1
|
MacGrogan G. [Apocrine lesions of the breast]. Ann Pathol 2025:S0242-6498(25)00031-8. [PMID: 40107901 DOI: 10.1016/j.annpat.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Apocrine breast lesions encompass a spectrum of histopathological abnormalities, ranging from benign apocrine metaplasia to invasive apocrine carcinomas. Their defining feature lies in cells with abundant eosinophilic cytoplasm and round nuclei with prominent nucleoli. These cells strongly express the androgen receptor while lacking estrogen receptor-alpha and progesterone receptor expression. Benign lesions, frequently associated with mammary cysts or papillomas, lack nuclear and architectural atypia. In contrast, atypical apocrine lesions exhibit significant nuclear and structural abnormalities, posing diagnostic challenges when distinguishing them from apocrine ductal or lobular carcinoma in situ. Diagnosis relies on the extent of atypia and the presence of tumor necrosis. Invasive apocrine carcinomas are rare, accounting for less than 1% of all breast cancers, and predominantly occur in postmenopausal women. Histologically, they are often grade 1 or 2 tumors. Approximately 50% exhibit HER2 amplification and overexpression. Immunohistochemically, they are characterized by positivity for FOXA1 and GATA3, and negativity for FOXC1 and SOX10, and variable expression of TRPS1. These carcinomas belong to the molecular apocrine carcinoma family, which includes HER2-enriched tumors driven by HER2 addiction and androgen receptor-positive luminal tumors, a subtype of triple-negative breast cancers. The latter are defined by androgen receptor pathway activation and are frequently associated with PI3K pathway alterations and cell cycle dysregulation, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Gaëtan MacGrogan
- Département de biopathologie, institut Bergonié, 229, cours de l'Argonne, 33076 Bordeaux cedex, France.
| |
Collapse
|
2
|
Terkelsen T, Pernemalm M, Gromov P, Børresen-Dale AL, Krogh A, Haakensen VD, Lethiö J, Papaleo E, Gromova I. High-throughput proteomics of breast cancer interstitial fluid: identification of tumor subtype-specific serologically relevant biomarkers. Mol Oncol 2021; 15:429-461. [PMID: 33176066 PMCID: PMC7858121 DOI: 10.1002/1878-0261.12850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Despite significant advancements in breast cancer (BC) research, clinicians lack robust serological protein markers for accurate diagnostics and tumor stratification. Tumor interstitial fluid (TIF) accumulates aberrantly externalized proteins within the local tumor space, which can potentially gain access to the circulatory system. As such, TIF may represent a valuable starting point for identifying relevant tumor-specific serological biomarkers. The aim of the study was to perform comprehensive proteomic profiling of TIF to identify proteins associated with BC tumor status and subtype. A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of 35 TIFs of three main subtypes: luminal (19), Her2 (4), and triple-negative (TNBC) (12) resulted in the identification of > 8800 proteins. Unsupervised hierarchical clustering segregated the TIF proteome into two major clusters, luminal and TNBC/Her2 subgroups. High-grade tumors enriched with tumor infiltrating lymphocytes (TILs) were also stratified from low-grade tumors. A consensus analysis approach, including differential abundance analysis, selection operator regression, and random forest returned a minimal set of 24 proteins associated with BC subtypes, receptor status, and TIL scoring. Among them, a panel of 10 proteins, AGR3, BCAM, CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and ULBP2, was found to stratify the tumor subtype-specific TIFs. In particular, upregulation of BCAM and CELSR1 differentiates luminal subtypes, while upregulation of MIEN1 differentiates Her2 subtypes. Immunohistochemistry analysis showed a direct correlation between protein abundance in TIFs and intratumor expression levels for all 10 proteins. Sensitivity and specificity were estimated for this protein panel by using an independent, comprehensive breast tumor proteome dataset. The results of this analysis strongly support our data, with eight of the proteins potentially representing biomarkers for stratification of BC subtypes. Five of the most representative proteomics databases currently available were also used to estimate the potential for these selected proteins to serve as putative serological markers.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anna-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Anders Krogh
- Department of Computer Science, University of Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Denmark
| | - Vilde D Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Janne Lethiö
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
3
|
Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front Pharmacol 2019; 9:1515. [PMID: 30662405 PMCID: PMC6328495 DOI: 10.3389/fphar.2018.01515] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Rayna Jeter
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrea Bachmann
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hoda Yeganehjoo
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Mueller C, Haymond A, Davis JB, Williams A, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev Proteomics 2018; 15:131-152. [PMID: 29271260 PMCID: PMC6104835 DOI: 10.1080/14789450.2018.1421071] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breast cancer subtypes are currently defined by a combination of morphologic, genomic, and proteomic characteristics. These subtypes provide a molecular portrait of the tumor that aids diagnosis, prognosis, and treatment escalation/de-escalation options. Gene expression signatures describing intrinsic breast cancer subtypes for predicting risk of recurrence have been rapidly adopted in the clinic. Despite the use of subtype classifications, many patients develop drug resistance, breast cancer recurrence, or therapy failure. Areas covered: This review provides a summary of immunohistochemistry, reverse phase protein array, mass spectrometry, and integrative studies that are revealing differences in biological functions within and between breast cancer subtypes. We conclude with a discussion of rigor and reproducibility for proteomic-based biomarker discovery. Expert commentary: Innovations in proteomics, including implementation of assay guidelines and standards, are facilitating refinement of breast cancer subtypes. Proteomic and phosphoproteomic information distinguish biologically functional subtypes, are predictive of recurrence, and indicate likelihood of drug resistance. Actionable, activated signal transduction pathways can now be quantified and characterized. Proteomic biomarker validation in large, well-designed studies should become a public health priority to capitalize on the wealth of information gleaned from the proteome.
Collapse
Affiliation(s)
- Claudius Mueller
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Amanda Haymond
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin B Davis
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Alexa Williams
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
5
|
Expression of C-KIT, CD24, CD44s, and COX2 in benign and non-invasive apocrine lesions of the breast. Virchows Arch 2016; 469:285-95. [PMID: 27287269 DOI: 10.1007/s00428-016-1966-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/11/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
Benign apocrine metaplasia (AM) of the adult breast is a very common, but enigmatic lesion. It has been speculated that AM might be a precursor of malignancy or an indicator of a susceptibility of the breast tissue to develop neoplasia, mainly based on comparing the frequency of AM in breast cancer and non-breast cancer patients [1]. Studies using comparative genomic hybridization have supported this by showing similar molecular alterations in benign and malignant apocrine lesions [2]. Few studies, however, have compared expression of biomarkers involved in tumor progression in AM and progressively more advanced atypical apocrine lesions. The expression of C-KIT, COX2, CD24, and CD44s was evaluated by immunohistochemistry in formalin-fixed, paraffin-embedded material of 9 AM, 20 apocrine ductal intraepithelial neoplasia (DIN1c-3) and 40 atypical apocrine lesions (not qualifying for DIN1c-3) and compared to expression of the same biomarkers in adjacent normal ductal epithelium. Of the 66 apocrine lesions, 62 (94 %) did not express C-KIT compared to 4/63 (6 %) of the normal glands (Fisher's exact, p < 0.001). COX2 was expressed in a significantly higher proportion of apocrine lesions than of normal glands (49 vs. 14 %, p < 0.001), and the number of apocrine lesions positive for CD24 was found to be higher with increasing aggressiveness of the lesions (Spearman, p < 0.001). In conclusion, benign and non-invasive proliferative apocrine lesions of the breast display immuno-phenotypical characteristics previously ascribed mainly to malignant transformation. This could lend support to the theory that AM is an early step towards malignant transformation, albeit associated with slow progression to carcinoma.
Collapse
|
6
|
Gromov P, Espinoza JA, Gromova I. Molecular and diagnostic features of apocrine breast lesions. Expert Rev Mol Diagn 2015; 15:1011-22. [DOI: 10.1586/14737159.2015.1057125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman MLM, Wielenga VT, Moreira JMA. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol 2015; 9:1636-54. [PMID: 26026368 DOI: 10.1016/j.molonc.2015.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022] Open
Abstract
We have previously reported the 2D PAGE-based proteomic profiling of a prospective cohort of 78 triple negative breast cancer (TNBC) patients, and the establishment of a cumulative TNBC protein database. Analysis of this database identified a number of proteins as being specifically overexpressed in TNBC samples. One such protein was D-3-phosphoglycerate dehydrogenase (Phgdh), a candidate oncogene. We analysed expression of Phgdh in normal and TNBC mammary tissue samples by 2D gel-based proteomics and immunohistochemistry (IHC), and show here that high-level expression of Phgdh in mammary epithelial cells is primarily associated with cell lineage, as we found that Phgdh expression was predominant in CK5-positive cells, normal as well as malignant, thus identifying an association of this protein with the basal phenotype. Quantitative IHC analysis of Phgdh expression in normal breast tissue showed high-level expression of Phgdh in normal CK5-positive mammary epithelial cells, indicating that expression of this protein was not associated with malignancy, but rather with cell lineage. However, proteomic profiling of Phgdh showed it to be expressed in two major protein forms, and that the ratio of expression between these variants was associated with malignancy. Overexpression of Phgdh in CK5-positive cell lineages, and differential protein isoform expression, was additionally found in other tissues and cancer types, suggesting that overexpression of Phgdh is generally associated with CK5 cells, and that oncogenic function may be determined by isoform expression.
Collapse
Affiliation(s)
- Irina Gromova
- Cancer Proteomics, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark
| | - Pavel Gromov
- Cancer Proteomics, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark
| | - Naoko Honma
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Sudha Kumar
- Department of Pathology, Yale University Medical School, New Haven, USA
| | - David Rimm
- Department of Pathology, Yale University Medical School, New Haven, USA
| | - Maj-Lis Møller Talman
- Department of Pathology, The Centre of Diagnostic Investigations, Copenhagen University Hospital, Denmark
| | - Vera Timmermans Wielenga
- Department of Pathology, The Centre of Diagnostic Investigations, Copenhagen University Hospital, Denmark
| | - José M A Moreira
- Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark; Section for Molecular Disease Biology and Sino-Danish Breast Cancer Research Centre, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Gromov P, Espinoza JA, Talman ML, Honma N, Kroman N, Wielenga VT, Moreira JMA, Gromova I. FABP7 and HMGCS2 are novel protein markers for apocrine differentiation categorizing apocrine carcinoma of the breast. PLoS One 2014; 9:e112024. [PMID: 25389781 PMCID: PMC4229141 DOI: 10.1371/journal.pone.0112024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/09/2014] [Indexed: 02/01/2023] Open
Abstract
Apocrine carcinoma of the breast is a distinctive malignancy with unique morphological and molecular features, generally characterized by being negative for estrogen and progesterone receptors, and thus not electable for endocrine therapy. Despite the fact that they are morphologically distinct from other breast lesions, no standard molecular criteria are currently available for their diagnosis. Using gel-based proteomics in combination with mass spectrometry and immunohistochemistry we have identified two novel markers, HMGCS2 and FABP7 that categorize the entire breast apocrine differentiation spectrum from benign metaplasia and cysts to invasive stages. Expression of HMGCS2 and FABP7 is strongly associated with apocrine differentiation; their expression is retained by most invasive apocrine carcinomas (IAC) showing positive immunoreactivity in 100% and 78% of apocrine carcinomas, respectively, as compared to non-apocrine tumors (16.7% and 6.8%). The nuclear localization of FABP7 in tumor cells was shown to be associated with more aggressive stages of apocrine carcinomas. In addition, when added to the panel of apocrine biomarkers previously reported by our group: 15-PGDH, HMGCR and ACSM1, together they provide a signature that may represent a golden molecular standard for defining the apocrine phenotype in the breast. Moreover, we show that combining HMGCS2 to the steroidal profile (HMGCS2+/Androgen Receptor (AR)+/Estrogen Receptor(ER)-/Progesteron Receptor (PR)- identifies IACs with a greater sensitivity (79%) as compared with the steroidal profile (AR+/ER-/PR-) alone (54%). We have also presented a detailed immunohistochemical analysis of breast apocrine lesions with a panel of antibodies against proteins which correspond to 10 genes selected from published transcriptomic signatures that currently characterize molecular apocrine subtype and shown that except for melanophilin that is overexpressed in benign apocrine lesions, these proteins were not specific for morphological apocrine differentiation in breast.
Collapse
Affiliation(s)
- Pavel Gromov
- Danish Cancer Society Research Center, Genome Integrity Unit, Copenhagen, Denmark
- * E-mail:
| | - Jaime A. Espinoza
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maj-Lis Talman
- Department of Pathology, the Centre of Diagnostic Investigations, Copenhagen University Hospital, Copenhagen, Denmark
| | - Naoko Honma
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Niels Kroman
- Department of Breast Surgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vera Timmermans Wielenga
- Department of Pathology, the Centre of Diagnostic Investigations, Copenhagen University Hospital, Copenhagen, Denmark
| | - José M. A. Moreira
- Section of Molecular Disease Biology and Sino-Danish Breast Cancer Research Centre, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Danish Cancer Society Research Center, Genome Integrity Unit, Copenhagen, Denmark
| |
Collapse
|
9
|
Gromov P, Moreira JMA, Gromova I. Proteomic analysis of tissue samples in translational breast cancer research. Expert Rev Proteomics 2014; 11:285-302. [DOI: 10.1586/14789450.2014.899469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Patel S, Ngounou Wetie AG, Darie CC, Clarkson BD. Cancer secretomes and their place in supplementing other hallmarks of cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:409-42. [PMID: 24952195 DOI: 10.1007/978-3-319-06068-2_20] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The secretome includes all macromolecules secreted by cells, in particular conditions at defined times, allowing cell-cell communication. Cancer cell secretomes that are altered compared to normal cells have shown significant potential for elucidating cancer biology. Proteins of secretomes are secreted by various secretory pathways and can be studied using different methods. Cancer secretomes seem to play an important role in known hallmarks of cancers such as excessive proliferation, reduced apoptosis, immune invasion, angioneogenesis, alteration in energy metabolism, and development of resistance against anti-cancer therapy [1, 2]. If a significant role of an altered secretome can be identified in cancer cells, using advanced mass spectrometry-based techniques, this may allow researchers to screen and characterize the secretome proteins involved in cancer progression and open up new opportunities to develop new therapies. We aim to elaborate upon recent advances in cancer cell secretome analysis using different proteomics techniques. In this review, we highlight the role of the altered secretome in contributing to already recognized and emerging hallmarks of cancer and we discuss new challenges in the field of secretome analysis.
Collapse
Affiliation(s)
- Sapan Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 415 East 68th Street, New York, NY, 10065, USA
| | | | | | | |
Collapse
|
11
|
Mannello F, Maccari F, Ligi D, Canale M, Galeotti F, Volpi N. Characterization of oversulfated chondroitin sulfate rich in 4,6-O-disulfated disaccharides in breast cyst fluids collected from human breast gross cysts. Cell Biochem Funct 2013; 32:344-50. [DOI: 10.1002/cbf.3022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Francesca Maccari
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Matteo Canale
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Fabio Galeotti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Nicola Volpi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
12
|
Profumo A, Mangerini R, Rubagotti A, Romano P, Damonte G, Guglielmini P, Facchiano A, Ferri F, Ricci F, Rocco M, Boccardo F. Complement C3f serum levels may predict breast cancer risk in women with gross cystic disease of the breast. J Proteomics 2013; 85:44-52. [PMID: 23639844 DOI: 10.1016/j.jprot.2013.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/02/2013] [Accepted: 04/13/2013] [Indexed: 01/19/2023]
Abstract
UNLABELLED Gross cystic disease (GCDB) is a breast benign condition predisposing to breast cancer. Cryopreserved sera from GCDB patients, some of whom later developed a cancer (cases), were studied to identify potential risk markers. A MALDI-TOF mass spectrometry analysis found several complement C3f fragments having a significant increased abundance in cases compared to controls. After multivariate analysis, the full-length form of C3f maintained a predictive value of breast cancer risk. Higher levels of C3f in the serum of women affected by a benign condition like GCDB thus appears to be correlated to the development of breast cancer even 20 years later. BIOLOGICAL SIGNIFICANCE Increased complement system activation has been found in the sera of women affected by GCDB who developed a breast cancer, even twenty or more years later. C3f may predict an increased breast cancer risk in the healthy population and in women affected by predisposing conditions.
Collapse
Affiliation(s)
- Aldo Profumo
- Biopolymers and Proteomics Unit, IRCCS AOU San Martino-IST, San Martino University Hospital and National Cancer Research Institute, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Qin Y, Ouyang H, Liu J, Xie Y. Proteome identification of proteins interacting with histone methyltransferase SET8. Acta Biochim Biophys Sin (Shanghai) 2013; 45:303-8. [PMID: 23419719 DOI: 10.1093/abbs/gmt011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SET8 (also known as PR-Set7/9, SETD8, KMT5A), a member of the SET domain containing methyltransferase family, which specifically catalyzes mono-methylation of K20 on histone H4 (H4K20me1), has been implicated in multiple biological processes, such as gene transcriptional regulation, cell cycle control, genomic integrity maintenance and development. In this study, we used GST-SET8 fusion protein as bait to search for SET8 interaction partners to elucidate physiological functions of SET8. In combination with mass spectrometry, we identified 40 proteins that potentially interact with SET8. DDX21, a nucleolar protein, was further confirmed to associate with SET8. Furthermore, we discovered a novel function of SET8 in the regulation of rRNA transcription.
Collapse
Affiliation(s)
- Yi Qin
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
14
|
Cabezón T, Gromova I, Gromov P, Serizawa R, Timmermans Wielenga V, Kroman N, Celis JE, Moreira JMA. Proteomic profiling of triple-negative breast carcinomas in combination with a three-tier orthogonal technology approach identifies Mage-A4 as potential therapeutic target in estrogen receptor negative breast cancer. Mol Cell Proteomics 2012; 12:381-94. [PMID: 23172894 DOI: 10.1074/mcp.m112.019786] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is a very heterogeneous disease, encompassing several intrinsic subtypes with various morphological and molecular features, natural history and response to therapy. Currently, molecular targeted therapies are available for estrogen receptor (ER)(-) and human epidermal growth factor receptor 2 (Her2)-positive breast tumors. However, a significant proportion of primary breast cancers are negative for ER, progesterone receptor (PgR), and Her2, comprising the triple negative breast cancer (TNBC) group. Women with TNBC have a poor prognosis because of the aggressive nature of these tumors and current lack of suitable targeted therapies. As a consequence, the identification of novel relevant protein targets for this group of patients is of great importance. Using a systematic two dimensional (2D) gel-based proteomic profiling strategy, applied to the analysis of fresh TNBC tissue biopsies, in combination with a three-tier orthogonal technology (two dimensional PAGE/silver staining coupled with MS, two dimensional Western blotting, and immunohistochemistry) approach, we aimed to identify targetable protein markers that were present in a significant fraction of samples and that could define therapy-amenable sub-groups of TNBCs. We present here our results, including a large cumulative database of proteins based on the analysis of 78 TNBCs, and the identification and validation of one specific protein, Mage-A4, which was expressed in a significant fraction of TNBC and Her2-positive/ER negative lesions. The high level expression of Mage-A4 in the tumors studied allowed the detection of the protein in the tumor interstitial fluids as well as in sera. The existence of immunotherapeutics approaches specifically targeting this protein, or Mage-A protein family members, and the fact that we were able to detect its presence in serum suggest novel management options for TNBC and human epidermal growth factor receptor 2 positive/estrogen receptor negative patients bearing Mage-A4 positive tumors.
Collapse
Affiliation(s)
- Teresa Cabezón
- Department of Proteomics in Cancer, Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
BUKHMAN YURYV, DHARSEE MOYEZ, EWING ROB, CHU PETER, TOPALOGLOU THODOROS, LE BIHAN THIERRY, GOH THEO, DUEWEL HENRY, STEWART IANI, WISNIEWSKI JACEKR, NG NANCYF. DESIGN AND ANALYSIS OF QUANTITATIVE DIFFERENTIAL PROTEOMICS INVESTIGATIONS USING LC-MS TECHNOLOGY. J Bioinform Comput Biol 2011; 6:107-23. [DOI: 10.1142/s0219720008003321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/20/2007] [Accepted: 08/20/2007] [Indexed: 11/18/2022]
Abstract
Liquid chromatography–mass spectrometry (LC-MS)-based proteomics is becoming an increasingly important tool in characterizing the abundance of proteins in biological samples of various types and across conditions. Effects of disease or drug treatments on protein abundance are of particular interest for the characterization of biological processes and the identification of biomarkers. Although state-of-the-art instrumentation is available to make high-quality measurements and commercially available software is available to process the data, the complexity of the technology and data presents challenges for bioinformaticians and statisticians. Here, we describe a pipeline for the analysis of quantitative LC-MS data. Key components of this pipeline include experimental design (sample pooling, blocking, and randomization) as well as deconvolution and alignment of mass chromatograms to generate a matrix of molecular abundance profiles. An important challenge in LC-MS–based quantitation is to be able to accurately identify and assign abundance measurements to members of protein families. To address this issue, we implement a novel statistical method for inferring the relative abundance of related members of protein families from tryptic peptide intensities. This pipeline has been used to analyze quantitative LC-MS data from multiple biomarker discovery projects. We illustrate our pipeline here with examples from two of these studies, and show that the pipeline constitutes a complete workable framework for LC-MS–based differential quantitation. Supplementary material is available at .
Collapse
Affiliation(s)
- YURY V. BUKHMAN
- Protana Inc, Toronto, Ontario, Canada
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - MOYEZ DHARSEE
- Protana Inc, Toronto, Ontario, Canada
- Infochromics, Toronto, Ontario, Canada
| | - ROB EWING
- Protana Inc, Toronto, Ontario, Canada
- Infochromics, Toronto, Ontario, Canada
| | - PETER CHU
- Protana Inc, Toronto, Ontario, Canada
- Norkom Technologies, Toronto, Ontario, Canada
| | - THODOROS TOPALOGLOU
- Protana Inc, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - THIERRY LE BIHAN
- Protana Inc, Toronto, Ontario, Canada
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - THEO GOH
- Protana Inc, Toronto, Ontario, Canada
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - HENRY DUEWEL
- Protana Inc, Toronto, Ontario, Canada
- Sigma-Aldrich, St. Louis, Missouri, USA
| | - IAN I. STEWART
- Protana Inc, Toronto, Ontario, Canada
- Infochromics, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - JACEK R. WISNIEWSKI
- Protana Inc, Toronto, Ontario, Canada
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - NANCY F. NG
- Protana Inc, Toronto, Ontario, Canada
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Tea MKM, Grimm C, Heinz-Peer G, Delancey J, Singer C. The predictive value of suspicious sonographic characteristics in atypical cyst-like breast lesions. Breast 2011; 20:165-9. [DOI: 10.1016/j.breast.2010.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/14/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022] Open
|
18
|
Teng PN, Bateman NW, Hood BL, Conrads TP. Advances in proximal fluid proteomics for disease biomarker discovery. J Proteome Res 2010; 9:6091-100. [PMID: 21028795 DOI: 10.1021/pr100904q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although serum/plasma has been the preferred source for identification of disease biomarkers, these efforts have been met with little success, in large part due the relatively small number of highly abundant proteins that render the reliable detection of low abundant disease-related proteins challenging due to the expansive dynamic range of concentration of proteins in this sample. Proximal fluid, the fluid derived from the extracellular milieu of tissues, contains a large repertoire of shed and secreted proteins that are likely to be present at higher concentrations relative to plasma/serum. It is hypothesized that many, if not all, proximal fluid proteins exchange with peripheral circulation, which has provided significant motivation for utilizing proximal fluids as a primary sample source for protein biomarker discovery. The present review highlights recent advances in proximal fluid proteomics, including the various protocols utilized to harvest proximal fluids along with detailing the results from mass spectrometry- and antibody-based analyses.
Collapse
Affiliation(s)
- Pang-ning Teng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | |
Collapse
|
19
|
Celis JE, Cabezón T, Moreira JMA, Gromov P, Gromova I, Timmermans-Wielenga V, Iwase T, Akiyama F, Honma N, Rank F. Molecular characterization of apocrine carcinoma of the breast: validation of an apocrine protein signature in a well-defined cohort. Mol Oncol 2009; 3:220-37. [PMID: 19393583 DOI: 10.1016/j.molonc.2009.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 12/12/2022] Open
Abstract
Invasive apocrine carcinomas (IACs), as defined by morphological features, correspond to 0.3-4% of all invasive ductal carcinomas (IDC), and despite the fact that they are histologically distinct from other breast lesions there are currently no standard molecular criteria available for their diagnosis and no unequivocal information as to their prognosis. In an effort to address these concerns we have been using protein expression profiling technologies in combination with mass spectrometry and immunohistochemistry (IHC) to discover specific biomarkers that could allow us to molecularly characterize these lesions as well as to dissect some of the steps in the processes underlying breast apocrine metaplasia and development of precancerous apocrine lesions. Establishing these apocrine-specific markers as best practice for the routine pathology evaluation of breast cancer, however, will require their validation in large cohorts of patients. Towards this goal we have composed a panel of antibodies against components of an apocrine protein signature that includes probes against the apocrine-specific markers 15-prostaglandin dehydrogenase (15-PGDH), and acyl-CoA synthetase medium-chain family member 1 (ACSM1), in addition to a set of categorizing markers that are consistently expressed (AR, CD24) or not expressed (ERα, PgR, Bcl-2, and GATA-3) by apocrine metaplasia in benign breast lesions and apocrine sweat glands. This panel was used to analyze a well-defined cohort consisting of 14 apocrine ductal carcinoma in situ (ADCIS), and 33 IACs diagnosed at the Cancer Institute Hospital, Tokyo between 1997 and 2001. Samples were originally classified on the basis of cellular morphology with all cases having more than 90% of the tumour cells exhibiting cytological features typical of apocrine cells. Using the expression of 15-PGDH and/or ACSM1 as the main criterion, but taking into account the expression of other markers, we were able to identify unambiguously 13 out of 14 ADCIS (92.9%) and 20 out of 33 (60.6%) IAC samples, respectively, as being of apocrine origin. Our results demonstrate that IACs correspond to a distinct, even if heterogeneous, molecular subgroup of breast carcinomas that can be readily identified in an unbiased way using a combination of markers that recapitulate the phenotype of apocrine sweat glands (15-PGDH(+), ACSM1(+), AR(+), CD24(+), ERα(-), PgR(-), Bcl-2(-), and GATA-3(-)). These results pave the way for addressing issues such as prognosis of IACs, patient stratification for targeted therapeutics, as well as research strategies for identifying novel therapeutic targets for developing new cancer therapies.
Collapse
Affiliation(s)
- Julio E Celis
- Danish Centre for Translational Breast Cancer Research (DCTB), Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Neubauer H, Clare SE, Wozny W, Schwall GP, Poznanovic S, Stegmann W, Vogel U, Sotlar K, Wallwiener D, Kurek R, Fehm T, Cahill MA. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Res 2008; 10:R85. [PMID: 18922159 PMCID: PMC2614521 DOI: 10.1186/bcr2155] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 08/15/2008] [Accepted: 10/15/2008] [Indexed: 12/22/2022] Open
Abstract
Introduction Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis. Methods Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays. Results Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of comedo type, PGRMC1 was expressed in glucose transporter 1 negative or positive poorly oxygenated cells surrounding the necrotic core, surrounded by a more distal halo of ER-positive cells. Conclusions PGRMC1 phosphorylation may be involved in the clinical differences that underpin breast tumors of differing ER status.
Collapse
Affiliation(s)
- Hans Neubauer
- Department of Obstetrics and Gynecology, University of Tuebingen, Calwerstrasse, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Celis JE, Gromov P, Cabezón T, Moreira JMA, Friis E, Jirström K, Llombart-Bosch A, Timmermans-Wielenga V, Rank F, Gromova I. 15-prostaglandin dehydrogenase expression alone or in combination with ACSM1 defines a subgroup of the apocrine molecular subtype of breast carcinoma. Mol Cell Proteomics 2008; 7:1795-809. [PMID: 18632593 DOI: 10.1074/mcp.r800011-mcp200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Established histopathological criteria divide invasive breast carcinomas into defined groups. Ductal of no specific type and lobular are the two major subtypes accounting for around 75 and 15% of all cases, respectively. The remaining 10% include rarer types such as tubular, cribriform, mucinous, papillary, medullary, metaplastic, and apocrine breast carcinomas. Molecular profiling technologies, on the other hand, subdivide breast tumors into five subtypes, basal-like, luminal A, luminal B, normal breast tissue-like, and ERBB2-positive, that have different prognostic characteristics. An additional subclass termed "molecular apocrine" has recently been described, but these lesions did not exhibit all the histopathological features of classical invasive apocrine carcinomas (IACs). IACs make up 0.5-3% of the invasive ductal carcinomas, and despite the fact that they are morphologically distinct from other breast lesions, there are presently no standard molecular criteria available for their diagnosis and as a result no precise information as to their prognosis. Toward this goal our laboratories have embarked in a systematic proteomics endeavor aimed at identifying biomarkers that may characterize and subtype these lesions as well as targets that may lead to the development of novel targeted therapies and chemoprevention strategies. By comparing the protein expression profiles of apocrine macrocysts and non-malignant breast epithelial tissue we have previously reported the identification of a few proteins that are specifically expressed by benign apocrine lesions as well as by the few IACs that were available to us at the time. Here we reiterate our strategy to reveal apocrine cell markers and present novel data, based on the analysis of a considerably larger number of samples, establishing that IACs correspond to a distinct molecular subtype of breast carcinomas characterized by the expression of 15-prostaglandin dehydrogenase alone or in combination with a novel form of acyl-CoA synthetase medium-chain family member 1 (ACSM1). Moreover we show that 15-prostaglandin dehydrogenase is not expressed by other breast cancer types as determined by gel-based proteomics and immunohistochemistry analysis and that antibodies against this protein can identify IACs in an unbiased manner in a large breast cancer tissue microarray making them potentially useful as a diagnostic aid.
Collapse
Affiliation(s)
- Julio E Celis
- Department of Proteomics in Cancer, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Apocrine change occurs in a spectrum of benign lesions in the female breast and is also demonstrated in a subgroup of in situ and invasive carcinomas. Recent research has focused on the molecular phenotype of both benign and malignant apocrine lesions. This review will briefly summarize the morphological characteristics and risk associations of the spectrum of apocrine proliferations, but will focus on the updated molecular studies of both in situ and invasive apocrine carcinomas.
Collapse
Affiliation(s)
- F P O'Malley
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
23
|
Celis JE, Gromova I, Cabezón T, Gromov P, Shen T, Timmermans-Wielenga V, Rank F, Moreira JMA. Identification of a subset of breast carcinomas characterized by expression of cytokeratin 15: relationship between CK15+ progenitor/amplified cells and pre-malignant lesions and invasive disease. Mol Oncol 2007; 1:321-349. [PMID: 19383306 PMCID: PMC5543867 DOI: 10.1016/j.molonc.2007.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022] Open
Abstract
Recently, we presented evidence--based on the analysis of benign hyperproliferative lesions of the breast--for the presence of cells that express the stem cell marker cytokeratin (CK) 15 in combination with CK19, a protein widely expressed by mammary epithelial cells. Here we report the finding of a subset of breast carcinomas characterized by expression of CK15. CK15 expressing tumors constituted 5% (6 out of 120; 4 of ductal type and 2 of lobular type) of the high-risk breast carcinomas examined by gel-based proteomics and immunohistochemistry. Five out of the six CK15+ carcinomas were CK15+/CK19-. The remaining tumor was mainly composed of cells expressing both CK15 and CK19 (CK15+/CK19+), but it also contained invasive areas with cells expressing only one of these makers (CK15+/CK19- and CK15-/CK19+ cells). To address the relationship between putative luminal progenitor/amplified CK15+ cells and malignant disease, and to determine whether cells/lesions lose expression of CK15 as a result of tumour initiation and/or progression, we searched among our sample set for carcinomas in which invasive tumor areas co-existed with non-malignant cells and hyperproliferative and known pre-malignant lesions. Only one such tumour was found (T71), a CK15-/CK19+/p53+ carcinoma that contained p53 negative non-malignant epithelial cells exhibiting a variety of, CK15/CK19 cellular phenotypes (CK15+/CK19+; CK15+/CK19-; CK15-/CK19+; CK15-/CK19-), often associated with simple columnar cells. Single layers of epithelial cells exhibiting all four CK15/CK19 phenotypes were observed contiguous to areas of atypical ductal hyperplasia that contained p53 positive cells that lost CK15 expression (CK15-/CK19+) and had a very similar phenotype to those of the neighboring ductal carcinoma in situ (DCIS) and invasive cells. The undifferentiated CK15+/CK19+ cells, which had the phenotype CK15+/CK19+/CK14+/CK8+ and -/ER-/PgR-/AR-/CD44+ (weak)/CK17-/p63-/vimentin+/Ki67-/Bcl-2+ (weak)/GATA-3-/p53-, most likely correspond to lineage-restricted luminal progenitor cells able to generate the other more differentiated CK15/CK19 cellular phenotypes, thus giving rise to the daunting intratumour heterogeneity displayed by carcinoma T71. Cells with a very similar phenotype to the CK15+/CK19+ progenitor cells were observed in a juvenile fibroadenoma as well as in the large collecting ducts of the breast. The latter, however, expressed in addition CK14 and had a phenotype (CK15+/CK19+/CK14+/CK8+ (weak)/ER-/PgR-/AR-/CD44+ (weak)/CK17-/p63-/vimentin-/Ki67-/Bcl-2+/GATA-3-/p53-) that resembled that of the putative normal adult breast stem cells as inferred from published data. Further molecular characterization of these progenitor cells as well as unraveling of the signaling pathways that regulate their growth and differentiation may prove invaluable for developing novel therapeutic strategies that target cancer at an early stage.
Collapse
Affiliation(s)
- Julio E Celis
- Danish Centre for Translational Breast Cancer Research, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ruhlen RL, Sauter ER. Proteomics of nipple aspirate fluid, breast cyst fluid, milk, and colostrum. Proteomics Clin Appl 2007; 1:845-52. [DOI: 10.1002/prca.200601005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Indexed: 11/10/2022]
|
25
|
Celis JE, Moreira JMA, Gromova I, Cabezón T, Gromov P, Shen T, Timmermans V, Rank F. Characterization of breast precancerous lesions and myoepithelial hyperplasia in sclerosing adenosis with apocrine metaplasia. Mol Oncol 2007; 1:97-119. [PMID: 19383289 PMCID: PMC5543858 DOI: 10.1016/j.molonc.2007.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 02/22/2007] [Accepted: 02/22/2007] [Indexed: 01/26/2023] Open
Abstract
The identification as well as the molecular characterization of breast precancerous lesions in terms of increased risk of progression and/or recurrence is becoming a critical issue today as improved non-surgical procedures are detecting cancer at an earlier stage. The strategy we have been pursuing to identify early apocrine breast lesions is based on the postulate that invasive apocrine carcinomas evolve from epithelial cells in terminal duct lobular units (TDLUs) in a stepwise manner that involves apocrine metaplasia of normal breast epithelia, hyperplasia, atypia, and apocrine carcinoma in situ. First, we identify specific protein biomarkers for benign apocrine metaplasia and thereafter we search for biomarkers that are highly overexpressed by pure invasive apocrine carcinomas. Here we present studies in which we have used antibodies against components of a benign apocrine signature that includes 15-prostaglandin dehydrogenase (15-PGDH), a protein that is expressed by all benign apocrine lesions, and markers that are highly overexpressed by pure invasive apocrine carcinomas such as MRP14 (S100A9), psoriasin (S100A7), and p53 to identify precancerous lesions in sclerosing adenosis (SA) with apocrine metaplasia. The latter is a benign proliferative lesion of the breast that exhibits an increase in the size of the TDLUs and characterized by retained two-cell lining, and myoepithelial (ME) and stromal hyperplasia. SA with apocrine metaplasia, i.e. apocrine adenosis (AA), presents with a higher degree of atypical apocrine hyperplasia, and these lesions are believed to be precursors of apocrine carcinoma, in situ and invasive. Analysis of 24 selected SA samples with apocrine metaplasia revealed non-obligate putative apocrine precancerous lesions that displayed some, or in same cases all the three markers associated with pure invasive apocrine carcinomas. These studies also revealed p53 positive, non-apocrine putative precancerous lesions as well as novel phenotypes for ME and some luminal cells characterized by the expression of cytokeratin 15.
Collapse
Affiliation(s)
- Julio E Celis
- Danish Centre for Translational Breast Cancer Research, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen Y, Zhang H, Xu A, Li N, Liu J, Liu C, Lv D, Wu S, Huang L, Yang S, He D, Xiao X. Elevation of serum l-lactate dehydrogenase B correlated with the clinical stage of lung cancer. Lung Cancer 2006; 54:95-102. [PMID: 16890323 DOI: 10.1016/j.lungcan.2006.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/20/2006] [Accepted: 06/25/2006] [Indexed: 01/19/2023]
Abstract
To identify potential biomarkers related with lung cancer metastasis, conditional media (CM) proteins collected from a primary non-small cell lung cancer (NSCLC) cell line NCI-H226 and its brain metastatic subline H226Br were analyzed by one-dimensional electrophoresis (1-D PAGE) and matrix-assisted laser desorption/time of flight mass spectrometry (MALDI-TOF-MS). Twelve biomarkers were identified, of which l-lactate dehydrogenase B (LDHB) chain was significantly up-regulated in the CM of H226Br cell and was further validated in 105 lung cancer, 93 non-lung cancer, 41 benign lung disease, as well as 65 healthy individuals sera using enzyme-linked immunosorbent assay (ELISA). It was found that the levels of LDHB were specifically elevated in NSCLC sera compared with other groups and were progressively increased with the clinical stage. At the cutoff point 0.260 (OD value) on the receiver operating characteristic (ROC) curve, LDHB could comparatively discriminate lung cancer from benign lung disease and healthy control groups with sensitivity 81%, specificity 70% and total accuracy 76%. These findings demonstrated that secretome could open up a possibility to find, identify, and characterize novel biomarkers related with invasion and metastasis.
Collapse
Affiliation(s)
- Yue Chen
- Key laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, 19th Xinjiekouwai St., Beijing 100875, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Celis JE, Gromova I, Gromov P, Moreira JMA, Cabezón T, Friis E, Rank F. Molecular pathology of breast apocrine carcinomas: A protein expression signature specific for benign apocrine metaplasia. FEBS Lett 2006; 580:2935-44. [PMID: 16631754 DOI: 10.1016/j.febslet.2006.03.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 03/17/2006] [Accepted: 03/22/2006] [Indexed: 11/16/2022]
Abstract
Breast cancer is a heterogeneous disease that encompasses a wide range of histopathological types including: invasive ductal carcinoma, lobular carcinoma, medullary carcinoma, mucinous carcinoma, tubular carcinoma, and apocrine carcinoma among others. Pure apocrine carcinomas represent about 0.5% of all invasive breast cancers according to the Danish Breast Cancer Cooperative Group Registry, and despite the fact that they are morphologically distinct from other breast lesions, there are at present no standard molecular criteria available for their diagnosis. In addition, the relationship between benign apocrine changes and breast carcinoma is unclear and has been a matter of discussion for many years. Recent proteome expression profiling studies of breast apocrine macrocysts, normal breast tissue, and breast tumours have identified specific apocrine biomarkers [15-hydroxyprostaglandin dehydrogenase (15-PGDH) and hydroxymethylglutaryl coenzyme A reductase (HMG-CoA reductase)] present in early and advanced apocrine lesions. These biomarkers in combination with proteins found to be characteristically upregulated in pure apocrine carcinomas (psoriasin, S100A9, and p53) provide a protein expression signature distinctive for benign apocrine metaplasias and apocrine cystic lesions. These studies have also presented compelling evidence for a direct link, through the expression of the prostaglandin degrading enzyme 15-PGDH, between early apocrine lesions and pure apocrine carcinomas. Moreover, specific antibodies against the components of the expression signature have identified precursor lesions in the linear histological progression to apocrine carcinoma. Finally, the identification of proteins that characterize the early stages of mammary apocrine differentiation such as 15-PGDH, HMG-CoA reductase, and cyclooxygenase 2 (COX-2) has opened a window of opportunity for pharmacological intervention, not only in a therapeutic manner but also in a chemopreventive setting. Here we review published and recent results in the context of the current state of research on breast apocrine cancer.
Collapse
Affiliation(s)
- Julio E Celis
- Danish Centre for Translational Breast Cancer Research (DCTB), Strandboulevarden 49, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|