1
|
Almowallad S, Alqahtani LS, Mobashir M. NF-kB in Signaling Patterns and Its Temporal Dynamics Encode/Decode Human Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122012. [PMID: 36556376 PMCID: PMC9788026 DOI: 10.3390/life12122012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Defects in signaling pathways are the root cause of many disorders. These malformations come in a wide variety of types, and their causes are also very diverse. Some of these flaws can be brought on by pathogenic organisms and viruses, many of which can obstruct signaling processes. Other illnesses are linked to malfunctions in the way that cell signaling pathways work. When thinking about how errors in signaling pathways might cause disease, the idea of signalosome remodeling is helpful. The signalosome may be conveniently divided into two types of defects: phenotypic remodeling and genotypic remodeling. The majority of significant illnesses that affect people, including high blood pressure, heart disease, diabetes, and many types of mental illness, appear to be caused by minute phenotypic changes in signaling pathways. Such phenotypic remodeling modifies cell behavior and subverts normal cellular processes, resulting in illness. There has not been much progress in creating efficient therapies since it has been challenging to definitively confirm this connection between signalosome remodeling and illness. The considerable redundancy included into cell signaling systems presents several potential for developing novel treatments for various disease conditions. One of the most important pathways, NF-κB, controls several aspects of innate and adaptive immune responses, is a key modulator of inflammatory reactions, and has been widely studied both from experimental and theoretical perspectives. NF-κB contributes to the control of inflammasomes and stimulates the expression of a number of pro-inflammatory genes, including those that produce cytokines and chemokines. Additionally, NF-κB is essential for controlling innate immune cells and inflammatory T cells' survival, activation, and differentiation. As a result, aberrant NF-κB activation plays a role in the pathogenesis of several inflammatory illnesses. The activation and function of NF-κB in relation to inflammatory illnesses was covered here, and the advancement of treatment approaches based on NF-κB inhibition will be highlighted. This review presents the temporal behavior of NF-κB and its potential relevance in different human diseases which will be helpful not only for theoretical but also for experimental perspectives.
Collapse
Affiliation(s)
- Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (L.S.A.); (M.M.)
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, P.O. Box 1031, S-17121 Stockholm, Sweden
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia, New Delhi 110025, India
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Correspondence: (L.S.A.); (M.M.)
| |
Collapse
|
2
|
Sinzinger MD, Chung YD, Adjobo-Hermans MJW, Brock R. A microarray-based approach to evaluate the functional significance of protein-binding motifs. Anal Bioanal Chem 2016; 408:3177-84. [PMID: 26892640 PMCID: PMC4830892 DOI: 10.1007/s00216-016-9382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 11/25/2022]
Abstract
Intracellular proteins comprise numerous peptide motifs that interact with protein-binding domains. However, using sequence information alone, the identification of functionally relevant interaction motifs remains a challenge. Here, we present a microarray-based approach for the evaluation of peptides as protein-binding motifs. To this end, peptides corresponding to protein interaction motifs were spotted as a microarray. First, peptides were titrated with a pan-specific binder and the apparent Kd value of this binder for each peptide was determined. For phosphotyrosine-containing peptides, an anti-phosphotyrosine antibody was employed. Then, in the presence of the pan-specific binder, arrays were competitively titrated with cell lysate and competition constants were determined. Using the Cheng-Prusoff equation, binding constants for the pan-specific binder and inhibition constants for the lysates were converted into affinity constants for the lysate. We experimentally validate this method using a phosphotyrosine-binding SH2 domain as a further reference. Furthermore, strong binders correlated with binding motifs engaging in numerous interactions as predicted by Scansite. This method provides a highly parallel and robust approach to identify peptides corresponding to interaction motifs with strong binding capacity for proteins in the cell lysate. Using an antibody as a pan-specific binder the capacity of interaction motifs to bind to proteins from cell lysates can be probed. Competition of the antibody is observed for only those peptides to which a lysate protein binds ![]()
Collapse
Affiliation(s)
- Michael D Sinzinger
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Yi-Da Chung
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Nguyen TD, Carrascal M, Vidal-Cortes O, Gallardo O, Casas V, Gay M, Phan VC, Abian J. The phosphoproteome of human Jurkat T cell clones upon costimulation with anti-CD3/anti-CD28 antibodies. J Proteomics 2016; 131:190-198. [DOI: 10.1016/j.jprot.2015.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
|
4
|
Reinhard FBM, Eberhard D, Werner T, Franken H, Childs D, Doce C, Savitski MF, Huber W, Bantscheff M, Savitski MM, Drewes G. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat Methods 2015; 12:1129-31. [PMID: 26524241 DOI: 10.1038/nmeth.3652] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022]
Abstract
We extended thermal proteome profiling to detect transmembrane protein-small molecule interactions in cultured human cells. When we assessed the effects of detergents on ATP-binding profiles, we observed shifts in denaturation temperature for ATP-binding transmembrane proteins. We also observed cellular thermal shifts in pervanadate-induced T cell-receptor signaling, delineating the membrane target CD45 and components of the downstream pathway, and with drugs affecting the transmembrane transporters ATP1A1 and MDR1.
Collapse
Affiliation(s)
| | - Dirk Eberhard
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Thilo Werner
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Holger Franken
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Dorothee Childs
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carola Doce
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Maria Fälth Savitski
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marcus Bantscheff
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Mikhail M Savitski
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| |
Collapse
|
5
|
Witsenburg JJ, Sinzinger MD, Stoevesandt O, Ruttekolk IR, Roth G, Adjobo-Hermans MJW, Brock R. A peptide-functionalized polymer as a minimal scaffold protein to enhance cluster formation in early T cell signal transduction. Chembiochem 2015; 16:602-10. [PMID: 25663649 DOI: 10.1002/cbic.201402622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 12/28/2022]
Abstract
In cellular signal transduction, scaffold proteins provide binding sites to organize signaling proteins into supramolecular complexes and act as nodes in the signaling network. Furthermore, multivalent interactions between the scaffold and other signaling proteins contribute to the formation of protein microclusters. Such microclusters are prominent in early T cell signaling. Here, we explored the minimal structural requirement for a scaffold protein by coupling multiple copies of a proline-rich peptide corresponding to an interaction motif for the SH3 domain of the adaptor protein GADS to an N-(2-hydroxypropyl)methacrylamide polymer backbone. When added to GADS-containing cell lysates, these scaffolds (but not individual peptides) promoted the binding of GADS to peptide microarrays. This can be explained by the cross-linking of GADS into larger complexes. Furthermore, following import into Jurkat T cell leukemia cells, this synthetic scaffold enhanced the formation of microclusters of signaling proteins.
Collapse
Affiliation(s)
- J Joris Witsenburg
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen (The Netherlands)
| | | | | | | | | | | | | |
Collapse
|
6
|
Multivalent presentation of the cell-penetrating peptide nona-arginine on a linear scaffold strongly increases its membrane-perturbing capacity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3097-106. [DOI: 10.1016/j.bbamem.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/23/2014] [Accepted: 08/01/2014] [Indexed: 01/12/2023]
|
7
|
Qi H, Wang F, Petrenko VA, Liu A. Peptide microarray with ligands at high density based on symmetrical carrier landscape phage for detection of cellulase. Anal Chem 2014; 86:5844-50. [PMID: 24837076 DOI: 10.1021/ac501265y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Peptide microarrays evolved recently as a routine analytical implementation in various research areas due to their unique characteristics. However, the immobilization of peptides with high density in each spot during the fabricating process remains a problem, which will affect the performance of the resultant microarray greatly. To respond to this challenge, a novel peptide immobilization method using symmetrical phage carrier was developed in this work. The cellulytic enzyme endoglucanase I (EG I) was used as a model for selection of its specific peptide ligands from the f8/8 landscape library. Three phage monoclones were selected and identified by the specificity array, of which one phage monoclone displaying the fusion peptide EGSDPRMV (phage EGSDPRMV) could bind EG I specifically with highest affinity. Subsequently, the phage EGSDPRMV was used directly to construct peptide microarray. For comparison, major coat protein pVIII fused EG I specific peptide EGSDPRMV (pVIII-fused EGSDPRMV) which was isolated from phage EGSDPRMV was also immobilized by traditional method to fabricate peptide microarray. The fluorescent signal of the phage EGSDPRMV-mediated peptide microarray was more reproducible and about four times higher than the value for pVIII-fused EGSDPRMV-based microarray, suggesting the high efficiency of the proposed phage EGSDPRMV-mediated peptide immobilization method. Further, the phage EGSDPRMV based microarray not only simplified the procedure of microarray construction but also exhibited significantly enhanced sensitivity due to the symmetrical carrier landscape phage, which dramatically increased the density and sterical regularity of immobilized peptides in each spot. Thus, the proposed strategy has the advantages that the immobilizing peptide ligands were not disturbed by their composition and the immobilized peptides were highly regular with free amino-terminal.
Collapse
Affiliation(s)
- Huan Qi
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences , 189 Songling Road, Qingdao 266101, China
| | | | | | | |
Collapse
|
8
|
Peptide microarrays to probe for competition for binding sites in a protein interaction network. J Proteomics 2013; 89:71-80. [PMID: 23748025 DOI: 10.1016/j.jprot.2013.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 11/20/2022]
|
9
|
Ruttekolk IR, Witsenburg JJ, Glauner H, Bovee-Geurts PHM, Ferro ES, Verdurmen WPR, Brock R. The intracellular pharmacokinetics of terminally capped peptides. Mol Pharm 2012; 9:1077-86. [PMID: 22497602 DOI: 10.1021/mp200331g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular pharmacokinetics of peptides is limited. So far, most research has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Here, we studied the structure-activity relationship of peptides with respect to intracellular residence time and proteolytic breakdown. The peptides comprised a collection of interaction motifs of SH2 and SH3 domains with different charge but that were of similar size and carried an N-terminal fluorescein moiety. First, we show that electroporation is a highly powerful technique to introduce peptides with different charge and hydrophobicity in uniform yields. Remarkably, the peptides differed strongly in retention of intracellular fluorescence with half-lives ranging from only 1 to more than 10 h. Residence times were greatly increased for retro-inverso peptides, demonstrating that rapid loss of fluorescence is a function of peptide degradation rather than the physicochemical characteristics of the peptide. Differences in proteolytic sensitivity were further confirmed using fluorescence correlation spectroscopy as a separation-free analytical technique to follow degradation in crude cell lysates and also in intact cells. The results provide a straightforward analytical access to a better understanding of the principles of peptide stability inside cells and will therefore greatly assist the development of bioactive peptides.
Collapse
Affiliation(s)
- Ivo R Ruttekolk
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Xie S, Moya C, Bilgin B, Jayaraman A, Walton SP. Emerging affinity-based techniques in proteomics. Expert Rev Proteomics 2010; 6:573-83. [PMID: 19811078 DOI: 10.1586/epr.09.74] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteomes of interest, such as the human proteome, have such complexity that no single technique is adequate for the complete analysis of the constituents. Depending on the goal (e.g., identification of a novel protein vs measurement of the level of a known protein), the tools required can vary significantly. While existing methods provide valuable information, their limitations drive the development of complementary, innovative methods to achieve greater breadth of coverage, dynamic range or specificity of analysis. We will discuss affinity-based methods and their applications, focusing on their unique advantages. In addition, we will describe emerging methods with potential value to proteomics, as well as the challenges that remain for proteomic studies.
Collapse
Affiliation(s)
- Shengnan Xie
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA
| | | | | | | | | |
Collapse
|
11
|
Stoevesandt O, Taussig MJ, He M. Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 2009; 6:145-57. [PMID: 19385942 PMCID: PMC7105755 DOI: 10.1586/epr.09.2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein microarrays are versatile tools for parallel, miniaturized screening of binding events involving large numbers of immobilized proteins in a time- and cost-effective manner. They are increasingly applied for high-throughput protein analyses in many research areas, such as protein interactions, expression profiling and target discovery. While conventionally made by the spotting of purified proteins, recent advances in technology have made it possible to produce protein microarrays through in situ cell-free synthesis directly from corresponding DNA arrays. This article reviews recent developments in the generation of protein microarrays and their applications in proteomics and diagnostics.
Collapse
Affiliation(s)
- Oda Stoevesandt
- Babraham Bioscience Technologies Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | | | | |
Collapse
|
12
|
Li J, Ge J, Yin Y, Zhong W. Multiplexed affinity-based protein complex purification. Anal Chem 2008; 80:7068-74. [PMID: 18715017 DOI: 10.1021/ac801251y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here we proved the principle of a multiplexed affinity-based protein complex purification (MAPcP) technique that targets simultaneous extraction of multiple protein complexes with superior purity. Microspheres of various sizes and coupled with different affinity probes extract several protein complexes concurrently and specifically. After the coextraction, flow-field flow fractionation (Fl-FFF) rapidly washes the microspheres as well as separates them based on their sizes to recover the clean individual complex for downstream analysis. Demonstration of the parallel extraction of two immuno-complexes from the yeast whole cell lysate showed that MAPcP can enhance the sample purity significantly compared to the traditional centrifugation and magnetic pull-down methods used for small scale protein purification. Simultaneous isolation of multiple protein complexes can facilitate the elucidation of the functional relationship among protein complexes and improve our understanding of the biological network.
Collapse
Affiliation(s)
- Jishan Li
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
13
|
Stoevesandt O, Taussig MJ. Affinity reagent resources for human proteome detection: initiatives and perspectives. Proteomics 2007; 7:2738-50. [PMID: 17639606 DOI: 10.1002/pmic.200700155] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Essential to the ambition of characterising fully the human proteome are systematic and comprehensive collections of specific affinity reagents directed against all human proteins, including splice variants and modifications. Although a large number of affinity reagents are available commercially, their quality is often questionable and only a fraction of the proteome is covered. In order for more targets to be examined, there is a need for broad availability of panels of affinity reagents, including binders against proteins of unknown functions. The most familiar affinity reagents are antibodies and their fragments, but engineered forms of protein scaffolds and nucleic acid aptamers with similar diversity and binding properties are becoming viable alternatives. Recent initiatives in Europe and the USA have been established to improve both the availability and quality of reagents for affinity proteomics, with the ultimate aim of creating standardised collections of well-validated binding molecules for proteome analysis. As well as coordinating affinity reagent production through existing resources and technology providers, these projects aim to benchmark key molecular entities, tools, and applications, and establish the bioinformatics framework and databases needed. The benefits of such reagent resources will be seen in basic research, medicine and the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Oda Stoevesandt
- Technology Research Group, The Babraham Institute, Cambridge, UK
| | | |
Collapse
|