenced by growth rate in yeast cells as well. Here, we extend our previous findings and show that, in cells grown in either glucose or ethanol-supplemented media, CK2 presents no alteration in K(m) for both the ATP and the peptide substrate RRRADDSDDDDD, while a significant increase in V (max) is observed. In chemostat-grown cells, no difference of CK2 activity was observed in cells grown at the same dilution rate in media supplemented with either ethanol or glucose, excluding the contribution of carbon metabolism on CK2 activity. By using the eIF2β-derived peptide, which can be phosphorylated by the holoenzyme but not by the free catalytic subunits, we show that the holoenzyme activity requires the concurrent presence of both β and β' encoding genes. Finally, conditions of nitrogen deprivation leading to a G0-like arrest result in a decrease of total CK2 activity, but have no effect on the activity of the holoenzyme. These findings newly indicate a regulatory role of β and β' subunits of CK2 in the nutrient response.
Collapse
Affiliation(s)
- Farida Tripodi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Guo G, Li N. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA). PHYTOCHEMISTRY 2011; 72:1028-39. [PMID: 21315391 DOI: 10.1016/j.phytochem.2011.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/04/2011] [Accepted: 01/07/2011] [Indexed: 05/04/2023]
Abstract
In the quantitative proteomic studies, numerous in vitro and in vivo peptide labeling strategies have been successfully applied to measure differentially regulated protein and peptide abundance. These approaches have been proven to be versatile and repeatable in biological discoveries. (15)N metabolic labeling is one of these widely adopted and economical methods. However, due to the differential incorporation rates of (15)N or (14)N, the labeling results produce imperfectly matched isotopic envelopes between the heavy and light nitrogen-labeled peptides. In the present study, we have modified the solid Arabidopsis growth medium to standardize the (15)N supply, which led to a uniform incorporation of (15)N into the whole plant protein complement. The incorporation rate (97.43±0.11%) of (15)N into (15)N-coded peptides was determined by correlating the intensities of peptide ions with the labeling efficiencies according to Gaussian distribution. The resulting actual incorporation rate (97.44%) and natural abundance of (15)N/(14)N-coded peptides are used to re-calculate the intensities of isotopic envelopes of differentially labeled peptides, respectively. A modified (15)N/(14)N stable isotope labeling strategy, SILIA, is assessed and the results demonstrate that this approach is able to differentiate the fold change in protein abundance down to 10%. The machine dynamic range limitation and purification step will make the precursor ion ratio deriving from the actual ratio fold change. It is suggested that the differentially mixed (15)N-coded and (14)N-coded plant protein samples that are used to establish the protein abundance standard curve should be prepared following a similar protein isolation protocol used to isolate the proteins to be quantitated.
Collapse
Affiliation(s)
- Guangyu Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | |
Collapse
|
35
|
Li N. Quantitative measurement of phosphopeptides and proteins via stable isotope labeling in Arabidopsis and functional phosphoproteomic strategies. Methods Mol Biol 2011; 876:17-32. [PMID: 22576083 DOI: 10.1007/978-1-61779-809-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein phosphorylation is one type of posttranslational modification, which regulates a large number of cellular processes in plant cells. As an emerging powerful biotechnology that integrates all aspects of advantages from mass spectrometry, bioinformatics, and genomics, phosphoproteomics offers us an unprecedented high-throughput methodology with high sensitivity and dashing speed in identifying a large complement of phosphoproteins from plant cells within a relatively short period of time. Needless to say, phosphoproteomics has become an integral portion of life sciences, which penetrates various research disciplines of biology, agriculture, and forestry and irreversibly changes the way by which plant scientists study biological problems.Because phosphorylation/dephosphorylation of protein is dynamic in cells and the amount of phosphoproteins is low, the preservation of a phosphor group onto phosphosite throughout protein purification as well as enrichment of these phosphoproteins during purification has become a serious technical issue. To overcome difficulties commonly associated with phosphoprotein isolation, phosphopeptides' enrichment, and mass spectrometry analysis, we have developed a urea-based phosphoprotein purification protocol for plants, which instantly denatures plant proteins once the total cell content comes into contact with the UEB solution. To measure the alteration of phosphorylation on a phosphosite using mass spectrometer, an in vivo (15)N metabolic labeling method (SILIA, i.e., stable isotope labeling in Arabidopsis) has been developed and applied for Arabidopsis differential phosphoproteomics. Thus far, hundreds of signaling-specific phosphoproteins have been identified using both label-free and (15)N-labeled differential phosphoproteomic approach. The phosphoproteomics has allowed us to identify a number of signaling components mediating plant cell signaling in Arabidopsis. It is envisaged that a huge number of phosphosites will continue to be uncovered from phosphoproteomics in the near future, which will become instrumental for the development of plant phosphor-relay networks and molecular systems biology.
Collapse
Affiliation(s)
- Ning Li
- Division of life science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
| |
Collapse
|
36
|
Szopinska A, Morsomme P. Quantitative Proteomic Approaches and Their Application in the Study of Yeast Stress Responses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:639-49. [DOI: 10.1089/omi.2010.0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aleksandra Szopinska
- Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud Louvain-la-Neuve, Belgium
| |
Collapse
|
37
|
Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E. Transcriptomic and proteomic insights of the wine yeast biomass propagation process. FEMS Yeast Res 2010; 10:870-84. [DOI: 10.1111/j.1567-1364.2010.00667.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Curto M, Valledor L, Navarrete C, Gutiérrez D, Sychrova H, Ramos J, Jorrin J. 2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases. J Proteomics 2010; 73:2316-35. [PMID: 20638488 DOI: 10.1016/j.jprot.2010.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/22/2010] [Accepted: 07/06/2010] [Indexed: 12/27/2022]
Abstract
By using a 2-DE based workflow, the proteome of wild and potassium transport mutant trk1,2 under optimal growth potassium concentration (50mM) has been analyzed. At the exponential and stationary phases, both strains showed similar growth, morphology potassium content, and Vmax of rubidium transport, the only difference found being the Km values for this potassium analogue transport, higher for the mutant (20mM) than for the wild (3-6mM) cells. Proteins were buffer-extracted, precipitated, solubilized, quantified, and subjected to 2-DE analysis in the 5-8 pH range. More differences in protein content (37-64mgg(-1) cell dry weight) and number of resolved spots (178-307) were found between growth phases than between strains. In all, 164 spots showed no differences between samples and a total of 105 were considered to be differential after ANOVA test. 171 proteins, corresponding to 71 unique gene products have been identified, this set being dominated by cytosolic species and glycolitic enzymes. The ranking of the more abundant spots revealed no differences between samples and indicated fermentative metabolism, and active cell wall biosynthesis, redox homeostasis, biosynthesis of amino acids, coenzymes, nucleotides, and RNA, and protein turnover, apart from cell division and growth. PCA analysis allowed the separation of growth phases (PC1 and 2) and strains at the stationary phase (PC3 and 4), but not at the exponential one. These results are also supported by clustering analysis. As a general tendency, a number of spots newly appeared at the stationary phase in wild type, and to a lesser extent, in the mutant. These up-accumulated spots corresponded to glycolitic enzymes, indicating a more active glucose catabolism, accompanied by an accumulation of methylglyoxal detoxification, and redox-homeostasis enzymes. Also, more extensive proteolysis was observed at the stationary phase with this resulting in an accumulation of low Mr protein species.
Collapse
Affiliation(s)
- Miguel Curto
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Gutteridge A, Pir P, Castrillo JI, Charles PD, Lilley KS, Oliver SG. Nutrient control of eukaryote cell growth: a systems biology study in yeast. BMC Biol 2010; 8:68. [PMID: 20497545 PMCID: PMC2895586 DOI: 10.1186/1741-7007-8-68] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/24/2010] [Indexed: 01/21/2023] Open
Abstract
Background To elucidate the biological processes affected by changes in growth rate and nutrient availability, we have performed a comprehensive analysis of the transcriptome, proteome and metabolome responses of chemostat cultures of the yeast, Saccharomyces cerevisiae, growing at a range of growth rates and in four different nutrient-limiting conditions. Results We find significant changes in expression for many genes in each of the four nutrient-limited conditions tested. We also observe several processes that respond differently to changes in growth rate and are specific to each nutrient-limiting condition. These include carbohydrate storage, mitochondrial function, ribosome synthesis, and phosphate transport. Integrating transcriptome data with proteome measurements allows us to identify previously unrecognized examples of post-transcriptional regulation in response to both nutrient and growth-rate signals. Conclusions Our results emphasize the unique properties of carbon metabolism and the carbon substrate, the limitation of which induces significant changes in gene regulation at the transcriptional and post-transcriptional level, as well as altering how many genes respond to growth rate. By comparison, the responses to growth limitation by other nutrients involve a smaller set of genes that participate in specific pathways. See associated commentary http://www.biomedcentral.com/1741-7007/8/62
Collapse
Affiliation(s)
- Alex Gutteridge
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
40
|
Grassl J, Westbrook JA, Robinson A, Borén M, Dunn MJ, Clyne RK. Preserving the yeast proteome from sample degradation. Proteomics 2010; 9:4616-26. [PMID: 19824011 DOI: 10.1002/pmic.200800945] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sample degradation is a common problem in all types of proteomic analyses as it generates protein and peptide fragments that can interfere with analytical results. An important step in preventing such artefacts is to preserve the native, intact proteome as early as possible during sample preparation prior to proteomic analysis. Using the budding yeast Saccharomyces cerevisiae, we have evaluated the effects of trichloroacetic acid (TCA) and thermal treatments prior to protein extraction as a means to minimise proteolysis. TCA precipitation is commonly used to inactivate proteases; thermal stabilisation is used to heat samples to approximately 95 degrees C to inactivate enzyme activity. The efficacy of these methods was also compared with that of protease inhibitors and lyophilisation. Sample integrity was assessed by 2-D PAGE and a selection of spots was identified by MS/MS. The analysis showed that TCA or thermal treatment significantly reduced the degree of degradation and that these pre-treatment protocols were more effective than treatment with either protease inhibitors or lyophilisation. This study establishes standardised sample preparation methods for the reproducible analysis of protein patterns by 2-D PAGE in yeast, and may also be applicable to other proteomic analyses such as gel-free-based quantitation methods.
Collapse
Affiliation(s)
- Julia Grassl
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
41
|
Cheng JS, Ding MZ, Tian HC, Yuan YJ. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae. Proteomics 2010; 9:4704-13. [PMID: 19743421 DOI: 10.1002/pmic.200900249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cell-density-dependent responses of Saccharomyces cerevisiae to inoculation sizes were explored by a proteomic approach. According to their gene ontology, 100 protein spots with differential expression, corresponding to 67 proteins, were identified and classed into 17 different functional groups. Upregulation of eight heat shock, oxidative response and amino acid biosynthesis-related proteins (e.g. Hsp78p, Ssa1p, Hsp60p, Ctt1p, Sod1p, Ahp1p, Met6p and Met17p), which may jointly maintain the cell redox homeostasis, was dependant on inoculation density. Significant increases in the levels of five proteins involved in glycolysis and alcohol biosynthesis pathways (e.g. Glk1p, Fba1p, Eno1p, Pdc1p and Adh1p) might play critical roles in improving ethanol productivity of the fermentation process and shortening the fermentation time when inoculation sizes were increased. Cell-density-dependent glycolytic variations of proteins involved in trehalose, glycerol biosynthesis and pentose phosphate pathway revealed shifts among metabolic pathways during fermentation with different inoculation sizes. Upregulation of three signal transduction proteins (Bmh1p, Bmh2p and Fpr1p) indicated that adequate cell-cell contacts improved cellular communication at high inoculation sizes. These findings provide insights into yeast responses to inoculation size and optimizing the direct inoculation of active dry yeast fermentation, so as to improve the ethanol production.
Collapse
Affiliation(s)
- Jing-Sheng Cheng
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, P R China
| | | | | | | |
Collapse
|
42
|
Liu H, Zhao X, Wang F, Li Y, Jiang X, Ye M, Zhao ZK, Zou H. Comparative proteomic analysis ofRhodosporidium toruloidesduring lipid accumulation. Yeast 2009; 26:553-66. [DOI: 10.1002/yea.1706] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
43
|
Karhumaa K, Påhlman AK, Hahn-Hägerdal B, Levander F, Gorwa-Grauslund MF. Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast 2009; 26:371-82. [DOI: 10.1002/yea.1673] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Cheng JS, Zhou X, Ding MZ, Yuan YJ. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Appl Microbiol Biotechnol 2009; 83:909-23. [PMID: 19488749 DOI: 10.1007/s00253-009-2037-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/03/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
The responses and adaptation mechanisms of the industrial Saccharomyces cerevisiae to vacuum fermentation were explored using proteomic approach. After qualitative and quantitative analyses, a total of 106 spots corresponding to 68 different proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The differentially expressed proteins were involved in amino acid and carbohydrate metabolisms, various signal pathways (Ras/MAPK, Ras-cyclic adenosine monophosphate, and HOG pathway), and heat shock and oxidative responses. Among them, alternations in levels of 17 proteins associated with carbohydrate metabolisms, in particular, the upregulations of proteins involved in glycolysis, trehalose biosynthesis, and the pentose phosphate pathway, suggested vacuum-induced redistribution of the metabolic fluxes. The upregulation of 17 heat stress and oxidative response proteins indicated that multifactors contributed to oxidative stresses by affecting cell redox homeostasis. Taken together with upregulation in 14-3-3 proteins levels, 22 proteins were detected in multispots, respectively, indicating that vacuum might have promoted posttranslational modifications of some proteins in S. cerevisiae. Further investigation revealed that the elevations of the differentially expressed proteins were mainly derived from vacuum stress rather than the absence of oxygen. These findings provide new molecular mechanisms for understanding of adaptation and tolerance of yeast to vacuum fermentation.
Collapse
|
45
|
Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 2009; 75:3765-76. [PMID: 19363068 DOI: 10.1128/aem.02594-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanism involved in tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to inhibitors (such as furfural, acetic acid, and phenol) represented in lignocellulosic hydrolysate is still unclear. Here, (18)O-labeling-aided shotgun comparative proteome analysis was applied to study the global protein expression profiles of S. cerevisiae under conditions of treatment of furfural compared with furfural-free fermentation profiles. Proteins involved in glucose fermentation and/or the tricarboxylic acid cycle were upregulated in cells treated with furfural compared with the control cells, while proteins involved in glycerol biosynthesis were downregulated. Differential levels of expression of alcohol dehydrogenases were observed. On the other hand, the levels of NADH, NAD(+), and NADH/NAD(+) were reduced whereas the levels of ATP and ADP were increased. These observations indicate that central carbon metabolism, levels of alcohol dehydrogenases, and the redox balance may be related to tolerance of ethanologenic yeast for and adaptation to furfural. Furthermore, proteins involved in stress response, including the unfolded protein response, oxidative stress, osmotic and salt stress, DNA damage and nutrient starvation, were differentially expressed, a finding that was validated by quantitative real-time reverse transcription-PCR to further confirm that the general stress responses are essential for cellular defense against furfural. These insights into the response of yeast to the presence of furfural will benefit the design and development of inhibitor-tolerant ethanologenic yeast by metabolic engineering or synthetic biology.
Collapse
|
46
|
Klooster R, Eman MR, le Duc Q, Verheesen P, Verrips CT, Roovers RC, Post JA. Selection and characterization of KDEL-specific VHH antibody fragments and their application in the study of ER resident protein expression. J Immunol Methods 2008; 342:1-12. [PMID: 19041652 DOI: 10.1016/j.jim.2008.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/23/2008] [Accepted: 10/15/2008] [Indexed: 11/26/2022]
Abstract
Several diseases are caused by defects in the protein secretory pathway of the cell, particularly in the endoplasmic reticulum (ER). These defects are manifested by the activation of the unfolded protein response (UPR) that involves the transcriptional up-regulation of several ER resident proteins, the down-regulation of protein translation and up-regulation of ER associated degradation (ERAD). Although this transcriptional up-regulation of ER resident proteins during ER stress has been well described, data on differential protein expression of these same proteins are hardly available. Tools that would enable the simultaneous analysis of this set of proteins would be of high importance. Since the C-terminal KDEL sequence is a conserved epitope present in a large set of ER resident proteins, an antibody directed against this sequence would be such a tool. Using a carefully designed selection strategy, VHH antibody fragments from a non-immune phage display library were isolated that recognize the KDEL sequence at the C-terminus of proteins, irrespective of the protein context. In an accepted in vitro model for ER stress, this antibody was shown to be an excellent tool to study differences in ER resident protein expression. Furthermore, the application of this antibody showed differences in ER resident protein levels during replicative senescence of human umbilical vein endothelial cells (HUVECs), underlining its significance in biological research. The selection strategy used to obtain these KDEL-specific antibodies opens up ways to select antibodies to other conserved epitopes, such as the nuclear localization signal (NLS) or the peroxisomal targeting sequence, permitting the simultaneous analysis of specific groups of proteins.
Collapse
Affiliation(s)
- Rinse Klooster
- Department of Cellular Architecture and Dynamics, Institute of Biomembranes, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Cheng JS, Qiao B, Yuan YJ. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Appl Microbiol Biotechnol 2008; 81:327-38. [DOI: 10.1007/s00253-008-1733-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/22/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
48
|
Vazquez A, de Menezes MA, Barabási AL, Oltvai ZN. Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis. PLoS Comput Biol 2008; 4:e1000195. [PMID: 18846199 PMCID: PMC2533405 DOI: 10.1371/journal.pcbi.1000195] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 09/02/2008] [Indexed: 11/19/2022] Open
Abstract
The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo. The concentration of enzymes and metabolites is continuously adjusted in order to achieve specific metabolic demands. It is highly likely that during evolution global metabolic regulation has evolved such as to achieve a given metabolic demand with an optimal use of intracellular resources. However, the size of enzymes and intermediate metabolites is dramatically different. Enzymes are macromolecules that occupy a relatively large amount of space within a cell's crowded cytoplasm, while metabolites are much smaller. This implies that metabolite concentrations are likely to be adjusted to minimize the overall “enzymatic cost” (in terms of space cost). In this work, we explore this hypothesis using Saccharomyces cerevisiae glycolysis as a case study. Our results indicate that metabolite concentrations attain optimal values, minimizing the intracellular space occupied by metabolic enzymes. And, at these optimal concentrations, glycolysis achieves the maximum rate given the intracellular volume fraction occupied by glycolysis enzymes. Taken together with previous studies for Escherichia coli, our results indicate that macromolecular crowding is a general constraint on cell metabolism.
Collapse
Affiliation(s)
- Alexei Vazquez
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, United States of America.
| | | | | | | |
Collapse
|
49
|
de Groot MJL, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EAF, Reinders MJT, Pronk JT, Heck AJR, Slijper M. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. MICROBIOLOGY-SGM 2008; 153:3864-3878. [PMID: 17975095 DOI: 10.1099/mic.0.2007/009969-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Saccharomyces cerevisiae is unique among yeasts in its ability to grow rapidly in the complete absence of oxygen. S. cerevisiae is therefore an ideal eukaryotic model to study physiological adaptation to anaerobiosis. Recent transcriptome analyses have identified hundreds of genes that are transcriptionally regulated by oxygen availability but the relevance of this cellular response has not been systematically investigated at the key control level of the proteome. Therefore, the proteomic response of S. cerevisiae to anaerobiosis was investigated using metabolic stable-isotope labelling in aerobic and anaerobic glucose-limited chemostat cultures, followed by relative quantification of protein expression. Using independent replicate cultures and stringent statistical filtering, a robust dataset of 474 quantified proteins was generated, of which 249 showed differential expression levels. While some of these changes were consistent with previous transcriptome studies, many of the responses of S. cerevisiae to oxygen availability were, to our knowledge, previously unreported. Comparison of transcriptomes and proteomes from identical cultivations yielded strong evidence for post-transcriptional regulation of key cellular processes, including glycolysis, amino-acyl-tRNA synthesis, purine nucleotide synthesis and amino acid biosynthesis. The use of chemostat cultures provided well-controlled and reproducible culture conditions, which are essential for generating robust datasets at different cellular information levels. Integration of transcriptome and proteome data led to new insights into the physiology of anaerobically growing yeast that would not have been apparent from differential analyses at either the mRNA or protein level alone, thus illustrating the power of multi-level studies in yeast systems biology.
Collapse
Affiliation(s)
- Marco J L de Groot
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Pascale Daran-Lapujade
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Bas van Breukelen
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Theo A Knijnenburg
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Erik A F de Hulster
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marcel J T Reinders
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Jack T Pronk
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Albert J R Heck
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Monique Slijper
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
50
|
Elias DA, Tollaksen SL, Kennedy DW, Mottaz HM, Giometti CS, McLean JS, Hill EA, Pinchuk GE, Lipton MS, Fredrickson JK, Gorby YA. The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression. Arch Microbiol 2007; 189:313-24. [PMID: 18030449 PMCID: PMC2270922 DOI: 10.1007/s00203-007-0321-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/31/2007] [Accepted: 10/24/2007] [Indexed: 11/29/2022]
Abstract
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanellaoneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.
Collapse
Affiliation(s)
- Dwayne A Elias
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|