1
|
Fischer AW, Albers K, Schlein C, Sass F, Krott LM, Schmale H, Gordts PLSM, Scheja L, Heeren J. PID1 regulates insulin-dependent glucose uptake by controlling intracellular sorting of GLUT4-storage vesicles. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1592-1603. [PMID: 30904610 PMCID: PMC6624118 DOI: 10.1016/j.bbadis.2019.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The phosphotyrosine interacting domain-containing protein 1 (PID1) serves as a cytosolic adaptor protein of the LDL receptor-related protein 1 (LRP1). By regulating its intracellular trafficking, PID1 controls the hepatic, LRP1-dependent clearance of pro-atherogenic lipoproteins. In adipose and muscle tissues, LRP1 is present in endosomal storage vesicles containing the insulin-responsive glucose transporter 4 (GLUT4). This prompted us to investigate whether PID1 modulates GLUT4 translocation and function via its interaction with the LRP1 cytosolic domain. We initially evaluated this in primary brown adipocytes as we observed an inverse correlation between brown adipose tissue glucose uptake and expression of LRP1 and PID1. Insulin stimulation in wild type brown adipocytes induced LRP1 and GLUT4 translocation from endosomal storage vesicles to the cell surface. Loss of PID1 expression in brown adipocytes prompted LRP1 and GLUT4 sorting to the plasma membrane independent of insulin signaling. When placed on a diabetogenic high fat diet, systemic and adipocyte-specific PID1-deficient mice presented with improved hyperglycemia and glucose tolerance as well as reduced basal plasma insulin levels compared to wild type control mice. Moreover, the improvements in glucose parameters associated with increased glucose uptake in adipose and muscle tissues from PID1-deficient mice. The data provide evidence that PID1 serves as an insulin-regulated retention adaptor protein controlling translocation of LRP1 in conjunction with GLUT4 to the plasma membrane of adipocytes. Notably, loss of PID1 corrects for insulin resistance-associated hyperglycemia emphasizing its pivotal role and therapeutic potential in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Kirstin Albers
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Lucia M Krott
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Hartwig Schmale
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
2
|
Fischer AW, Albers K, Krott LM, Hoffzimmer B, Heine M, Schmale H, Scheja L, Gordts PLSM, Heeren J. The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins. Mol Metab 2018; 16:88-99. [PMID: 30100244 PMCID: PMC6158030 DOI: 10.1016/j.molmet.2018.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023] Open
Abstract
Objective Insulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins. Methods Localization and interaction of PID1 and LRP1 in cultured hepatocytes was studied by confocal microscopy of fluorescent tagged proteins, by indirect immunohistochemistry of endogenous proteins, by GST-based pull down and by immunoprecipitation experiments. The in vivo relevance of PID1 was assessed using whole body as well as liver-specific Pid1-deficient mice on a wild type or Ldlr-deficient (Ldlr−/−) background. Intravital microscopy was used to study LRP1 translocation in the liver. Lipoprotein metabolism was investigated by lipoprotein profiling, gene and protein expression as well as organ-specific uptake of radiolabelled TRL. Results PID1 co-localized in perinuclear endosomes and was found associated with LRP1 under fasting conditions. We identified the distal NPxY motif of the intracellular C-terminal domain (ICD) of LRP1 as the site critical for the interaction with PID1. Insulin-mediated NPxY-phosphorylation caused the dissociation of PID1 from the ICD, causing LRP1 translocation to the plasma membrane. PID1 deletion resulted in higher LRP1 abundance at the cell surface, higher LDLR protein levels and, paradoxically, reduced total LRP1. The latter can be explained by higher receptor shedding, which we observed in cultured Pid1-deficient hepatocytes. Consistently, PID1 deficiency alone led to increased LDLR-dependent endocytosis of postprandial lipoproteins and lower plasma triglycerides. In contrast, hepatic PID1 deletion on an Ldlr−/− background reduced lipoprotein uptake into liver and caused plasma TRL accumulation. Conclusions By acting as an insulin-dependent retention adaptor, PID1 serves as a regulator of LRP1 function controlling the disposal of postprandial lipoproteins. PID1 inhibition provides a novel approach to lower plasma levels of pro-atherogenic TRL remnants by stimulating endocytic function of both LRP1 and LDLR in the liver. PID1 is a retention adaptor protein that regulates activity of the endocytic receptor LDL receptor-related protein 1 (LRP1). PID1 regulates the insulin-dependent LRP1-mediated endocytosis of lipoproteins in vivo. PID1 deficiency in liver reduces LRP1 levels via cell surface shedding, and paradoxically increases LDL receptor activity. PID1 antagonism has therapeutic potential to reduce pro-atherogenic lipoproteins in hyperlipidemic and diabetic patients.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kirstin Albers
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lucia M Krott
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Britta Hoffzimmer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartwig Schmale
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Philip L S M Gordts
- Department of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Chen L, Wang XY, Zhu JG, You LH, Wang X, Cui XW, Shi CM, Huang FY, Zhou YH, Yang L, Pang LX, Gao Y, Ji CB, Guo XR. PID1 in adipocytes modulates whole-body glucose homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:125-132. [DOI: 10.1016/j.bbagrm.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
|
4
|
Simioni M, Artiguenave F, Meyer V, Sgardioli IC, Viguetti-Campos NL, Lopes Monlleó I, Maciel-Guerra AT, Steiner CE, Gil-da-Silva-Lopes VL. Genomic Investigation of Balanced Chromosomal Rearrangements in Patients with Abnormal Phenotypes. Mol Syndromol 2017; 8:187-194. [PMID: 28690484 DOI: 10.1159/000477084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Balanced chromosomal rearrangements (BCR) are associated with abnormal phenotypes in approximately 6% of balanced translocations and 9.4% of balanced inversions. Abnormal phenotypes can be caused by disruption of genes at the breakpoints, deletions, or positional effects. Conventional cytogenetic techniques have a limited resolution and do not enable a thorough genetic investigation. Molecular techniques applied to BCR carriers can contribute to the characterization of this type of chromosomal rearrangement and to the phenotype-genotype correlation. Fifteen individuals among 35 with abnormal phenotypes and BCR were selected for further investigation by molecular techniques. Chromosomal rearrangements involved 11 reciprocal translocations, 3 inversions, and 1 balanced insertion. Array genomic hybridization (AGH) was performed and genomic imbalances were detected in 20% of the cases, 1 at a rearrangement breakpoint and 2 further breakpoints in other chromosomes. Alterations were further confirmed by FISH and associated with the phenotype of the carriers. In the analyzed cases not showing genomic imbalances by AGH, next-generation sequencing (NGS), using whole genome libraries, prepared following the Illumina TruSeq DNA PCR-Free protocol (Illumina®) and then sequenced on an Illumina HiSEQ 2000 as 150-bp paired-end reads, was done. The NGS results suggested breakpoints in 7 cases that were similar or near those estimated by karyotyping. The genes overlapping 6 breakpoint regions were analyzed. Follow-up of BCR carriers would improve the knowledge about these chromosomal rearrangements and their consequences.
Collapse
Affiliation(s)
- Milena Simioni
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Ilária C Sgardioli
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nilma L Viguetti-Campos
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabella Lopes Monlleó
- Clinical Genetics Service, Faculty of Medicine, University Hospital, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Andréa T Maciel-Guerra
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos E Steiner
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vera L Gil-da-Silva-Lopes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
5
|
Xu J, Ren X, Pathania AS, Fernandez GE, Tran A, Zhang Y, Moats RA, Shackleford GM, Erdreich-Epstein A. PID1 increases chemotherapy-induced apoptosis in medulloblastoma and glioblastoma cells in a manner that involves NFκB. Sci Rep 2017; 7:835. [PMID: 28400607 PMCID: PMC5429784 DOI: 10.1038/s41598-017-00947-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/20/2017] [Indexed: 01/28/2023] Open
Abstract
Phosphotyrosine Interaction Domain containing 1 (PID1; NYGGF4) inhibits growth of medulloblastoma, glioblastoma and atypical teratoid rhabdoid tumor cell lines. PID1 tumor mRNA levels are highly correlated with longer survival in medulloblastoma and glioma patients, suggesting their tumors may have been more sensitive to therapy. We hypothesized that PID1 sensitizes brain tumors to therapy. We found that PID1 increased the apoptosis induced by cisplatin and etoposide in medulloblastoma and glioblastoma cell lines. PID1 siRNA diminished cisplatin-induced apoptosis, suggesting that PID1 is required for cisplatin-induced apoptosis. Etoposide and cisplatin increased NFκB promoter reporter activity and etoposide induced nuclear translocation of NFκB. Etoposide also increased PID1 promoter reporter activity, PID1 mRNA, and PID1 protein, which were diminished by NFκB inhibitors JSH-23 and Bay117082. However, while cisplatin increased PID1 mRNA, it decreased PID1 protein. This decrease in PID1 protein was mitigated by the proteasome inhibitor, bortezomib, suggesting that cisplatin induced proteasome dependent degradation of PID1. These data demonstrate for the first time that etoposide- and cisplatin-induced apoptosis in medulloblastoma and glioblastoma cell lines is mediated in part by PID1, involves NFκB, and may be regulated by proteasomal degradation. This suggests that PID1 may contribute to responsiveness to chemotherapy.
Collapse
Affiliation(s)
- Jingying Xu
- Saban Research Institute at Children's Hospital Los Angeles, Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, Los Angeles, California, 90027, USA
| | - Xiuhai Ren
- Saban Research Institute at Children's Hospital Los Angeles, Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, Los Angeles, California, 90027, USA
| | - Anup Singh Pathania
- Saban Research Institute at Children's Hospital Los Angeles, Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, Los Angeles, California, 90027, USA
| | - G Esteban Fernandez
- Saban Research Institute at Children's Hospital Los Angeles, Cellular Imaging Core, Los Angeles, California, 90027, USA
| | - Anthony Tran
- Saban Research Institute at Children's Hospital Los Angeles, Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, Los Angeles, California, 90027, USA
| | - Yifu Zhang
- Saban Research Institute at Children's Hospital Los Angeles, Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, Los Angeles, California, 90027, USA
| | - Rex A Moats
- Saban Research Institute at Children's Hospital Los Angeles, Department of Radiology, Los Angeles, California, 90027, USA
| | - Gregory M Shackleford
- Saban Research Institute at Children's Hospital Los Angeles, Department of Radiology, Los Angeles, California, 90027, USA
| | - Anat Erdreich-Epstein
- Saban Research Institute at Children's Hospital Los Angeles, Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, Los Angeles, California, 90027, USA. .,Keck School of Medicine, University of Southern California, Departments of Pediatrics and Pathology, Los Angeles, California, 90033, USA.
| |
Collapse
|
6
|
Monteleone F, Vitale M, Caratù G, D'Ambrosio C, Di Giovanni S, Gorrese M, Napolitano F, Romano MF, Del Vecchio L, Succoio M, Scaloni A, Zambrano N. Inhibition of PID1/NYGGF4/PCLI1 gene expression highlights its role in the early events of the cell cycle in NIH3T3 fibroblasts. J Enzyme Inhib Med Chem 2016; 31:45-53. [PMID: 27535298 DOI: 10.1080/14756366.2016.1217855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The PID1/NYGGF4/PCLI1 gene encodes for a protein with a phosphotyrosine-binding domain, which interacts with the lipoprotein receptor-related protein 1. Previous work by us and others suggested a function of the gene in cell proliferation of NIH3T3 fibroblasts and 3T3-L1 pre-adipocytes. The molecular characterization of PCLI1 protein, ectopically expressed in NIH3T3 fibroblasts, revealed two phosphorylation sites at Ser154 and Ser165. In order to clarify the functions of this gene, we analyzed the effects of its downregulation on cellular proliferation and cell cycle progression in NIH3T3 cell cultures. Downregulation of PID1/NYGGF4/PCLI1 mRNA levels by short hairpin RNAs (shRNAs) elicited decreased proliferation rate in mammalian cell lines; cell cycle analysis of serum-starved, synchronized NIH3T3 fibroblasts showed an increased accumulation of shRNA-interfered cells in the G1 phase. Decreased levels of FOS and MYC mRNAs were accordingly associated with these events. The molecular scenario emerging from our data suggests that PID1/NYGGF4/PCLI1 controls cellular proliferation and cell cycle progression in NIH3T3 cells.
Collapse
Affiliation(s)
| | - Monica Vitale
- a CEINGE Biotecnologie Avanzate , Napoli , Italy.,b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Napoli , Italy , and.,c Proteomics & Mass Spectrometry Laboratory, ISPAAM - National Research Council , Naples , Italy
| | - Ginevra Caratù
- a CEINGE Biotecnologie Avanzate , Napoli , Italy.,b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Napoli , Italy , and
| | - Chiara D'Ambrosio
- c Proteomics & Mass Spectrometry Laboratory, ISPAAM - National Research Council , Naples , Italy
| | - Stefano Di Giovanni
- b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Napoli , Italy , and
| | | | | | - Maria Fiammetta Romano
- b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Napoli , Italy , and
| | - Luigi Del Vecchio
- a CEINGE Biotecnologie Avanzate , Napoli , Italy.,b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Napoli , Italy , and
| | - Mariangela Succoio
- a CEINGE Biotecnologie Avanzate , Napoli , Italy.,b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Napoli , Italy , and
| | - Andrea Scaloni
- c Proteomics & Mass Spectrometry Laboratory, ISPAAM - National Research Council , Naples , Italy
| | - Nicola Zambrano
- a CEINGE Biotecnologie Avanzate , Napoli , Italy.,b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Napoli , Italy , and
| |
Collapse
|
7
|
Esposito G, Schiattarella GG, Perrino C, Cattaneo F, Pironti G, Franzone A, Gargiulo G, Magliulo F, Serino F, Carotenuto G, Sannino A, Ilardi F, Scudiero F, Brevetti L, Oliveti M, Giugliano G, Del Giudice C, Ciccarelli M, Renzone G, Scaloni A, Zambrano N, Trimarco B. Dermcidin: a skeletal muscle myokine modulating cardiomyocyte survival and infarct size after coronary artery ligation. Cardiovasc Res 2015; 107:431-41. [PMID: 26101262 DOI: 10.1093/cvr/cvv173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Coronary artery disease is the leading cause of death in western countries, and its association with lower extremity peripheral artery disease (LE-PAD) represents an independent predictor of worse outcome. However, the molecular mechanisms underlying these effects are currently unknown. METHODS AND RESULTS To investigate these processes, we used in vitro approaches and several mouse models: (i) unilateral limb ischaemia by left common femoral artery ligation [peripheral ischaemia (PI), n = 38]; (ii) myocardial infarction by permanent ligation of the left descending coronary artery (MI, n = 40); (iii) MI after 5 weeks of limb ischaemia (PI + MI, n = 44); (iv) sham operation (SHAM, n = 20). Compared with MI, PI + MI hearts were characterized by a significant increase in cardiomyocyte apoptosis, larger infarct areas, and decreased cardiac function. By using a proteomic approach, we identified a ≅ 8 kDa circulating peptide, Dermcidin (DCD), secreted by ischaemic skeletal muscles, enhancing cardiomyocytes apoptosis under hypoxic conditions and infarct size after permanent coronary artery ligation. siRNA interference experiments to reduce DCD circulating levels significantly reduced infarct size and ameliorated cardiac function after MI. CONCLUSION Our data demonstrate that chronic limb ischaemia activates detrimental pathways in the ischaemic heart through humoral mechanisms of remote organ crosstalk. Thus, DCD may represent a novel important myokine modulating cardiomyocyte survival and function.
Collapse
Affiliation(s)
- Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Gabriele Giacomo Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fabio Cattaneo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Gianluigi Pironti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy Department of Medicine, Duke University Medical Center, Durham, USA
| | - Anna Franzone
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Giuseppe Gargiulo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fabio Magliulo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Federica Serino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Giuseppe Carotenuto
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Anna Sannino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Federica Ilardi
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fernando Scudiero
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Linda Brevetti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Marco Oliveti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | | | - Carmine Del Giudice
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, Naples, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Nicola Zambrano
- Department of Molecular Medicine and Medical Biotechnologies/CEINGE-Advanced Biotechnology, Federico II University, Naples, Italy
| | - Bruno Trimarco
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
8
|
Sasso E, Vitale M, Monteleone F, Boffo FL, Santoriello M, Sarnataro D, Garbi C, Sabatella M, Crifò B, Paolella LA, Minopoli G, Winum JY, Zambrano N. Binding of carbonic anhydrase IX to 45S rDNA genes is prevented by exportin-1 in hypoxic cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:674920. [PMID: 25793203 PMCID: PMC4352447 DOI: 10.1155/2015/674920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/09/2014] [Indexed: 11/17/2022]
Abstract
Carbonic anhydrase IX (CA IX) is a surrogate marker of hypoxia, involved in survival and pH regulation in hypoxic cells. We have recently characterized its interactome, describing a set of proteins interacting with CA IX, mainly in hypoxic cells, including several members of the nucleocytoplasmic shuttling apparatuses. Accordingly, we described complex subcellular localization for this enzyme in human cells, as well as the redistribution of a carbonic anhydrase IX pool to nucleoli during hypoxia. Starting from this evidence, we analyzed the possible contribution of carbonic anhydrase IX to transcription of the 45 S rDNA genes, a process occurring in nucleoli. We highlighted the binding of carbonic anhydrase IX to nucleolar chromatin, which is regulated by oxygen levels. In fact, CA IX was found on 45 S rDNA gene promoters in normoxic cells and less represented on these sites, in hypoxic cells and in cells subjected to acetazolamide-induced acidosis. Both conditions were associated with increased representation of carbonic anhydrase IX/exportin-1 complexes in nucleoli. 45 S rRNA transcript levels were accordingly downrepresented. Inhibition of nuclear export by leptomycin B suggests a model in which exportin-1 acts as a decoy, in hypoxic cells, preventing carbonic anhydrase IX association with 45 S rDNA gene promoters.
Collapse
MESH Headings
- Acidosis/genetics
- Acidosis/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carbonic Anhydrase IX
- Carbonic Anhydrases/genetics
- Carbonic Anhydrases/metabolism
- Cell Hypoxia/genetics
- Cell Hypoxia/physiology
- Cell Line, Tumor
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- HEK293 Cells
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- Promoter Regions, Genetic/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Transcription, Genetic/genetics
- Exportin 1 Protein
Collapse
Affiliation(s)
- Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Associazione Culturale DiSciMuS RFC, 80026 Casoria, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Francesca Monteleone
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Associazione Culturale DiSciMuS RFC, 80026 Casoria, Italy
| | - Francesca Ludovica Boffo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Margherita Santoriello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Daniela Sarnataro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Corrado Garbi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Mariangela Sabatella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Bianca Crifò
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Luca Alfredo Paolella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Giuseppina Minopoli
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier I & II, ENSCM, 34296 Montpellier, France
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Associazione Culturale DiSciMuS RFC, 80026 Casoria, Italy
| |
Collapse
|
9
|
Shi CM, Xu GF, Yang L, Fu ZY, Chen L, Fu HL, Shen YH, Zhu L, Ji CB, Guo XR. Overexpression of TFAM protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance and mitochondrial dysfunction. Cell Biochem Biophys 2014; 66:489-97. [PMID: 23274913 DOI: 10.1007/s12013-012-9496-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NYGGF4, also known as phosphotyrosine interaction domain containing 1(PID1), is a recently discovered gene which is involved in obesity-related insulin resistance (IR) and mitochondrial dysfunction. We aimed to further elucidate the effects and mechanisms underlying NYGGF4-induced IR by investigating the effect of overexpressing mitochondrial transcription factor A (TFAM), which is essential for mitochondrial DNA transcription and replication, on NYGGF4-induced IR and mitochondrial abnormalities in 3T3-L1 adipocytes. Overexpression of TFAM increased the mitochondrial copy number and ATP content in both control 3T3-L1 adipocytes and NYGGF4-overexpressing adipocytes. Reactive oxygen species (ROS) production was enhanced in NYGGF4-overexpressing adipocytes and reduced in TFAM-overexpressing adipocytes; co-overexpression of TFAM significantly attenuated ROS production in NYGGF4-overexpressing adipocytes. However, overexpression of TFAM did not affect the mitochondrial transmembrane potential (ΔΨm) in control 3T3-L1 adipocytes or NYGGF4-overexpressing adipocytes. In addition, co-overexpression of TFAM-enhanced insulin-stimulated glucose uptake by increasing Glucose transporter type 4 (GLUT4) translocation to the PM in NYGGF4-overexpressing adipocytes. Overexpression of NYGGF4 significantly inhibited tyrosine phosphorylation of Insulin receptor substrate 1 (IRS-1) and serine phosphorylation of Akt, whereas overexpression of TFAM strongly induced phosphorylation of IRS-1 and Akt in NYGGF4-overexpressing adipocytes. This study demonstrates that NYGGF4 plays a role in IR by impairing mitochondrial function, and that overexpression of TFAM can restore mitochondrial function to normal levels in NYGGF4-overexpressing adipocytes via activation of the IRS-1/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Chun-Mei Shi
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Erdreich-Epstein A, Robison N, Ren X, Zhou H, Xu J, Davidson TB, Schur M, Gilles FH, Ji L, Malvar J, Shackleford GM, Margol AS, Krieger MD, Judkins AR, Jones DTW, Pfister SM, Kool M, Sposto R, Asgharzadeh S, Asgharazadeh S. PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas. Clin Cancer Res 2013; 20:827-36. [PMID: 24300787 DOI: 10.1158/1078-0432.ccr-13-2053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE We present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells. EXPERIMENTAL DESIGN AND RESULTS Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets, PID1 mRNA was lower in glioblastomas (GBM), the most malignant gliomas, compared with other astrocytomas, oligodendrogliomas and nontumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared with classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients whose tumors had higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in patients with glioma and GBM. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT), and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolaization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT, and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization. CONCLUSIONS These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors.
Collapse
Affiliation(s)
- Anat Erdreich-Epstein
- Authors' Affiliations: Departments of Pediatrics, Pathology, Radiology, and Neurosurgery, at the Saban Research Institute at Children's Hospital Los Angeles, Norris Comprehensive Cancer Center; Departments of Preventive Medicine and Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California; Division of Pediatric Neurooncology at the German Cancer Research Center DKFZ; and Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu H, Xu G, Wang D, Zheng C, Wan L. Molecular cloning and tissue distribution of the phosphotyrosine interaction domain containing 1 (PID1) gene in Tianfu goat. Gene 2013; 515:71-7. [DOI: 10.1016/j.gene.2012.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/28/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
12
|
Buanne P, Renzone G, Monteleone F, Vitale M, Monti SM, Sandomenico A, Garbi C, Montanaro D, Accardo M, Troncone G, Zatovicova M, Csaderova L, Supuran CT, Pastorekova S, Scaloni A, De Simone G, Zambrano N. Characterization of Carbonic Anhydrase IX Interactome Reveals Proteins Assisting Its Nuclear Localization in Hypoxic Cells. J Proteome Res 2012. [DOI: 10.1021/pr300565w] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry
Laboratory, ISPAAM, CNR, Naples, Italy
| | | | - Monica Vitale
- CEINGE Biotecnologie Avanzate SCaRL, Naples, Italy
- Dipartimento di Medicina Molecolare
e Biotecnologie Mediche, Università di Napoli Federico II, Italy
| | | | | | - Corrado Garbi
- Dipartimento di Biologia e Patologia
Cellulare e Molecolare, Università di Napoli Federico II, Italy
| | | | - Marina Accardo
- Department
of Public Health, Section
of Pathology, Seconda Università di Napoli, Italy
| | - Giancarlo Troncone
- CEINGE Biotecnologie Avanzate SCaRL, Naples, Italy
- Dipartimento di
Scienze Biomorfologiche
e Funzionali, Università di Napoli Federico II, Italy
| | - Miriam Zatovicova
- Department of
Molecular Medicine,
Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Lucia Csaderova
- Department of
Molecular Medicine,
Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Silvia Pastorekova
- Department of
Molecular Medicine,
Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry
Laboratory, ISPAAM, CNR, Naples, Italy
| | | | - Nicola Zambrano
- CEINGE Biotecnologie Avanzate SCaRL, Naples, Italy
- Dipartimento di Medicina Molecolare
e Biotecnologie Mediche, Università di Napoli Federico II, Italy
| |
Collapse
|
13
|
Knockdown of NYGGF4 (PID1) rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes. Mitochondrion 2012; 12:600-6. [DOI: 10.1016/j.mito.2012.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/16/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022]
|
14
|
NYGGF4 (PID1) effects on insulin resistance are reversed by metformin in 3T3-L1 adipocytes. J Bioenerg Biomembr 2012; 44:665-71. [PMID: 22968630 DOI: 10.1007/s10863-012-9472-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/17/2012] [Indexed: 01/14/2023]
Abstract
NYGGF4 (also called PID1) is a recently discovered gene that is involved in obesity-related insulin resistance (IR). We aimed in the present study to further elucidate the effects of NYGGF4 on IR and the underlying mechanisms through using metformin treatment in 3T3-L1 adipocytes. Our data showed that the metformin pretreatment strikingly enhanced insulin-stimulated glucose uptake through increasing GLUT4 translocation to the PM in NYGGF4 overexpression adipocytes. NYGGF4 overexpression resulted in significant inhibition of tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, whereas incubation with metformin strongly activated IRS-1 and Akt phosphorylation in NYGGF4 overexpression adipocytes. The reactive oxygen species (ROS) levels in NYGGF4 overexpression adipocytes were strikingly enhanced, which could be decreased by the metformin pretreatment. Our data also showed that metformin increased the expressions of PGC1-α, NRF-1, and TFAM, which were reduced in the NYGGF4 overexpression adipocytes. These results suggest that NYGGF4 plays a role in IR and its effects on IR could be reversed by metformin through activating IRS-1/PI3K/Akt and AMPK-PGC1-α pathways.
Collapse
|
15
|
Wang YM, Lin XF, Shi CM, Lu L, Qin ZY, Zhu GZ, Cao XG, Ji CB, Qiu J, Guo XR. α-Lipoic acid protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance through increasing phosphorylation of IRS-1 and Akt. J Bioenerg Biomembr 2012; 44:357-63. [DOI: 10.1007/s10863-012-9440-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/29/2012] [Indexed: 01/14/2023]
|
16
|
Palacios-Rodríguez Y, García-Laínez G, Sancho M, Gortat A, Orzáez M, Pérez-Payá E. Polypeptide modulators of caspase recruitment domain (CARD)-CARD-mediated protein-protein interactions. J Biol Chem 2011; 286:44457-66. [PMID: 22065589 DOI: 10.1074/jbc.m111.255364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The caspase recruitment domain (CARD) is present in a large number of proteins. Initially, the CARD was recognized as part of the caspase activation machinery. CARD-CARD interactions play a role in apoptosis and are responsible for the Apaf-1-mediated activation of procaspase-9 in the apoptosome. CARD-containing proteins mediate the inflammasome-dependent activation of proinflammatory caspase-1. More recently, new roles for CARD-containing proteins have been reported in signaling pathways associated with immune responses. The functional role of CARD-containing proteins and CARDs in coordinating apoptosis and inflammatory and immune responses is not completely understood. We have explored the putative cross-talk between apoptosis and inflammation by analyzing the modulatory activity on both the Apaf-1/procaspase-9 interaction and the inflammasome-mediated procaspase-1 activation of CARD-derived polypeptides. To this end, we analyzed the activity of individual recombinant CARDs, rationally designed CARD-derived peptides, and peptides derived from phage display.
Collapse
Affiliation(s)
- Yadira Palacios-Rodríguez
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Analysis of interaction partners for eukaryotic translation elongation factor 1A M-domain by functional proteomics. Biochimie 2011; 93:1738-46. [DOI: 10.1016/j.biochi.2011.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/07/2011] [Indexed: 12/18/2022]
|
18
|
Proteomic analysis of sera from common variable immunodeficiency patients undergoing replacement intravenous immunoglobulin therapy. J Biomed Biotechnol 2011; 2011:706746. [PMID: 21960740 PMCID: PMC3180879 DOI: 10.1155/2011/706746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022] Open
Abstract
Common variable immunodeficiency is the most common form of symptomatic primary antibody failure in adults and children. Replacement immunoglobulin is the standard treatment of these patients. By using a differential proteomic approach based on 2D-DIGE, we examined serum samples from normal donors and from matched, naive, and immunoglobulin-treated patients. The results highlighted regulated expression of serum proteins in naive patients. Among the identified proteins, clusterin/ApoJ serum levels were lower in naive patients, compared to normal subjects. This finding was validated in a wider collection of samples from newly enrolled patients. The establishment of a cellular system, based on a human hepatocyte cell line HuH7, allowed to ascertain a potential role in the regulation of CLU gene expression by immunoglobulins.
Collapse
|
19
|
Amodio G, Moltedo O, Monteleone F, D’Ambrosio C, Scaloni A, Remondelli P, Zambrano N. Proteomic Signatures in Thapsigargin-Treated Hepatoma Cells. Chem Res Toxicol 2011; 24:1215-22. [DOI: 10.1021/tx200109y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giuseppina Amodio
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | - Ornella Moltedo
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | | | - Chiara D’Ambrosio
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Paolo Remondelli
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | - Nicola Zambrano
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
20
|
Zhang CM, Zeng XQ, Zhang R, Ji CB, Tong ML, Chi X, Li XL, Dai JZ, Zhang M, Cui Y, Guo XR. Effects of NYGGF4 knockdown on insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. J Bioenerg Biomembr 2010; 42:433-9. [PMID: 21080215 DOI: 10.1007/s10863-010-9313-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/17/2010] [Indexed: 01/13/2023]
Abstract
NYGGF4 is a recently discovered gene that is involved in obesity-associated insulin resistance. It has been suggested that mitochondrial dysfunction might be responsible for the development of insulin resistance induced by NYGGF4 overexpression. In the present study, we aimed to define the impact of down-regulating NYGGF4 expression by RNA interference (RNAi) on the insulin sensitivity and mitochondrial function of 3T3-L1 adipocytes. The results revealed that NYGGF4 knockdown enhanced the glucose uptake of adipocytes, which reconfirmed the regulatory function of NYGGF4 in adipocyte insulin sensitivity. However, an unexpected observation was that knockdown of NYGGF4 reduced intracellular ATP concentration and promoted an increase in mitochondrial transmembrane potential (ΔΨm) and reactive oxygen species (ROS) level without affecting mitochondrial morphology or mtDNA. Therefore, the role of NYGGF4 in mitochondrial function remains unclear, and further animal studies are needed to explore the biological function of this gene.
Collapse
Affiliation(s)
- Chun-Mei Zhang
- Department of Pediatrics, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Man C, Li X, Zhao D. Cloning, sequence identification, and tissue expression analysis of novel chicken NYGGF4 gene. Mol Cell Biochem 2010; 346:117-24. [PMID: 20882399 DOI: 10.1007/s11010-010-0598-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/18/2010] [Indexed: 12/30/2022]
Abstract
NYGGF4 is a recently discovered gene that is involved in obesity-associated insulin resistance. In this study, an Hi-Line Brown chicken homolog of the NYGGF4 gene was cloned, sequenced, and characterized. The NYGGF4 full-length coding sequence (CDS) consists of 654 bp and encodes 217 amino acids with a molecular mass of 25,00 kD. The phosphotyrosine binding (PTB) domain of NYGGF4 is well conserved between chicken and other animals. The three-dimensional structure of the NYGGF4 (57-192 AA) by homology modeling was similar to that of human FE65-PTB1 domain. The phylogenetic tree analysis revealed that the chicken NYGGF4 has closer genetic relationships and evolution distance with the land mammals NYGGF4. Several predicted microRNA target sites were found in the coding sequence of chicken NYGGF4 mRNA. Analysis by RT-PCR showed that the NYGGF4 transcript is constitutively expressed in the 11 tissues tested: liver, subcutaneous fat, kidney, muscle stomach, heart, skin, brain, small intestine, spleen, lung, and skeletal muscle. These data serve as a foundation for further insight into the chicken NYGGF4 gene.
Collapse
Affiliation(s)
- Chaolai Man
- College of Life Science and Technology, Harbin Normal University, No. 1 South of Shida RD Limin Development Zone, Harbin City, 150025, Heilongjiang Province, People's Republic of China.
| | | | | |
Collapse
|
22
|
Zhao Y, Zhang C, Chen X, Gao C, Ji C, Chen F, Zhu C, Zhu J, Wang J, Qian L, Guo X. Overexpression of NYGGF4 (PID1) induces mitochondrial impairment in 3T3-L1 adipocytes. Mol Cell Biochem 2010; 340:41-8. [PMID: 20165904 DOI: 10.1007/s11010-010-0398-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/03/2010] [Indexed: 01/14/2023]
Abstract
NYGGF4 is a recently discovered gene that is involved in obesity-associated insulin resistance. The exact mechanism by which NYGGF4 induces insulin resistance has not yet been fully elucidated. In this study, we demonstrated that the overexpression of NYGGF4 in 3T3-L1 adipocytes decreased mitochondrial mass, mitochondrial DNA, and intracellular ATP synthesis. In addition, NYGGF4 overexpression also led to an imbalance of the mitochondrial dynamics and excess intracellular ROS production. Collectively, our results indicated that the overexpression of NYGGF4 caused mitochondrial dysfunction in adipocytes, which might be responsible for the development of NYGGF4-induced insulin resistance.
Collapse
Affiliation(s)
- Yaping Zhao
- Department of Endocrinology, The 82nd Hospital of the People's Liberation Army, No. 100 Jiankang East Road, 223001 Huaian, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kajiwara Y, Franciosi S, Takahashi N, Krug L, Schmeidler J, Taddei K, Haroutunian V, Fried U, Ehrlich M, Martins RN, Gandy S, Buxbaum JD. Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease. Mol Neurodegener 2010; 5:1. [PMID: 20205790 PMCID: PMC2823744 DOI: 10.1186/1750-1326-5-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/14/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1. RESULTS We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression. CONCLUSIONS These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Sonia Franciosi
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Nagahide Takahashi
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Lisa Krug
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - James Schmeidler
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Exercise Biomedical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- James J Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Ulrik Fried
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Michelle Ehrlich
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Exercise Biomedical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Samuel Gandy
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| |
Collapse
|
24
|
Lin J, Xie Z, Zhu H, Qian J. Understanding protein phosphorylation on a systems level. Brief Funct Genomics 2010; 9:32-42. [PMID: 20056723 DOI: 10.1093/bfgp/elp045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein kinase phosphorylation is central to the regulation and control of protein and cellular function. Over the past decade, the development of many high-throughput approaches has revolutionized the understanding of protein phosphorylation and allowed rapid and unbiased surveys of phosphoproteins and phosphorylation events. In addition to this technological advancement, there have also been computational improvements; recent studies on network models of protein phosphorylation have provided many insights into the cellular processes and pathways regulated by phosphorylation. This article gives an overview of experimental and computational techniques for identifying and analyzing protein phosphorylation on a systems level.
Collapse
Affiliation(s)
- Jimmy Lin
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
25
|
NYGGF4 homologous gene expression in 3T3-L1 adipocytes: regulation by FFA and adipokines. Mol Biol Rep 2009; 37:3291-6. [PMID: 19894142 DOI: 10.1007/s11033-009-9914-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/27/2009] [Indexed: 12/16/2022]
Abstract
NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese subjects and is involved in insulin resistance. In the present study, the mRNA expression of NYGGF4 homologous genes was examined in the 3T3-L1 cell line. The NYGGF4 mRNAs were expressed at low levels in the 3T3-L1 preadipocytes. During the conversion of 3T3-L1 preadipocytes to adipocytes, the expression of NYGGF4 mRNA was upregulated. On the 8th day after induction of differentiation, the NYGGF4 mRNA levels peaked and remained high. Free fatty acids (FFA) and tumor necrosis factor-α (TNFα) could upregulate NYGGF4 mRNA expression in 3T3-L1 adipocytes, while interleukin-6 (IL-6), leptin, and resistin exerted an inhibitory effect. The results suggest that the expression of NYGGF4 mRNA is affected by a variety of factors that are related to insulin sensitivity. It is likely that NYGGF4 may be an important mediator in the development of obesity-related insulin resistance.
Collapse
|
26
|
Kruse U, Bantscheff M, Drewes G, Hopf C. Chemical and pathway proteomics: powerful tools for oncology drug discovery and personalized health care. Mol Cell Proteomics 2008; 7:1887-901. [PMID: 18676365 DOI: 10.1074/mcp.r800006-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years mass spectrometry-based proteomics has moved beyond a mere quantitative description of protein expression levels and their possible correlation with disease or drug action. Impressive progress in LC-MS instrumentation together with the availability of new enabling tools and methods for quantitative proteome analysis and for identification of posttranslational modifications has triggered a surge of chemical and functional proteomics studies dissecting mechanisms of action of cancer drugs and molecular mechanisms that modulate signal transduction pathways. Despite the tremendous progress that has been made in the field, major challenges, relating to sensitivity, dynamic range, and throughput of the described methods, remain. In this review we summarize recent advances in LC-MS-based approaches and their application to cancer drug discovery and to studies of cancer-related pathways in cell culture models with particular emphasis on mechanistic studies of drug action in these systems. Moreover we highlight the emerging utility of pathway and chemical proteomics techniques for translational research in patient tissue.
Collapse
Affiliation(s)
- Ulrich Kruse
- Deptartment of Discovery Technology, Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
27
|
Napolitano F, D'Angelo F, Bimonte M, Perrina V, D'Ambrosio C, Scaloni A, Russo T, Zambrano N. A differential proteomic approach reveals an evolutionary conserved regulation of Nme proteins by Fe65 in C. elegans and mouse. Neurochem Res 2008; 33:2547-55. [PMID: 18401706 DOI: 10.1007/s11064-008-9683-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 03/18/2008] [Indexed: 11/24/2022]
Abstract
The function of the APP-Fe65 complex is still not definitively understood. To address this point we studied the phenotype of Fe65 (feh-1) ablation, which results in severe developmental defects in C. elegans, including embryonic and larval arrests. To shed light on the complex phenotype of embryonic arrest, we undertook a systematic approach, aiming at the definition of the altered proteomic profile of feh-1 null worms. We defined a panel of 27 regulated proteins, 16 of which actually participating to embryonic development processes in the nematode. Protein spots corresponding to the products of the F25H2.5 gene, the nematode orthologue of mammalian Nm23/Nme gene family members, were consistently up-regulated in feh-1 -/- embryos. We observed similar up-regulation of Nme1 and Nme2 genes, both at the transcript and the protein levels, in the brain of Fe65 knock-out mice, thus highlighting the occurrence of evolutionary conserved mechanisms of Nme expression in nematodes and mammals.
Collapse
Affiliation(s)
- Francesco Napolitano
- CEINGE Biotecnologie Avanzate, Via Comunale Margherita, 482, 80145, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Phosphorylation is one of the most relevant and ubiquitous post-translational modifications. Despite its relevance, the analysis of protein phosphorylation has been revealed as one of the most challenging tasks due to its highly dynamic nature and low stoichiometry. However, the development and introduction of new analytical methods are modifying rapidly and substantially this field. Especially important has been the introduction of more sensitive and specific methods for phosphoprotein and phosphopeptide purification as well as the use of more sensitive and accurate MS-based analytical methods. The integration of both approaches has enabled large-scale phosphoproteome studies to be performed, an unimaginable task few years ago. Additionally, methods originally developed for differential proteomics have been adapted making the study of the highly dynamic nature of protein phosphorylation feasible. This review aims at offering an overview on the most frequently used methods in phosphoprotein and phosphopeptide enrichment as well as on the most recent MS-based analysis strategies. Current strategies for quantitative phosphoproteomics and the study of the dynamics of protein phosphorylation are highlighted.
Collapse
Affiliation(s)
- Alberto Paradela
- Departamento de Proteómica, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | |
Collapse
|