1
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|
2
|
Belli V, Maiello D, Di Lorenzo C, Furia M, Vicidomini R, Turano M. New Insights into Dyskerin-CypA Interaction: Implications for X-Linked Dyskeratosis Congenita and Beyond. Genes (Basel) 2023; 14:1766. [PMID: 37761906 PMCID: PMC10531313 DOI: 10.3390/genes14091766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The highly conserved family of cyclophilins comprises multifunctional chaperones that interact with proteins and RNAs, facilitating the dynamic assembly of multimolecular complexes involved in various cellular processes. Cyclophilin A (CypA), the predominant member of this family, exhibits peptidyl-prolyl cis-trans isomerase activity. This enzymatic function aids with the folding and activation of protein structures and often serves as a molecular regulatory switch for large multimolecular complexes, ensuring appropriate inter- and intra-molecular interactions. Here, we investigated the involvement of CypA in the nucleus, where it plays a crucial role in supporting the assembly and trafficking of heterogeneous ribonucleoproteins (RNPs). We reveal that CypA is enriched in the nucleolus, where it colocalizes with the pseudouridine synthase dyskerin, the catalytic component of the multifunctional H/ACA RNPs involved in the modification of cellular RNAs and telomere stability. We show that dyskerin, whose mutations cause the X-linked dyskeratosis (X-DC) and the Hoyeraal-Hreidarsson congenital ribosomopathies, can directly interact with CypA. These findings, together with the remark that substitution of four dyskerin prolines are known to cause X-DC pathogenic mutations, lead us to indicate this protein as a CypA client. The data presented here suggest that this chaperone can modulate dyskerin activity influencing all its partecipated RNPs.
Collapse
Affiliation(s)
- Valentina Belli
- Istituto Nazionale Tumori—IRCSS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Daniela Maiello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Concetta Di Lorenzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Furia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| |
Collapse
|
3
|
Kaiser RWJ, Erber J, Höpker K, Fabretti F, Müller RU. AATF/Che-1-An RNA Binding Protein at the Nexus of DNA Damage Response and Ribosome Biogenesis. Front Oncol 2020; 10:919. [PMID: 32587828 PMCID: PMC7298124 DOI: 10.3389/fonc.2020.00919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 01/14/2023] Open
Abstract
The DNA damage response (DDR) is a complex signaling network that is activated upon genotoxic stress. It determines cellular fate by either activating cell cycle arrest or initiating apoptosis and thereby ensures genomic stability. The Apoptosis Antagonizing Transcription Factor (AATF/Che-1), an RNA polymerase II-interacting transcription factor and known downstream target of major DDR kinases, affects DDR signaling by inhibiting p53-mediated transcription of pro-apoptotic genes and promoting cell cycle arrest through various pathways instead. Specifically, AATF was shown to inhibit p53 expression at the transcriptional level and repress its pro-apoptotic activity by direct binding to p53 protein and transactivation of anti-apoptotic genes. Solid and hematological tumors of various organs exploit this function by overexpressing AATF. Both copy number gains and high expression levels of AATF were associated with worse prognosis or relapse of malignant tumors. Recently, a number of studies have enabled insights into the molecular mechanisms by which AATF affects both DDR and proliferation. AATF was found to directly localize to sites of DNA damage upon laser ablation and interact with DNA repair proteins. In addition, depletion of AATF resulted in increased DNA damage and decrease of both proliferative activity and genotoxic tolerance. Interestingly, considering the role of ribosomal stress in the regulation of p53, more recent work established AATF as ribosomal RNA binding protein and enabled insights into its role as an important factor for rRNA processing and ribosome biogenesis. This Mini Review summarizes recent findings on AATF and its important role in the DDR, malignancy, and ribosome biogenesis.
Collapse
Affiliation(s)
- Rainer W J Kaiser
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian-University Munich, Munich, Germany.,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Johanna Erber
- Department I of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Medicine II, School of Medicine, Technical University of Munich, University Hospital Rechts der Isar, Munich, Germany
| | - Katja Höpker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
5
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Belli V, Matrone N, Sagliocchi S, Incarnato R, Conte A, Pizzo E, Turano M, Angrisani A, Furia M. A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118529. [DOI: 10.1016/j.bbamcr.2019.118529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
|
7
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Wang B, Song N, Tang C, Ma J, Wang N, Sun Y, Kang Z. PsRPs26, a 40S Ribosomal Protein Subunit, Regulates the Growth and Pathogenicity of Puccinia striiformis f. sp. Tritici. Front Microbiol 2019; 10:968. [PMID: 31134016 PMCID: PMC6523408 DOI: 10.3389/fmicb.2019.00968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosomes are essential for proliferation, differentiation, and cell growth. RPs26 is a ribosomal subunit structural protein involved in the growth and development process. Little is known about the function of PsRPs26 in pathogenic fungi. In this study, we isolated the RPs26 gene, PsRPs26, from Puccinia striiformis f. sp. tritici (Pst). PsRPs26 contains a eukaryotic-specific Y62-K70 motif and is more than 90% identical with its ortholog gene in other fungi. PsRPs26 was found to be localized in both the nucleus and cytoplasm. Expression of PsRPs26 increased when wheat seedlings were inoculated with the Pst CYR31 isolate. Moreover, knockdown of PsRPs26 by a host-induced gene silencing system inhibited growth and limited urediospore production in Pst. Our discovery that PsRPs26 may contribute to the pathogenicity of Pst and open a new way in the pathogenic function of PsRPs26 in cereal rust fungi.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Na Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jinbiao Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yanfei Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
|
10
|
Juli G, Gismondi A, Monteleone V, Caldarola S, Iadevaia V, Aspesi A, Dianzani I, Proud CG, Loreni F. Depletion of ribosomal protein S19 causes a reduction of rRNA synthesis. Sci Rep 2016; 6:35026. [PMID: 27734913 PMCID: PMC5062126 DOI: 10.1038/srep35026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ribosome biogenesis plays key roles in cell growth by providing increased capacity for protein synthesis. It requires coordinated production of ribosomal proteins (RP) and ribosomal RNA (rRNA), including the processing of the latter. Here, we show that, the depletion of RPS19 causes a reduction of rRNA synthesis in cell lines of both erythroid and non-erythroid origin. A similar effect is observed upon depletion of RPS6 or RPL11. The deficiency of RPS19 does not alter the stability of rRNA, but instead leads to an inhibition of RNA Polymerase I (Pol I) activity. In fact, results of nuclear run-on assays and ChIP experiments show that association of Pol I with the rRNA gene is reduced in RPS19-depleted cells. The phosphorylation of three known regulators of Pol I, CDK2, AKT and AMPK, is altered during ribosomal stress and could be involved in the observed downregulation. Finally, RNA from patients with Diamond Blackfan Anemia (DBA), shows, on average, a lower level of 47S precursor. This indicates that inhibition of rRNA synthesis could be one of the molecular alterations at the basis of DBA.
Collapse
Affiliation(s)
- Giada Juli
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | | | - Sara Caldarola
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Valentina Iadevaia
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Fabrizio Loreni
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
11
|
Schubert KO, Weiland F, Baune BT, Hoffmann P. The use of MALDI-MSI in the investigation of psychiatric and neurodegenerative disorders: A review. Proteomics 2016; 16:1747-58. [DOI: 10.1002/pmic.201500460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/08/2016] [Accepted: 02/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | - Florian Weiland
- Adelaide Proteomics Centre; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| | - Bernhard T. Baune
- Discipline of Psychiatry; The University of Adelaide; Adelaide Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| |
Collapse
|
12
|
Kim TH, Leslie P, Zhang Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget 2015; 5:860-71. [PMID: 24658219 PMCID: PMC4011588 DOI: 10.18632/oncotarget.1784] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ribosomal proteins (RPs) have gained much attention for their extraribosomal functions particularly with respect to p53 regulation. To date, about fourteen RPs have shown to bind to MDM2 and regulate p53. Upon binding to MDM2, the RPs suppress MDM2 E3 ubiquitin ligase activity resulting in the stabilization and activation of p53. Of the RPs that bind to MDM2, RPL5 and RPL11 are the most studied and RPL11 appears to have the most significant role in p53 regulation. Considering that more than 17% of RP species have been shown to interact with MDM2, one of the questions remains unresolved is why so many RPs bind MDM2 and modulate p53. Genes encoding RPs are widely dispersed on different chromosomes in both mice and humans. As components of ribosome, RP expression is tightly regulated to meet the appropriate stoichiometric ratio between RPs and rRNAs. Once genomic instability (e.g. aneuploidy) occurs, transcriptional and translational changes due to change of DNA copy number can result in an imbalance in the expression of RPs including those that bind to MDM2. Such an imbalance in RP expression could lead to failure to assemble functional ribosomes resulting in ribosomal stress. We propose that RPs have evolved ability to regulate MDM2 in response to genomic instability as an additional layer of p53 regulation. Full understanding of the biological roles of RPs could potentially establish RPs as a novel class of therapeutic targets in human diseases such as cancer.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
13
|
Caterino M, Aspesi A, Pavesi E, Imperlini E, Pagnozzi D, Ingenito L, Santoro C, Dianzani I, Ruoppolo M. Analysis of the interactome of ribosomal protein S19 mutants. Proteomics 2014; 14:2286-96. [DOI: 10.1002/pmic.201300513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/16/2014] [Accepted: 07/24/2014] [Indexed: 02/03/2023]
Affiliation(s)
| | - Anna Aspesi
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Elisa Pavesi
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | | | | | | | - Claudio Santoro
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Irma Dianzani
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Margherita Ruoppolo
- CEINGE Biotecnologie Avanzate scarl; Napoli Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Universita’ di Napoli “Federico II”; Napoli Italy
| |
Collapse
|
14
|
Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H. Ribosomopathies: mechanisms of disease. PLASMATOLOGY 2014; 7:7-16. [PMID: 25512719 PMCID: PMC4251057 DOI: 10.4137/cmbd.s16952] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 01/05/2023]
Abstract
Ribosomopathies are diseases caused by alterations in the structure or function of ribosomal components. Progress in our understanding of the role of the ribosome in translational and transcriptional regulation has clarified the mechanisms of the ribosomopathies and the relationship between ribosomal dysfunction and other diseases, especially cancer. This review aims to discuss these topics with updated information.
Collapse
Affiliation(s)
- Hani Nakhoul
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Jiangwei Ke
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA. ; Department of Laboratory Medicine, Jiangxi Children's Hospital, Nanchang, Jiangxi, China
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| |
Collapse
|
15
|
MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol 2014; 34:3321-40. [PMID: 24980433 DOI: 10.1128/mcb.00320-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MDM2 mediates the ubiquitylation and thereby triggers the proteasomal degradation of the tumor suppressor protein p53. However, genetic evidence suggests that MDM2 contributes to multiple regulatory networks independently of p53 degradation. We have now identified the DEAD-box RNA helicase DDX24 as a nucleolar protein that interacts with MDM2. DDX24 was found to bind to the central region of MDM2, resulting in the polyubiquitylation of DDX24 both in vitro and in vivo. Unexpectedly, however, the polyubiquitylation of DDX24 did not elicit its proteasomal degradation but rather promoted its association with preribosomal ribonucleoprotein (pre-rRNP) processing complexes that are required for the early steps of pre-rRNA processing. Consistently with these findings, depletion of DDX24 in cells impaired pre-rRNA processing and resulted both in abrogation of MDM2 function and in consequent p53 stabilization. Our results thus suggest an unexpected role of MDM2 in the nonproteolytic ubiquitylation of DDX24, which may contribute to the regulation of pre-rRNA processing.
Collapse
|
16
|
Acquadro E, Caron I, Tortarolo M, Bucci EM, Bendotti C, Corpillo D. Human SOD1-G93A specific distribution evidenced in murine brain of a transgenic model for amyotrophic lateral sclerosis by MALDI imaging mass spectrometry. J Proteome Res 2014; 13:1800-9. [PMID: 24579824 DOI: 10.1021/pr400942n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease caused by the degeneration of motor neurons. The transgenic mouse model carrying the human SOD1G93A mutant gene (hSOD1G93A mouse) represents one of the most reliable and widely used model of this pathology. In the present work, the innovative technique of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was applied in the study of pathological alterations at the level of small brain regions such as facial and trigeminal nuclei, which in rodents are extremely small and would be difficult to analyze with classical proteomics approaches. Comparing slices from three mice groups (transgenic hSOD1G93A, transgenic hSOD1WT, and nontransgenic, Ntg), this technique allowed us to evidence the accumulation of hSOD1G93A in the facial and trigeminal nuclei, where it generates aggregates. This phenomenon is likely to be correlated to the degeneration observed in these regions. Moreover, a statistical analysis allowed us to highlight other proteins as differentially expressed among the three mice groups analyzed. Some of them were identified by reverse-phase HPLC fractionation of extracted proteins and mass spectrometric analysis before and after trypsin digestion. In particular, the 40S ribosomal protein S19 (RPS19) was upregulated in the parenkyma and reactive glial cells in facial nuclei of hSOD1G93A mice when compared to transgenic hSOD1WT and nontransgenic ones.
Collapse
Affiliation(s)
- Elena Acquadro
- ABLE Bioscences, BioIndustry Park Silvano Fumero S.p.A., Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Monti M, Cozzolino M, Cozzolino F, Vitiello G, Tedesco R, Flagiello A, Pucci P. Puzzle of protein complexesin vivo: a present and future challenge for functional proteomics. Expert Rev Proteomics 2014; 6:159-69. [DOI: 10.1586/epr.09.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Matassa DS, Amoroso MR, Agliarulo I, Maddalena F, Sisinni L, Paladino S, Romano S, Romano MF, Sagar V, Loreni F, Landriscina M, Esposito F. Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1. Cell Death Dis 2013; 4:e851. [PMID: 24113185 PMCID: PMC3824688 DOI: 10.1038/cddis.2013.379] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/16/2022]
Abstract
TNF receptor-associated protein 1 (TRAP1), the main mitochondrial member of the heat shock protein (HSP) 90 family, is induced in most tumor types and is involved in the regulation of proteostasis in the mitochondria of tumor cells through the control of folding and stability of selective proteins, such as Cyclophilin D and Sorcin. Notably, we have recently demonstrated that TRAP1 also interacts with the regulatory protein particle TBP7 in the endoplasmic reticulum (ER), where it is involved in a further extra-mitochondrial quality control of nuclear-encoded mitochondrial proteins through the regulation of their ubiquitination/degradation. Here we show that TRAP1 is involved in the translational control of cancer cells through an attenuation of global protein synthesis, as evidenced by an inverse correlation between TRAP1 expression and ubiquitination/degradation of nascent stress-protective client proteins. This study demonstrates for the first time that TRAP1 is associated with ribosomes and with several translation factors in colon carcinoma cells and, remarkably, is found co-upregulated with some components of the translational apparatus (eIF4A, eIF4E, eEF1A and eEF1G) in human colorectal cancers, with potential new opportunities for therapeutic intervention in humans. Moreover, TRAP1 regulates the rate of protein synthesis through the eIF2α pathway either under basal conditions or under stress, favoring the activation of GCN2 and PERK kinases, with consequent phosphorylation of eIF2α and attenuation of cap-dependent translation. This enhances the synthesis of selective stress-responsive proteins, such as the transcription factor ATF4 and its downstream effectors BiP/Grp78, and the cystine antiporter system xCT, thereby providing protection against ER stress, oxidative damage and nutrient deprivation. Accordingly, TRAP1 silencing sensitizes cells to apoptosis induced by novel antitumoral drugs that inhibit cap-dependent translation, such as ribavirin or 4EGI-1, and reduces the ability of cells to migrate through the pores of transwell filters. These new findings target the TRAP1 network in the development of novel anti-cancer strategies.
Collapse
Affiliation(s)
- D S Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ribosomal protein S19 is a novel therapeutic agent in inflammatory kidney disease. Clin Sci (Lond) 2013; 124:627-37. [PMID: 23252627 DOI: 10.1042/cs20120526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RPS19 (ribosomal protein S19), a component of the 40S small ribosomal subunit, has recently been identified to bind the pro-inflammatory cytokine macrophage MIF (migration inhibitory factor). In vitro experiments identify RPS19 as the first endogenous MIF inhibitor by blocking the binding of MIF to its receptor CD74 and MIF functions on monocyte adherence to endothelial cells. In the present study, we sought to establish whether recombinant RPS19 can exert anti-inflammatory effects in a mouse model of anti-GBM (glomerular basement membrane) GN (glomerulonephritis) in which MIF is known to play an important role. Accelerated anti-GBM GN was induced in C57BL/6J mice by immunization with sheep IgG followed 5 days later by administration of sheep anti-mouse GBM serum. Groups of eight mice were treated once daily by intraperitoneal injection with 6 mg of RPS19/kg of body weight or an irrelevant control protein (human secretoglobin 2A1), or received no treatment, from day 0 until being killed on day 10. Mice that received control or no treatment developed severe crescentic anti-GBM disease on day 10 with increased serum creatinine, declined creatinine clearance and increased proteinuria. These changes were associated with up-regulation of MIF and its receptor CD74 activation of ERK (extracellular-signal-regulated kinase) and NF-κB (nuclear factor κB) signalling, prominent macrophage and T-cell infiltration, as well as up-regulation of Th1 [T-bet and IFNγ (interferon γ)] and Th17 [STAT3 (signal transducer and activator of transcription 3) and IL (interleukin)-17A] as well as IL-1β and TNFα (tumour necrosis factor α). In contrast, RPS19 treatment largely prevented the development of glomerular crescents and glomerular necrosis, and prevented renal dysfunction and proteinuria (all P<0.001). Of note, RPS19 blocked up-regulation of MIF and CD74 and inactivated ERK and NF-κB signalling, thereby inhibiting macrophage and T-cell infiltration, Th1 and Th17 responses and up-regulation of pro-inflammatory cytokines (all P<0.01). These results demonstrate that RPS19 is a potent anti-inflammatory agent, which appears to work primarily by inhibiting MIF signalling.
Collapse
|
20
|
Caterino M, Corbo C, Imperlini E, Armiraglio M, Pavesi E, Aspesi A, Loreni F, Dianzani I, Ruoppolo M. Differential proteomic analysis in human cells subjected to ribosomal stress. Proteomics 2013; 13:1220-7. [PMID: 23412928 DOI: 10.1002/pmic.201200242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/10/2012] [Accepted: 01/25/2013] [Indexed: 12/17/2022]
Abstract
The biochemical phenotype of cells affected by ribosomal stress has not yet been studied in detail. Here we report a comparative proteomic analysis of cell lines silenced for the RPS19 gene versus cell lines transfected with scramble shRNA cells performed using the DIGE technology integrated to bioinformatics tools. Importantly, to achieve the broadest possible understanding of the outcome, we carried out two independent DIGE experiments using two different pH ranges, thus, allowing the identification of 106 proteins. Our data revealed the deregulation of proteins involved in cytoskeleton reorganization, PTMs, and translation process. A subset (26.9%) of these proteins is translated from transcripts that include internal ribosome entry site motifs. This supports the hypothesis that during ribosomal stress translation of specific messenger RNAs is altered.
Collapse
|
21
|
Martínez-Salgado JL, León-Ramírez CG, Pacheco AB, Ruiz-Herrera J, de la Rosa APB. Analysis of the regulation of the Ustilago maydis proteome by dimorphism, pH or MAPK and GCN5 genes. J Proteomics 2013; 79:251-62. [PMID: 23305952 DOI: 10.1016/j.jprot.2012.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/23/2012] [Accepted: 12/30/2012] [Indexed: 11/18/2022]
Abstract
Ustilago maydis is a dimorphic corn pathogenic basidiomycota whose haploid cells grow in yeast form at pH7, while at pH3 they grow in the mycelial form. Two-dimensional gel electrophoresis (2-DE) coupled with LC-ESI/MS-MS was used to analyze the differential accumulation of proteins in yeast against mycelial morphologies. 2-DE maps were obtained in the pH range of 5-8 and 404 total protein spots were separated. From these, 43 were differentially accumulated when comparing strains FB2wt, constitutive yeast CL211, and constitutive mycelial GP25 growing at pH7 against pH3. Differentially accumulated proteins in response to pH are related with defense against reactive oxygen species or toxic compounds. Up-accumulation of CipC and down-accumulation of Hmp1 were specifically related with mycelial growth. Changes in proteins that were affected by mutation in the gene encoding the adaptor of a MAPK pathway (CL211 strain) were UM521* and transcription factors Btf3, Sol1 and Sti1. Mutation of GCN5 (GP25 strain) affected the accumulation of Rps19-ribosomal protein, Mge1-heath shock protein, and Lpd1-dihydrolipoamide dehydrogenase. Our results complement the information about the genes and proteins related with the dimorphic transition in U. maydis and changes in proteins affected by mutations in a MAPK pathway and GCN5 gene.
Collapse
Affiliation(s)
- José L Martínez-Salgado
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica. Camino a La Presa San José No. 2055, Lomas 4ª Sección, 78216, San Luis Potosí, SLP, Mexico
| | | | | | | | | |
Collapse
|
22
|
Simabuco FM, Morello LG, Aragão AZB, Paes Leme AF, Zanchin NIT. Proteomic characterization of the human FTSJ3 preribosomal complexes. J Proteome Res 2012; 11:3112-26. [PMID: 22540864 DOI: 10.1021/pr201106n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In eukaryotes, ribosome biogenesis involves excision of transcribed spacer sequences from the preribosomal RNA, base and ribose covalent modification at specific sites, assembly of ribosomal proteins, and transport of subunits from the nucleolus to the cytoplasm where mature ribosomes engage in mRNA translation. The biochemical reactions throughout ribosome synthesis are mediated by factors that associate transiently to the preribosomal complexes. In this work, we describe the complexes containing the human protein FTSJ3. This protein functions in association with NIP7 in ribosome synthesis and contains a putative RNA-methyl-transferase domain (FtsJ) in the N-terminal region and two uncharacterized domains in the central (DUF3381) and C-terminal (Spb1_C) regions. FLAG-tagged FTSJ3 coimmunoprecipitates both RPS and RPL proteins, ribosome synthesis factors, and proteins whose function in ribosome synthesis has not been demonstrated yet. A similar set of proteins coimmunoprecipitates with the Spb1_C domain, suggesting that FTSJ3 interaction with the preribosome complexes is mediated by the Spb1_C domain. Approximately 50% of the components of FTSJ3 complexes are shared by complexes described for RPS19, Par14, nucleolin, and NOP56. A significant number of factors are also found in complexes described for nucleophosmin, SBDS, ISG20L2, and NIP7. These findings provide information on the dynamics of preribosome complexes in human cells.
Collapse
Affiliation(s)
- Fernando M Simabuco
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais , Rua Giuseppe Maximo Scolfaro 10000, P.O. Box 6192, CEP 13083-970, Campinas SP, Brazil
| | | | | | | | | |
Collapse
|
23
|
Morello LG, Coltri PP, Quaresma AJC, Simabuco FM, Silva TCL, Singh G, Nickerson JA, Oliveira CC, Moore MJ, Zanchin NIT. The human nucleolar protein FTSJ3 associates with NIP7 and functions in pre-rRNA processing. PLoS One 2011; 6:e29174. [PMID: 22195017 PMCID: PMC3241699 DOI: 10.1371/journal.pone.0029174] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/22/2011] [Indexed: 12/22/2022] Open
Abstract
NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A′ to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells.
Collapse
Affiliation(s)
- Luis G. Morello
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Alexandre J. C. Quaresma
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fernando M. Simabuco
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Tereza C. L. Silva
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Guramrit Singh
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jeffrey A. Nickerson
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Carla C. Oliveira
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Melissa J. Moore
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nilson I. T. Zanchin
- Instituto Carlos Chagas, Fundação Instituto Oswaldo Cruz, Curitiba, Paraná, Brazil
- * E-mail:
| |
Collapse
|
24
|
Angrisani A, Turano M, Paparo L, Di Mauro C, Furia M. A new human dyskerin isoform with cytoplasmic localization. Biochim Biophys Acta Gen Subj 2011; 1810:1361-8. [DOI: 10.1016/j.bbagen.2011.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 10/18/2022]
|
25
|
Protein network study of human AF4 reveals its central role in RNA Pol II-mediated transcription and in phosphorylation-dependent regulatory mechanisms. Biochem J 2011; 438:121-31. [PMID: 21574958 PMCID: PMC3174057 DOI: 10.1042/bj20101633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AF4 belongs to a family of proteins implicated in childhood lymphoblastic leukaemia, FRAXE (Fragile X E site) mental retardation and ataxia. AF4 is a transcriptional activator that is involved in transcriptional elongation. Although AF4 has been implicated in MLL (mixed-lineage leukaemia)-related leukaemogenesis, AF4-dependent physiological mechanisms have not been clearly defined. Proteins that interact with AF4 may also play important roles in mediating oncogenesis, and are potential targets for novel therapies. Using a functional proteomic approach involving tandem MS and bioinformatics, we identified 51 AF4-interacting proteins of various Gene Ontology categories. Approximately 60% participate in transcription regulatory mechanisms, including the Mediator complex in eukaryotic cells. In the present paper we report one of the first extensive proteomic studies aimed at elucidating AF4 protein cross-talk. Moreover, we found that the AF4 residues Thr220 and Ser212 are phosphorylated, which suggests that AF4 function depends on phosphorylation mechanisms. We also mapped the AF4-interaction site with CDK9 (cyclin-dependent kinase 9), which is a direct interactor crucial for the function and regulation of the protein. The findings of the present study significantly expand the number of putative members of the multiprotein complex formed by AF4, which is instrumental in promoting the transcription/elongation of specific genes in human cells.
Collapse
|
26
|
Hoque M, Shamanna RA, Guan D, Pe'ery T, Mathews MB. HIV-1 replication and latency are regulated by translational control of cyclin T1. J Mol Biol 2011; 410:917-32. [PMID: 21763496 DOI: 10.1016/j.jmb.2011.03.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) exploits cellular proteins during its replicative cycle and latent infection. The positive transcription elongation factor b (P-TEFb) is a key cellular transcription factor critical for these viral processes and is a drug target. During viral replication, P-TEFb is recruited via interactions of its cyclin T1 subunit with the HIV Tat (transactivator of transcription) protein and TAR (transactivation response) element. Through RNA silencing and over-expression experiments, we discovered that nuclear factor 90 (NF90), a cellular RNA binding protein, regulates P-TEFb expression. NF90 depletion reduced cyclin T1 protein levels by inhibiting translation initiation. Regulation was mediated by the 3' untranslated region of cyclin T1 mRNA independently of microRNAs. Cyclin T1 induction is involved in the escape of HIV-1 from latency. We show that the activation of viral replication by phorbol ester in latently infected monocytic cells requires the posttranscriptional induction of NF90 and cyclin T1, implicating NF90 in protein kinase C signaling pathways. This investigation reveals a novel mechanism of cyclin T1 regulation and establishes NF90 as a regulator of HIV-1 replication during both productive infection and induction from latency.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | | | |
Collapse
|
27
|
Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML. Blood 2011; 118:903-15. [PMID: 21653321 DOI: 10.1182/blood-2010-11-318022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a zebrafish mutagenesis screen to identify genes essential for myelopoiesis, we identified an insertional allele hi1727, which disrupts the gene encoding RNA helicase dead-box 18 (Ddx18). Homozygous Ddx18 mutant embryos exhibit a profound loss of myeloid and erythroid cells along with cardiovascular abnormalities and reduced size. These mutants also display prominent apoptosis and a G1 cell-cycle arrest. Loss of p53, but not Bcl-xl overexpression, rescues myeloid cells to normal levels, suggesting that the hematopoietic defect is because of p53-dependent G1 cell-cycle arrest. We then sequenced primary samples from 262 patients with myeloid malignancies because genes essential for myelopoiesis are often mutated in human leukemias. We identified 4 nonsynonymous sequence variants (NSVs) of DDX18 in acute myeloid leukemia (AML) patient samples. RNA encoding wild-type DDX18 and 3 NSVs rescued the hematopoietic defect, indicating normal DDX18 activity. RNA encoding one mutation, DDX18-E76del, was unable to rescue hematopoiesis, and resulted in reduced myeloid cell numbers in ddx18(hi1727/+) embryos, indicating this NSV likely functions as a dominant-negative allele. These studies demonstrate the use of the zebrafish as a robust in vivo system for assessing the function of genes mutated in AML, which will become increasingly important as more sequence variants are identified by next-generation resequencing technologies.
Collapse
|
28
|
Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta Rev Cancer 2011; 1815:147-57. [DOI: 10.1016/j.bbcan.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
|
29
|
Cheng E, Haque A, Rimmer MA, Hussein ITM, Sheema S, Little A, Mir MA. Characterization of the Interaction between hantavirus nucleocapsid protein (N) and ribosomal protein S19 (RPS19). J Biol Chem 2011; 286:11814-24. [PMID: 21296889 DOI: 10.1074/jbc.m110.210179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hantaviruses, members of the Bunyaviridae family, are negative-stranded emerging RNA viruses and category A pathogens that cause serious illness when transmitted to humans through aerosolized excreta of infected rodent hosts. Hantaviruses have evolved a novel translation initiation mechanism, operated by nucleocapsid protein (N), which preferentially facilitates the translation of viral mRNAs. N binds to the ribosomal protein S19 (RPS19), a structural component of the 40 S ribosomal subunit. In addition, N also binds to both the viral mRNA 5' cap and a highly conserved triplet repeat sequence of the viral mRNA 5' UTR. The simultaneous binding of N at both the terminal cap and the 5' UTR favors ribosome loading on viral transcripts during translation initiation. We characterized the binding between N and RPS19 and demonstrate the role of the N-RPS19 interaction in N-mediated translation initiation mechanism. We show that N specifically binds to RPS19 with high affinity and a binding stoichiometry of 1:1. The N-RPS19 interaction is an enthalpy-driven process. RPS19 undergoes a conformational change after binding to N. Using T7 RNA polymerase, we synthesized the hantavirus S segment mRNA, which matches the transcript generated by the viral RNA-dependent RNA polymerase in cells. We show that the N-RPS19 interaction plays a critical role in the translation of this mRNA both in cells and rabbit reticulocyte lysates. Our results demonstrate that the N-mediated translation initiation mechanism, which lures the host translation machinery for the preferential translation of viral transcripts, primarily depends on the N-RPS19 interaction. We suggest that the N-RPS19 interaction is a novel target to shut down the N-mediated translation strategy and hence virus replication in cells.
Collapse
Affiliation(s)
- Erdong Cheng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66103, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mutations affecting genes encoding ribosomal proteins cause Diamond Blackfan anemia (DBA), a rare congenital syndrome associated with physical anomalies, short stature, red cell aplasia, and an increased risk of malignancy. p53 activation has been identified as a key component in the pathophysiology of DBA after cellular and molecular studies of knockdown cellular and animal models of DBA and other disorders affecting ribosomal assembly or function. Other potential mechanisms that warrant further investigation include impaired translation as the result of ribosomal insufficiency, which may be ameliorated by leucine supplementation, and alternative splicing leading to reduced expression of a cytoplasmic heme exporter, the human homolog of the receptor for feline leukemia virus C (FVLCR). However, the molecular basis for the characteristic steroid responsiveness of the erythroid failure in DBA remains unknown. This review explores the clinical and therapeutic implications of the current state of knowledge and delineates important but as-yet-unanswered questions.
Collapse
Affiliation(s)
- Sarah Ball
- St George's University of London, London, United Kingdom.
| |
Collapse
|
31
|
Morello LG, Hesling C, Coltri PP, Castilho BA, Rimokh R, Zanchin NIT. The NIP7 protein is required for accurate pre-rRNA processing in human cells. Nucleic Acids Res 2010; 39:648-65. [PMID: 20798176 PMCID: PMC3025556 DOI: 10.1093/nar/gkq758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic ribosome biogenesis requires the function of a large number of trans-acting factors which interact transiently with the nascent pre-rRNA and dissociate as the ribosomal subunits proceed to maturation and export to the cytoplasm. Loss-of-function mutations in human trans-acting factors or ribosome components may lead to genetic syndromes. In a previous study, we have shown association between the SBDS (Shwachman-Bodian-Diamond syndrome) and NIP7 proteins and that downregulation of SBDS in HEK293 affects gene expression at the transcriptional and translational levels. In this study, we show that downregulation of NIP7 affects pre-rRNA processing, causing an imbalance of the 40S/60S subunit ratio. We also identified defects at the pre-rRNA processing level with a decrease of the 34S pre-rRNA concentration and an increase of the 26S and 21S pre-rRNA concentrations, indicating that processing at site 2 is particularly slower in NIP7-depleted cells and showing that NIP7 is required for maturation of the 18S rRNA. The NIP7 protein is restricted to the nuclear compartment and co-sediments with complexes with molecular masses in the range of 40S-80S, suggesting an association to nucleolar pre-ribosomal particles. Downregulation of NIP7 affects cell proliferation, consistently with an important role for NIP7 in rRNA biosynthesis in human cells.
Collapse
Affiliation(s)
- Luis G Morello
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas SP, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Iadevaia V, Caldarola S, Biondini L, Gismondi A, Karlsson S, Dianzani I, Loreni F. PIM1 kinase is destabilized by ribosomal stress causing inhibition of cell cycle progression. Oncogene 2010; 29:5490-9. [PMID: 20639905 DOI: 10.1038/onc.2010.279] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PIM1 is a constitutively active serine/threonine kinase regulated by cytokines, growth factors and hormones. It has been implicated in the control of cell cycle progression and apoptosis and its overexpression has been associated with various kinds of lymphoid and hematopoietic malignancies. The activity of PIM1 is dependent on the phosphorylation of several targets involved in transcription, cell cycle and apoptosis. We have recently observed that PIM1 interacts with ribosomal protein (RP)S19 and cosediments with ribosomes. Defects in ribosome synthesis (ribosomal stress) have been shown to activate a p53-dependent growth arrest response. To investigate if PIM1 could have a role in the response to ribosomal stress, we induced ribosome synthesis alterations in TF-1 and K562 erythroid cell lines. We found that RP deficiency, induced by RNA interference or treatment with inhibitor of nucleolar functions, causes a drastic destabilization of PIM1. The lower level of PIM1 induces an increase in the cell cycle inhibitor p27(Kip1) and blocks cell proliferation even in the absence of p53. Notably, restoring PIM1 level by transfection causes a recovery of cell growth. Our data indicate that PIM1 may act as a sensor for ribosomal stress independently of or in concert with the known p53-dependent mechanisms.
Collapse
Affiliation(s)
- V Iadevaia
- Department of Biology, University Tor Vergata, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
A transgenic mouse model demonstrates a dominant negative effect of a point mutation in the RPS19 gene associated with Diamond-Blackfan anemia. Blood 2010; 116:2826-35. [PMID: 20606162 DOI: 10.1182/blood-2010-03-275776] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diamond Blackfan anemia (DBA) is an inherited erythroblastopenia associated with mutations in at least 8 different ribosomal protein genes. Mutations in the gene encoding ribosomal protein S19 (RPS19) have been identified in approximately 25% of DBA families. Most of these mutations disrupt either the translation or stability of the RPS19 protein and are predicted to cause DBA by haploinsufficiency. However, approximately 30% of RPS19 mutations are missense mutations that do not alter the stability of the RPS19 protein and are hypothesized to act by a dominant negative mechanism. To formally test this hypothesis, we generated a transgenic mouse model expressing an RPS19 mutation in which an arginine residue is replaced with a tryptophan residue at codon 62 (RPS19R62W). Constitutive expression of RPS19R62W in developing mice was lethal. Conditional expression of RPS19R62W resulted in growth retardation, a mild anemia with reduced numbers of erythroid progenitors, and significant inhibition of terminal erythroid maturation, similar to DBA. RNA profiling demonstrated more than 700 dysregulated genes belonging to the same pathways that are disrupted in RNA profiles of DBA patient cells. We conclude that RPS19R62W is a dominant negative DBA mutation.
Collapse
|
34
|
Diamond Blackfan Anemia at the Crossroad between Ribosome Biogenesis and Heme Metabolism. Adv Hematol 2010; 2010:790632. [PMID: 20454576 PMCID: PMC2864449 DOI: 10.1155/2010/790632] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/22/2010] [Accepted: 02/16/2010] [Indexed: 01/23/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare, pure red-cell aplasia that presents during infancy. Approximately 40% of cases are associated with other congenital defects, particularly malformations of the upper limb or craniofacial region. Mutations in the gene coding for the ribosomal protein RPS19 have been identified in 25% of patients with DBA, with resulting impairment of 18S rRNA processing and 40S ribosomal subunit formation. Moreover, mutations in other ribosomal protein coding genes account for about 25% of other DBA cases. Recently, the analysis of mice from which the gene coding for the heme exporter Feline Leukemia Virus subgroup C Receptor (FLVCR1) is deleted suggested that this gene may be involved in the pathogenesis of DBA. FLVCR1-null mice show a phenotype resembling that of DBA patients, including erythroid failure and malformations. Interestingly, some DBA patients have disease linkage to chromosome 1q31, where FLVCR1 is mapped. Moreover, it has been reported that cells from DBA patients express alternatively spliced isoforms of FLVCR1 which encode non-functional proteins. Herein, we review the known roles of RPS19 and FLVCR1 in ribosome function and heme metabolism respectively, and discuss how the deficiency of a ribosomal protein or of a heme exporter may result in the same phenotype.
Collapse
|
35
|
Fröjmark AS, Badhai J, Klar J, Thuveson M, Schuster J, Dahl N. Cooperative effect of ribosomal protein s19 and Pim-1 kinase on murine c-Myc expression and myeloid/erythroid cellularity. J Mol Med (Berl) 2009; 88:39-46. [DOI: 10.1007/s00109-009-0558-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 10/01/2009] [Accepted: 10/22/2009] [Indexed: 12/11/2022]
|
36
|
Obrdlik A, Louvet E, Kukalev A, Naschekin D, Kiseleva E, Fahrenkrog B, Percipalle P. Nuclear myosin 1 is in complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J 2009; 24:146-57. [PMID: 19729515 DOI: 10.1096/fj.09-135863] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In rRNA biogenesis, nuclear myosin 1 (NM1) and actin synergize to activate rRNA gene transcription. Evidence that actin is in preribosomal subunits and NM1 may control rRNA biogenesis post-transcriptionally prompted us to investigate whether NM1 associates with and accompanies rRNA to nuclear pores (NPC). Ultracentrifugation on HeLa nucleolar extracts showed RNA-dependent NM1 coelution with preribosomal subunits. In RNA immunoprecipitations (RIPs), NM1 coprecipitated with pre-rRNAs and 18S, 5.8S, and 28S rRNAs, but failed to precipitate 5S rRNA and 7SL RNA. In isolated nuclei and living HeLa cells, NM1 or actin inhibition and selective alterations in actin polymerization impaired 36S pre-rRNA processing. Immunoelectron microscopy (IEM) on sections of manually isolated Xenopus oocyte nuclei showed NM1 localization at the NPC basket. Field emission scanning IEM on isolated nuclear envelopes and intranuclear content confirmed basket localization and showed that NM1 decorates actin-rich pore-linked filaments. Finally, RIP and successive RIPs (reRIPs) on cross-linked HeLa cells demonstrated that NM1, CRM1, and Nup153 precipitate same 18S and 28S rRNAs but not 5S rRNA. We conclude that NM1 facilitates maturation and accompanies export-competent preribosomal subunits to the NPC, thus modulating export.
Collapse
Affiliation(s)
- Ales Obrdlik
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
37
|
Pavesi E, Avondo F, Aspesi A, Quarello P, Rocci A, Vimercati C, Pigullo S, Dufour C, Ramenghi U, Dianzani I. Analysis of telomeres in peripheral blood cells from patients with bone marrow failure. Pediatr Blood Cancer 2009; 53:411-6. [PMID: 19489057 DOI: 10.1002/pbc.22107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The determination of telomere length is useful for the characterization of dyskeratosis congenita (DC) and of aplastic anemias (AA) as well as hematological malignancies. Short telomeres result from a specific defect of telomere maintenance in DC and likely from higher cellular turnover in AA and hematological malignancies. Data are not conclusive for Diamond-Blackfan anemia (DBA), a pure erythroid aplasia due to defects of ribosomal proteins. Our aim was to evaluate the utility of a qPCR method for telomere length assessment to evaluate the diagnostic contribution of telomere measurement in bone marrow failure syndromes (BMFS). PROCEDURE Telomere length was evaluated by qPCR in peripheral blood cells from 95 normal individuals and 62 patients with BMFS, including 45 patients with DBA. RESULTS Results obtained with qPCR are comparable with other quantitative methods, such as flow-FISH and Southern blotting. Our data show that only one DBA patient and a minority of other BMFS patients have very short telomeres, defined as less than the 1st percentile of controls. CONCLUSIONS The qPCR method for telomere length evaluation is an easy alternative to other methods and may thus be valuable in a clinical hematological laboratory setting. Telomere maintenance does not seem to be involved in the pathogenesis of DBA unlike in other BMFSs.
Collapse
Affiliation(s)
- Elisa Pavesi
- Department of Medical Sciences, University of Eastern Piedmont, Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dennis MD, Browning KS. Differential phosphorylation of plant translation initiation factors by Arabidopsis thaliana CK2 holoenzymes. J Biol Chem 2009; 284:20602-14. [PMID: 19509278 DOI: 10.1074/jbc.m109.006692] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previously described wheat germ protein kinase (Yan, T. F., and Tao, M. (1982) J. Biol. Chem. 257, 7037-7043) was identified unambiguously as CK2 using mass spectrometry. CK2 is a ubiquitous eukaryotic protein kinase that phosphorylates a wide range of substrates. In previous studies, this wheat germ kinase was shown to phosphorylate eIF2alpha, eIF3c, and three large subunit (60 S) ribosomal proteins (Browning, K. S., Yan, T. F., Lauer, S. J., Aquino, L. A., Tao, M., and Ravel, J. M. (1985) Plant Physiol. 77, 370-373). To further characterize the role of CK2 in the regulation of translation initiation, Arabidopsis thaliana catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, beta3, and beta4) subunits of CK2 were cloned and expressed in Escherichia coli. Recombinant A. thaliana CK2beta subunits spontaneously dimerize and assemble into holoenzymes in the presence of either CK2alpha1 or CK2alpha2 and exhibit autophosphorylation. The purified CK2 subunits were used to characterize the properties of the individual subunits and their ability to phosphorylate various plant protein substrates. CK2 was shown to phosphorylate eIF2alpha, eIF2beta, eIF3c, eIF4B, eIF5, and histone deacetylase 2B but did not phosphorylate eIF1, eIF1A, eIF4A, eIF4E, eIF4G, eIFiso4E, or eIFiso4G. Differential phosphorylation was exhibited by CK2 in the presence of various regulatory beta-subunits. Analysis of A. thaliana mutants either lacking or overexpressing CK2 subunits showed that the amount of eIF2beta protein present in extracts was affected, which suggests that CK2 phosphorylation may play a role in eIF2beta stability. These results provide evidence for a potential mechanism through which the expression and/or subcellular distribution of CK2 beta-subunits could participate in the regulation of the initiation of translation and other physiological processes in plants.
Collapse
Affiliation(s)
- Michael D Dennis
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
39
|
Filip AM, Klug J, Cayli S, Fröhlich S, Henke T, Lacher P, Eickhoff R, Bulau P, Linder M, Carlsson-Skwirut C, Leng L, Bucala R, Kraemer S, Bernhagen J, Meinhardt A. Ribosomal protein S19 interacts with macrophage migration inhibitory factor and attenuates its pro-inflammatory function. J Biol Chem 2009; 284:7977-85. [PMID: 19155217 PMCID: PMC2658091 DOI: 10.1074/jbc.m808620200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/24/2008] [Indexed: 01/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in the pathogenesis of inflammatory disorders such as infection, sepsis, and autoimmune disease. MIF exists preformed in cytoplasmic pools and exhibits an intrinsic tautomerase and oxidoreductase activity. MIF levels are elevated in the serum of animals and patients with infection or different inflammatory disorders. To elucidate how MIF actions are controlled, we searched for endogenous MIF-interacting proteins with the potential to interfere with key MIF functions. Using in vivo biotin-tagging and endogenous co-immunoprecipitation, the ribosomal protein S19 (RPS19) was identified as a novel MIF binding partner. Surface plasmon resonance and pulldown experiments with wild type and mutant MIF revealed a direct physical interaction of the two proteins (K(D) = 1.3 x 10(-6) m). As RPS19 is released in inflammatory lesions by apoptotic cells, we explored whether it affects MIF function and inhibits its binding to receptors CD74 and CXCR2. Low doses of RPS19 were found to strongly inhibit MIF-CD74 interaction. Furthermore, RPS19 significantly compromised CXCR2-dependent MIF-triggered adhesion of monocytes to endothelial cells under flow conditions. We, therefore, propose that RPS19 acts as an extracellular negative regulator of MIF.
Collapse
Affiliation(s)
- Ana-Maria Filip
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Medical Clinic II, and Department of Biochemistry, Justus-Liebig-University of Giessen, Giessen D-35385, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee HJ, Kwon MS, Lee EY, Cho SY, Paik YK. Establishment of a PF2D-MS/MS platform for rapid profiling and semiquantitative analysis of membrane protein biomarkers. Proteomics 2008; 8:2168-77. [PMID: 18528841 DOI: 10.1002/pmic.200701022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current proteome profiling techniques have identified relatively few mammalian membrane proteins despite their numerous important functions. To establish a standard throughput-potential profiling platform for membrane proteins, Triton X-100-solubilized rat liver microsomal proteins were separated on a 2-D separation system (2-D liquid phase fractionation (PF2D)) in two different pH ranges (4.0-8.5 and 7.0-10.5). This system produced 182 proteins with more than two transmembrane domain (TMD), including 16 TMDs with high confidence. Comparative 2-D liquid maps with high resolution and reproducibility have been constructed for liver microsome from the phenobarbital (PB) treated rats. PF2D was also found to be useful for the semiquantification of some representative cytochrome P450 family proteins (e.g., cytochrome P450 2B2) that were induced by PB treatment compared with untreated controls. Thus, the combination of both high-detection capacity and rapid preliminary semiquantification in a PF2D platform could become a standard system for the routine analysis of membrane proteins.
Collapse
Affiliation(s)
- Hyoung-Joo Lee
- Department of Biochemistry, Yonsei Proteome Research Center and Biomedical Proteome Research Center, Yonsei University, Sudaemoon-Ku, Seoul, Korea
| | | | | | | | | |
Collapse
|
41
|
Campagnoli MF, Ramenghi U, Armiraglio M, Quarello P, Garelli E, Carando A, Avondo F, Pavesi E, Fribourg S, Gleizes PE, Loreni F, Dianzani I. RPS19 mutations in patients with Diamond-Blackfan anemia. Hum Mutat 2008; 29:911-20. [PMID: 18412286 DOI: 10.1002/humu.20752] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diamond-Blackfan anemia (DBA) is an inherited disease characterized by pure erythroid aplasia. Thirty percent (30%) of patients display malformations, especially of the hands, face, heart, and urogenital tract. DBA has an autosomal dominant pattern of inheritance. De novo mutations are common and familial cases display wide clinical heterogeneity. Twenty-five percent (25%) of patients carry a mutation in the ribosomal protein (RP) S19 gene, whereas mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 are rare. These genes encode for structural proteins of the ribosome. A link between ribosomal functions and erythroid aplasia is apparent in DBA, but its etiology is not clear. Most authors agree that a defect in protein synthesis in a rapidly proliferating tissue, such as the erythroid bone marrow, may explain the defective erythropoiesis. A total of 77 RPS19 mutations have been described. Most are whole gene deletions, translocations, or truncating mutations (nonsense or frameshift), suggesting that haploinsufficiency is the basis of DBA pathology. A total of 22 missense mutations have also been described and several works have provided in vitro functional data for the mutant proteins. This review looks at the data on all these mutations, proposes a functional classification, and describes six new mutations. It is shown that patients with RPS19 mutations display a poorer response to steroids and a worse long-term prognosis compared to other DBA patients.
Collapse
|
42
|
Trummer E, Ernst W, Hesse F, Schriebl K, Lattenmayer C, Kunert R, Vorauer‐Uhl K, Katinger H, Müller D. Transcriptional profiling of phenotypically different Epo‐Fc expressing CHO clones by cross‐species microarray analysis. Biotechnol J 2008; 3:924-37. [DOI: 10.1002/biot.200800038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Angelini M, Cannata S, Mercaldo V, Gibello L, Santoro C, Dianzani I, Loreni F. Missense mutations associated with Diamond–Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome. Hum Mol Genet 2007; 16:1720-7. [PMID: 17517689 DOI: 10.1093/hmg/ddm120] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RPS19 has been identified as the first gene associated with Diamond-Blackfan anemia (DBA), a rare congenital hypoplastic anemia that includes variable physical malformations. It is mutated in approximately 25% of the patients although doubts remain as to whether DBA clinical phenotype depends on the ribosomal function of RPS19 or on an extra-ribosomal role or on both. RPS19 mRNAs with mutations that introduce premature stop codons or eliminate it are rapidly turned over by the surveillance mechanisms possibly causing a decrease in the RPS19 protein level. A decrease in RPS19 level has been shown to cause a defect in the maturation of 18S ribosomal RNA. Less clear is the effect of missense mutations in RPS19. With the aim of analyzing the functional features of mutated RPS19, we prepared cDNA constructs expressing RPS19 containing 11 missense mutations and a trinucleotide insertion found in DBA patients. After transfection, we analyzed the following properties of the mutated proteins: (i) protein stability, (ii) subcellular localization and (iii) assembly into ribosomes. Our results indicate that some RPS19 mutations alter the capacity of the protein to localize in nucleolar structure and these mutated RPS19 are very unstable. Moreover, none of the mutated RPS19 analyzed in this study, including those proteins that appear localized into the nucleolus, is able to be assembled into mature ribosome.
Collapse
Affiliation(s)
- Mara Angelini
- Department of Biology, University 'Tor Vergata', Roma, Italy 00133
| | | | | | | | | | | | | |
Collapse
|