1
|
Roytrakul S, Sangprasert P, Jaresitthikunchai J, Phaonakrop N, Arpornsuwan T. Peptide barcode of multidrug-resistant strains of Neisseria gonorrhoeae isolated from patients in Thailand. PLoS One 2023; 18:e0289308. [PMID: 37535640 PMCID: PMC10399818 DOI: 10.1371/journal.pone.0289308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
The emergence of multidrug-resistant strains of Neisseria gonorrhoeae constitutes a serious threat to public health. The present study aimed to investigate peptidome-based biomarkers of multidrug-resistant N. gonorrhoeae, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography tandem mass spectrometry (LC-MS). The peptide barcode database of multidrug resistant N. gonorrhoeae was generated from the whole-cell peptides of 93 N. gonorrhoeae isolated from patients in Thailand. The dendrogram of 93 independent isolates of antibiotic-resistant N. gonorrhoeae revealed five distinct clusters including azithromycin resistance group (AZ), ciprofloxacin resistance group (C), ciprofloxacin and penicillin resistance group (CP), ciprofloxacin and tetracycline resistance group (CT), ciprofloxacin, penicillin and tetracycline resistance group (CPT). The peptidomes of all clusters were comparatively analyzed using a high-performance liquid chromatography-mass spectrometry method (LC-MS). Nine peptides derived from 9 proteins were highly expressed in AZ (p value < 0.05). These peptides also played a crucial role in numerous pathways and showed a strong relationship with the antibiotic resistances. In conclusion, this study showed a rapid screening of antibiotic-resistant N. gonorrhoeae using MALDI-TOF MS. Additionally, potential specific peptidome-based biomarker candidates for AZ, C, CP, CT and CPT-resistant N. gonorrhoeae were identified.
Collapse
Affiliation(s)
- Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathumthani, Thailand
| | - Pongsathorn Sangprasert
- Graduate Student of Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathumthani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathumthani, Thailand
| | - Teerakul Arpornsuwan
- Medical Technology Research and Service Unit, Health Care Service Center, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathumthani, Thailand
| |
Collapse
|
2
|
Chaiden C, Jaresitthikunchai J, Phaonakrop N, Roytrakul S, Kerdsin A, Nuanualsuwan S. Unlocking the Secrets of Streptococcus suis: A peptidomics comparison of virulent and non-virulent serotypes 2, 14, 18, and 19. PLoS One 2023; 18:e0287639. [PMID: 37384746 PMCID: PMC10310009 DOI: 10.1371/journal.pone.0287639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
Streptococcus suis (S. suis) is an important bacterial pathogen, that causes serious infections in humans and pigs. Although numerous virulence factors have been proposed, their particular role in pathogenesis is still inconclusive. The current study explored putative peptides responsible for the virulence of S. suis serotype 2 (SS2). Thus, the peptidome of highly virulent SS2, less prevalent SS14, and rarely reported serotypes SS18 and SS19 were comparatively analyzed using a high-performance liquid chromatography-mass spectrometry method (LC-MS/MS). Six serotype-specific peptides, 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase (DapH), alanine racemase (Alr), CCA-adding enzyme (CCA), peptide chain release factor 3 (RF3), ATP synthase subunit delta (F0F1-ATPases) and aspartate carbamoyltransferase (ATCase), were expressed moderately to highly only in the SS2 peptidome with p-values of less than 0.05. Some of these proteins are responsible for bacterial cellular stability; especially, Alr was highly expressed in the SS2 peptidome and is associated with peptidoglycan biosynthesis and bacterial cell wall formation. This study indicated that these serotype-specific peptides, which were significantly expressed by virulent SS2, could serve as putative virulence factors to promote its competitiveness with other coexistences in a particular condition. Further in vivo studies of these peptides should be performed to confirm the virulence roles of these identified peptides.
Collapse
Affiliation(s)
- Chadaporn Chaiden
- Faculty of Veterinary Sciences, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Department of Veterinary Public Health, Center of Excellence for Food and Water Risk Analysis (FAWRA), Chulalongkorn University, Bangkok, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Suphachai Nuanualsuwan
- Faculty of Veterinary Sciences, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Department of Veterinary Public Health, Center of Excellence for Food and Water Risk Analysis (FAWRA), Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Serratia marcescens DUF1471-Containing Protein SrfN Is Needed for Adaptation to Acid and Oxidative Stresses. mSphere 2022; 7:e0021222. [PMID: 36218346 PMCID: PMC9769812 DOI: 10.1128/msphere.00212-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S. marcescens infections, it is critical to identify additional targets for bacterial growth inhibition. We found that extracellular metabolites produced by the wild-type organism in response to peroxide exposure had a protective effect on an otherwise-H2O2-sensitive ΔmacAB indicator strain. Detailed analysis of the conditioned medium demonstrated that the protective effect was associated with a low-molecular-weight heat-sensitive and proteinase K-sensitive metabolite. Furthermore, liquid chromatography-tandem mass spectrometry analysis of the low-molecular-weight proteins present in the conditioned medium led to identification of the previously uncharacterized DUF1471-containing protein TBU67220 (SrfN). We found that loss of the srfN gene did not have an impact on the production of extracellular enzymes. However, the S. marcescens mutant lacking SrfN was significantly more sensitive to growth in medium with a low pH and to exposure to oxidative stress. Both defects were fully rescued by complementation. Thus, our results indicate that SrfN, a low-molecular-weight DUF1471-containing protein, is involved in S. marcescens SM6 adaptation to adverse environmental conditions. IMPORTANCE Serratia marcescens is ubiquitous in the environment and can survive in water, soil, plants, insects, and animals, and it can also cause infections in humans. In the face of disturbances such as oxidative or low-pH stress, bacteria adapt, survive, and recover through several mechanisms, including changes in their secretome. We show that a hydrogen peroxide-exposed S. marcescens milieu contains a small previously uncharacterized DUF1471-containing protein similar to the SrfN protein in Salmonella enterica serovar Typhimurium, and we illustrate the role of this protein in bacterial survival during acid and oxidative stresses.
Collapse
|
4
|
Feng Y, Wang Z, Chien KY, Chen HL, Liang YH, Hua X, Chiu CH. "Pseudo-pseudogenes" in bacterial genomes: Proteogenomics reveals a wide but low protein expression of pseudogenes in Salmonella enterica. Nucleic Acids Res 2022; 50:5158-5170. [PMID: 35489061 PMCID: PMC9122581 DOI: 10.1093/nar/gkac302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudogenes (genes disrupted by frameshift or in-frame stop codons) are ubiquitously present in the bacterial genome and considered as nonfunctional fossil. Here, we used RNA-seq and mass-spectrometry technologies to measure the transcriptomes and proteomes of Salmonella enterica serovars Paratyphi A and Typhi. All pseudogenes’ mRNA sequences remained disrupted, and were present at comparable levels to their intact homologs. At the protein level, however, 101 out of 161 pseudogenes suggested successful translation, with their low expression regardless of growth conditions, genetic background and pseudogenization causes. The majority of frameshifting detected was compensatory for -1 frameshift mutations. Readthrough of in-frame stop codons primarily involved UAG; and cytosine was the most frequent base adjacent to the codon. Using a fluorescence reporter system, fifteen pseudogenes were confirmed to express successfully in vivo in Escherichia coli. Expression of the intact copy of the fifteen pseudogenes in S. Typhi affected bacterial pathogenesis as revealed in human macrophage and epithelial cell infection models. The above findings suggest the need to revisit the nonstandard translation mechanism as well as the biological role of pseudogenes in the bacterial genome.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyu Wang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Republic of China
| |
Collapse
|
5
|
Zhang Z, Li Y, Yuan W, Wang Z, Wan C. Proteomic-driven identification of short open reading frame-encoded peptides. Proteomics 2022; 22:e2100312. [PMID: 35384297 DOI: 10.1002/pmic.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence has shown that a large number of short open reading frames (sORFs) also have the ability to encode proteins. The discovery of sORFs opens up a new research area, leading to the identification and functional study of sORF encoded peptides (SEPs) at the omics level. Besides bioinformatics prediction and ribosomal profiling, mass spectrometry (MS) has become a significant tool as it directly detects the sequence of SEPs. Though MS-based proteomics methods have proved to be effective for qualitative and quantitative analysis of SEPs, the detection of SEPs is still a great challenge due to their low abundance and short sequence. To illustrate the progress in method development, we described and discussed the main steps of large-scale proteomics identification of SEPs, including SEP extraction and enrichment, MS detection, data processing and quality control, quantification, and function prediction and validation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Wenqian Yuan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|
6
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Guillot A, Boulay M, Chambellon É, Gitton C, Monnet V, Juillard V. Mass Spectrometry Analysis of the Extracellular Peptidome of Lactococcus lactis: Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion. J Proteome Res 2016; 15:3214-24. [DOI: 10.1021/acs.jproteome.6b00424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alain Guillot
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Mylène Boulay
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Émilie Chambellon
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Christophe Gitton
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Véronique Monnet
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Vincent Juillard
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| |
Collapse
|
8
|
Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 2015; 15:1026-38. [PMID: 25429922 PMCID: PMC4371869 DOI: 10.1002/pmic.201400310] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/08/2014] [Accepted: 11/24/2014] [Indexed: 12/28/2022]
Abstract
Peptidomics is an emerging field branching from proteomics that targets endogenously produced protein fragments. Endogenous peptides are often functional within the body-and can be both beneficial and detrimental. This review covers the use of peptidomics in understanding digestion, and identifying functional peptides and biomarkers. Various techniques for peptide and glycopeptide extraction, both at analytical and preparative scales, and available options for peptide detection with MS are discussed. Current algorithms for peptide sequence determination, and both analytical and computational techniques for quantification are compared. Techniques for statistical analysis, sequence mapping, enzyme prediction, and peptide function, and structure prediction are explored.
Collapse
Affiliation(s)
- David C. Dallas
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Andres Guerrero
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Evan A. Parker
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Junai Gan
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
9
|
Structural and functional characterization of DUF1471 domains of Salmonella proteins SrfN, YdgH/SssB, and YahO. PLoS One 2014; 9:e101787. [PMID: 25010333 PMCID: PMC4092069 DOI: 10.1371/journal.pone.0101787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 11/20/2022] Open
Abstract
Bacterial species in the Enterobacteriaceae typically contain multiple paralogues of a small domain of unknown function (DUF1471) from a family of conserved proteins also known as YhcN or BhsA/McbA. Proteins containing DUF1471 may have a single or three copies of this domain. Representatives of this family have been demonstrated to play roles in several cellular processes including stress response, biofilm formation, and pathogenesis. We have conducted NMR and X-ray crystallographic studies of four DUF1471 domains from Salmonella representing three different paralogous DUF1471 subfamilies: SrfN, YahO, and SssB/YdgH (two of its three DUF1471 domains: the N-terminal domain I (residues 21–91), and the C-terminal domain III (residues 244–314)). Notably, SrfN has been shown to have a role in intracellular infection by Salmonella Typhimurium. These domains share less than 35% pairwise sequence identity. Structures of all four domains show a mixed α+β fold that is most similar to that of bacterial lipoprotein RcsF. However, all four DUF1471 sequences lack the redox sensitive cysteine residues essential for RcsF activity in a phospho-relay pathway, suggesting that DUF1471 domains perform a different function(s). SrfN forms a dimer in contrast to YahO and SssB domains I and III, which are monomers in solution. A putative binding site for oxyanions such as phosphate and sulfate was identified in SrfN, and an interaction between the SrfN dimer and sulfated polysaccharides was demonstrated, suggesting a direct role for this DUF1471 domain at the host-pathogen interface.
Collapse
|
10
|
Jagusztyn-Krynicka EK, Dadlez M, Grabowska A, Roszczenko P. Proteomic technology in the design of new effective antibacterial vaccines. Expert Rev Proteomics 2014; 6:315-30. [DOI: 10.1586/epr.09.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Kim YM, Schmidt BJ, Kidwai AS, Jones MB, Deatherage Kaiser BL, Brewer HM, Mitchell HD, Palsson BO, McDermott JE, Heffron F, Smith RD, Peterson SN, Ansong C, Hyduke DR, Metz TO, Adkins JN. Salmonella modulates metabolism during growth under conditions that induce expression of virulence genes. MOLECULAR BIOSYSTEMS 2013; 9:1522-34. [PMID: 23559334 PMCID: PMC3665296 DOI: 10.1039/c3mb25598k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome-scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome-scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake.
Collapse
Affiliation(s)
- Young-Mo Kim
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Brian J. Schmidt
- Department of Bioengineering, University of California at San Diego, San Diego, CA 92093
| | - Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | | | - Brooke L. Deatherage Kaiser
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Heather M. Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Hugh D. Mitchell
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California at San Diego, San Diego, CA 92093
| | - Jason E. McDermott
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Richard D. Smith
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | | | - Charles Ansong
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Daniel R. Hyduke
- Department of Bioengineering, University of California at San Diego, San Diego, CA 92093
| | - Thomas O. Metz
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Joshua N. Adkins
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
12
|
Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions. Proc Natl Acad Sci U S A 2013; 110:10153-8. [PMID: 23720318 DOI: 10.1073/pnas.1221210110] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Toward this end, we used single-dimension ultra-high-pressure liquid chromatography mass spectrometry to investigate the comprehensive "intact" proteome of the Gram-negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1,665 proteoforms generated by posttranslational modifications (PTMs), representing the largest microbial top-down dataset reported to date. We confirmed many previously recognized aspects of Salmonella biology and bacterial PTMs, and our analysis also revealed several additional biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions. This finding of a S-glutathionylation-to-S-cysteinylation switch in a condition-specific manner was corroborated by bottom-up proteomics data and further by changes in corresponding biosynthetic pathways under infection-like conditions and during actual infection of host cells. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents a report of S-cysteinylation in Gram-negative bacteria. Additionally, the functional relevance of these PTMs was supported by protein structure and gene deletion analyses. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.
Collapse
|
13
|
Gupta N, Hixson KK, Culley DE, Smith RD, Pevzner PA. Analyzing protease specificity and detecting in vivo proteolytic events using tandem mass spectrometry. Proteomics 2010; 10:2833-44. [PMID: 20597098 PMCID: PMC3220954 DOI: 10.1002/pmic.200900821] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/15/2010] [Indexed: 11/06/2022]
Abstract
Although trypsin remains the most commonly used protease in MS, other proteases may be employed for increasing peptide coverage or generating overlapping peptides. Knowledge of the accurate specificity rules of these proteases is helpful for database search tools to detect peptides, and becomes crucial when label-free MS is used to discover in vivo proteolytic cleavages. Since in vivo cleavages are inferred by subtracting digestion-induced cleavages from all observed cleavages, it is important to ensure that the specificity rule used to identify digestion-induced cleavages are broad enough to capture even minor cleavages produced in digestion, to avoid erroneously identifying them as in vivo cleavages. In this study, we describe MS-Proteolysis, a software tool for identifying putative sites of in vivo proteolytic cleavage using label-free MS. The tool is used in conjunction with digestion by trypsin and three other proteases, whose specificity rules are revised and extended before inferring proteolytic cleavages. Finally, we show that comparative analysis of multiple proteases can be used to detect putative in vivo proteolytic sites on a proteome-wide scale.
Collapse
Affiliation(s)
- Nitin Gupta
- Bioinformatics Program, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
14
|
Kim K, Yang E, Vu GP, Gong H, Su J, Liu F, Lu S. Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol 2010; 10:166. [PMID: 20529336 PMCID: PMC2897801 DOI: 10.1186/1471-2180-10-166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 06/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied. RESULTS Using stable isotope labeling coupled with mass spectrometry, we performed quantitative proteomic analysis of Salmonella enterica serovar Enteritidis and identified 76 proteins whose expression is modulated upon exposure to H2O2. SPI-1 effector SipC was expressed about 3-fold higher and SopB was expressed approximately 2-fold lower in the presence of H2O2, while no significant change in the expression of another SPI-1 protein SipA was observed. The relative abundance of SipA, SipC, and SopB was confirmed by Western analyses, validating the accuracy and reproducibility of our approach for quantitative analysis of protein expression. Furthermore, immuno-detection showed substantial expression of SipA and SipC but not SopB in the late phase of infection in macrophages and in the spleen of infected mice. CONCLUSIONS We have identified Salmonella proteins whose expression is modulated in the presence of H2O2. Our results also provide the first direct evidence that SipC is highly expressed in the spleen at late stage of salmonellosis in vivo. These results suggest a possible role of SipC and other regulated proteins in supporting survival and replication of Salmonella under oxidative stress and during its systemic infection in vivo.
Collapse
Affiliation(s)
- Kihoon Kim
- University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Adkins JN, Mottaz H, Metz TO, Ansong C, Manes NP, Smith RD, Heffron F. Performing comparative peptidomics analyses of Salmonella from different growth conditions. Methods Mol Biol 2010; 615:13-27. [PMID: 20013197 DOI: 10.1007/978-1-60761-535-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Host-pathogen interactions are complex competitions during which both the host and the pathogen adapt rapidly to each other in order for one or the other to survive. Salmonella enterica serovar Typhimurium is a pathogen with a broad host range that causes a typhoid fever-like disease in mice and severe food poisoning in humans. The murine typhoid fever is a systemic infection in which S. typhimurium evades part of the immune system by replicating inside macrophages and other cells. The transition from a foodborne contaminant to an intracellular pathogen must occur rapidly in multiple, ordered steps in order for S. typhimurium to thrive within its host environment. Using S. typhimurium isolated from rich culture conditions and from conditions that mimic the hostile intracellular environment of the host cell, a native low molecular weight protein fraction, or peptidome, was enriched from cell lysates by precipitation of intact proteins with organic solvents. The enriched peptidome was analyzed by both LC-MS/MS and LC-MS-based methods, although several other methods are possible. Pre-fractionation of peptides allowed identification of small proteins and protein degradation products that would normally be overlooked. Comparison of peptides present in lysates prepared from Salmonella grown under different conditions provided a unique insight into cellular degradation processes as well as identification of novel peptides encoded in the genome but not annotated. The overall approach is detailed here as applied to Salmonella and is adaptable to a broad range of biological systems.
Collapse
Affiliation(s)
- Joshua N Adkins
- Pacific Northwest National Laboratory, Fundamental and Computational Sciences Directorate, Richland, WA, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Bhavsar AP, Auweter SD, Finlay BB. Proteomics as a probe of microbial pathogenesis and its molecular boundaries. Future Microbiol 2010; 5:253-65. [DOI: 10.2217/fmb.09.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomic technology offers an unprecedented systematic approach to investigate the protein complement of any organism. The field of microbial pathogenesis has greatly benefited from other systems approaches, and the application of proteomics to the study of infectious agents is beginning to emerge. Such applications include unambiguously identifying complete virulence factor inventories, studying the response of both host and pathogen to the infection process and elucidating mechanistic actions of virulence factors as they interface with host cells. This review will highlight examples where proteomic studies have contributed to our understanding of pathogenesis in these areas, with an emphasis on pathogens that employ type III and type IV secretion systems. In addition, we will discuss areas where proteomics may help shape further investigation and discovery in this field.
Collapse
Affiliation(s)
- Amit P Bhavsar
- The University of British Columbia, Michael Smith Laboratories, 301-2185 East Mall Road, Vancouver, BC, V6T 1Z4, Canada
| | - Sigrid D Auweter
- The University of British Columbia, Michael Smith Laboratories, 301-2185 East Mall Road, Vancouver, BC, V6T 1Z4, Canada
| | - B Brett Finlay
- The University of British Columbia, Michael Smith Laboratories, 301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
17
|
Shi L, Ansong C, Smallwood H, Rommereim L, McDermott JE, Brewer HM, Norbeck AD, Taylor RC, Gustin JK, Heffron F, Smith RD, Adkins JN. Proteome of Salmonella Enterica Serotype Typhimurium Grown in a Low Mg/pH Medium. ACTA ACUST UNITED AC 2009; 2:388-397. [PMID: 19953200 DOI: 10.4172/jpb.1000099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To determine the impact of a low Mg(2+)/pH defined growth medium (MgM) on the proteome of Salmonella enterica serotype Typhimurium, we cultured S. Typhimurium cells in the medium under two different conditions termed MgM Shock and MgM Dilution and then comparatively analyzed the bacterial cells harvested from these conditions by a global proteomic approach. Proteomic results showed that MgM Shock and MgM Dilution differentially affected the S. Typhimurium proteome. MgM Shock induced a group of proteins whose induction usually occurred at low O(2) level, while MgM Dilution induced those related to the type III secretion system (T3SS) of Salmonella Pathogenicity Island 2 (SPI2) and those involved in thiamine or biotin biosynthesis. The metabolic state of the S. Typhimurium cells grown under MgM Shock condition also differed significantly from that under MgM Dilution condition. Western blot analysis not only confirmed the proteomic results, but also showed that the abundances of SPI2-T3SS proteins SsaQ and SseE and biotin biosynthesis proteins BioB and BioD increased after S. Typhimurium infection of RAW 264.7 macrophages. Deletion of the gene encoding BioB reduced the bacterial ability to replicate inside the macrophages, suggesting a biotin-limited environment encountered by S. Typhimurium within RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Liang Shi
- Pacific Northwest National Laboratory, Richland, Washington 99352
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shi L, Chowdhury SM, Smallwood HS, Yoon H, Mottaz-Brewer HM, Norbeck AD, McDermott JE, Clauss TRW, Heffron F, Smith RD, Adkins JN. Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica. Infect Immun 2009; 77:3227-33. [PMID: 19528222 PMCID: PMC2715674 DOI: 10.1128/iai.00063-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 03/06/2009] [Accepted: 05/26/2009] [Indexed: 01/30/2023] Open
Abstract
To investigate the extent to which macrophages respond to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serotype Typhimurium and analyzed macrophage proteins at various time points following infection by using a global proteomic approach. A total of 1,006 macrophage and 115 Salmonella proteins were identified with high confidence. Most of the Salmonella proteins were observed in the late stage of the infection time course, which is consistent with the fact that the bacterial cells proliferate inside RAW 264.7 macrophages. The peptide abundances of most of the identified macrophage proteins remained relatively constant over the time course of infection. Compared to those of the control, the peptide abundances of 244 macrophage proteins (i.e., 24% of the total identified macrophage proteins) changed significantly after infection. The functions of these Salmonella-affected macrophage proteins were diverse, including production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase), production of prostaglandin H(2) (i.e., cyclooxygenase 2), and regulation of intracellular traffic (e.g., sorting nexin 5 [SNX5], SNX6, and SNX9). Diverse functions of the Salmonella-affected macrophage proteins demonstrate a global macrophage response to Salmonella infection. Western blot analysis not only confirmed the proteomic results for a selected set of proteins but also revealed that (i) the protein abundance of mitochondrial superoxide dismutase increased following macrophage infection, indicating an infection-induced oxidative stress in mitochondria, and (ii) in contrast to infection of macrophages by wild-type Salmonella, infection by the sopB deletion mutant had no negative impact on the abundance of SNX6, suggesting a role for SopB in regulating the abundance of SNX6.
Collapse
Affiliation(s)
- Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chan DW, Wang Y, Wu M, Wong J, Qin J, Zhao Y. Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics 2009; 9:2343-54. [PMID: 19337993 PMCID: PMC2914554 DOI: 10.1002/pmic.200800600] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Indexed: 11/08/2022]
Abstract
We report a sensitive peptide pull-down approach in combination with protein identification by LC-MS/MS and qualitative abundance measurements by spectrum counting to identify proteins binding to histone H3 tail containing dimethyl lysine 4 (H3K4me2), dimethyl lysine 9 (H3K9me2), or acetyl lysine 9 (H3K9ac). Our study identified 86 nuclear proteins that associate with the histone H3 tail peptides examined, including seven known direct binders and 16 putative direct binders with conserved PHD finger, bromodomain, and WD40 domains. The reliability of our proteomic screen is supported by the fact that more than one-third of the proteins identified were previously described to associate with histone H3 tail directly or indirectly. To our knowledge, the results presented here are the most comprehensive analysis of H3K4me2, H3K9me2, and H3K9ac associated proteins and will provide a useful resource for researchers studying the mechanisms of histone code effector proteins.
Collapse
Affiliation(s)
| | - Yi Wang
- Center for Molecular Discovery, Verna and Mars McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Meng Wu
- The Institute of Biomedical Sciences, College of Life Science, East China Normal University, Shanghai, P. R. China
| | - Jiemin Wong
- The Institute of Biomedical Sciences, College of Life Science, East China Normal University, Shanghai, P. R. China
| | - Jun Qin
- Center for Molecular Discovery, Verna and Mars McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yingming Zhao
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
20
|
Taylor RC, Singhal M, Weller J, Khoshnevis S, Shi L, McDermott J. A network inference workflow applied to virulence-related processes in Salmonella typhimurium. Ann N Y Acad Sci 2009; 1158:143-58. [PMID: 19348639 DOI: 10.1111/j.1749-6632.2008.03762.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inference of the structure of mRNA transcriptional regulatory networks, protein regulatory or interaction networks, and protein activation/inactivation-based signal transduction networks are critical tasks in systems biology. In this article we discuss a workflow for the reconstruction of parts of the transcriptional regulatory network of the pathogenic bacterium Salmonella typhimurium based on the information contained in sets of microarray gene-expression data now available for that organism and describe our results obtained by following this workflow. The primary tool is one of the network-inference algorithms deployed in the Software Environment for Biological Network Inference (SEBINI). Specifically, we selected the algorithm called context likelihood of relatedness (CLR), which uses the mutual information contained in the gene-expression data to infer regulatory connections. The associated analysis pipeline automatically stores the inferred edges from the CLR runs within SEBINI and, upon request, transfers the inferred edges into either Cytoscape or the plug-in Collective Analysis of Biological Interaction Networks (CABIN) tool for further postanalysis of the inferred regulatory edges. The following article presents the outcome of this workflow, as well as the protocols followed for microarray data collection, data cleansing, and network inference. Our analysis revealed several interesting interactions, functional groups, metabolic pathways, and regulons in S. typhimurium.
Collapse
Affiliation(s)
- Ronald C Taylor
- Computational Biology & Bioinformatics Group, Pacific Northwest National Laboratory (U.S. Dept of Energy), Richland, Washington, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Rodland KD, Adkins JN, Ansong C, Chowdhury S, Manes NP, Shi L, Yoon H, Smith RD, Heffron F. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella. Future Microbiol 2008; 3:625-34. [PMID: 19072180 PMCID: PMC2734448 DOI: 10.2217/17460913.3.6.625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis and, most important from the standpoint of this review, much higher throughput, allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach has enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions and new insights into virulence and expression of Salmonella proteins within host cells. One of the most significant findings is that a relatively high percentage of all the annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high-throughput mass spectrometry provides a new view of host-pathogen interactions, emphasizing the protein products and defining how protein interactions determine the outcome of infection.
Collapse
Affiliation(s)
- Karin D Rodland
- Pacific Northwest National Laboratory, Richland, WA 99354, USA, Tel.:+1 509 376 7608
| | - Joshua N Adkins
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Nathan P Manes
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Hyunjin Yoon
- Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard D Smith
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Fred Heffron
- Oregon Health & Science University, Portland, OR 97239, USA Tel.:+1 503 494 6738
| |
Collapse
|
22
|
Callister SJ, McCue LA, Turse JE, Monroe ME, Auberry KJ, Smith RD, Adkins JN, Lipton MS. Comparative bacterial proteomics: analysis of the core genome concept. PLoS One 2008; 3:e1542. [PMID: 18253490 PMCID: PMC2213561 DOI: 10.1371/journal.pone.0001542] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/09/2008] [Indexed: 11/25/2022] Open
Abstract
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits.
Collapse
Affiliation(s)
- Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Lee Ann McCue
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joshua E. Turse
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kenneth J. Auberry
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
23
|
Alix E, Blanc-Potard AB. Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J 2008; 27:546-57. [PMID: 18200043 DOI: 10.1038/sj.emboj.7601983] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 12/20/2007] [Indexed: 01/04/2023] Open
Abstract
MgtC is a virulence factor common to several intracellular pathogens that is required for intramacrophage survival and growth in magnesium-depleted medium. In Salmonella enterica, MgtC is coexpressed with the MgtB magnesium transporter and transcription of the mgtCB operon is induced by magnesium deprivation. Despite the high level of mgtCB transcriptional induction in magnesium-depleted medium, the MgtC protein is hardly detected in a wild-type Salmonella strain. Here, we show that downregulation of MgtC expression is dependent on a hydrophobic peptide, MgtR, which is encoded by the mgtCB operon. Our results suggest that MgtR promotes MgtC degradation by the FtsH protease, providing a negative regulatory feedback. Bacterial two-hybrid assays demonstrate that MgtR interacts with the inner-membrane MgtC protein. We identified mutant derivatives of MgtR and MgtC that prevent both regulation and interaction between the two partners. In macrophages, overexpression of the MgtR peptide led to a decrease of the replication rate of Salmonella. This study highlights the role of peptides in bacterial regulatory mechanisms and provides a natural antagonist of the MgtC virulence factor.
Collapse
|
24
|
Zhang C, Crasta O, Cammer S, Will R, Kenyon R, Sullivan D, Yu Q, Sun W, Jha R, Liu D, Xue T, Zhang Y, Moore M, McGarvey P, Huang H, Chen Y, Zhang J, Mazumder R, Wu C, Sobral B. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data. Nucleic Acids Res 2008; 36:D884-91. [PMID: 17984082 PMCID: PMC2239001 DOI: 10.1093/nar/gkm903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 01/07/2023] Open
Abstract
The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.
Collapse
Affiliation(s)
- C. Zhang
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - O. Crasta
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - S. Cammer
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - R. Will
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - R. Kenyon
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - D. Sullivan
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - Q. Yu
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - W. Sun
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - R. Jha
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - D. Liu
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - T. Xue
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - Y. Zhang
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - M. Moore
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - P. McGarvey
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - H. Huang
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - Y. Chen
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - J. Zhang
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - R. Mazumder
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - C. Wu
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| | - B. Sobral
- Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University, Washington Street (0477), Blacksburg, VA 24061, Social & Scientific Systems, Inc., 8757 Georgia Avenue, 12th Floor Silver Spring, MD 20910 and Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC 20007, USA
| |
Collapse
|