1
|
Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging for Food Analysis. Foods 2019; 8:foods8120633. [PMID: 31810360 PMCID: PMC6963588 DOI: 10.3390/foods8120633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Food contains various compounds, and there are many methods available to analyze each of these components. However, the large amounts of low-molecular-weight metabolites in food, such as amino acids, organic acids, vitamins, lipids, and toxins, make it difficult to analyze the spatial distribution of these molecules. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging is a two-dimensional ionization technology that allows the detection of small metabolites in tissue sections without requiring purification, extraction, separation, or labeling. The application of MALDI-MS imaging in food analysis improves the visualization of these compounds to identify not only the nutritional content but also the geographical origin of the food. In this review, we provide an overview of some recent applications of MALDI-MS imaging, demonstrating the advantages and prospects of this technology compared to conventional approaches. Further development and enhancement of MALDI-MS imaging is expected to offer great benefits to consumers, researchers, and food producers with respect to breeding improvement, traceability, the development of value-added foods, and improved safety assessments.
Collapse
|
2
|
Jorge S, Capelo JL, LaFramboise W, Dhir R, Lodeiro C, Santos HM. Development of a Robust Ultrasonic-Based Sample Treatment To Unravel the Proteome of OCT-Embedded Solid Tumor Biopsies. J Proteome Res 2019; 18:2979-2986. [PMID: 31173681 DOI: 10.1021/acs.jproteome.9b00248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An effective three-step proteomics workflow is proposed to overcome the pitfalls caused by polymers present in optimum cutting temperature (OCT)-embedded tissue during its preparation for mass spectrometry analysis. First, the OCT-embedded tissue biopsies are cleaned using ethanol and water in a sequential series of ultrasonic washes in an ultrasound bath (35 kHz ultrasonic frequency, 100% ultrasonic amplitude, 2 min of ultrasonic duty time). Second, a fast ultrasonic-assisted extraction of proteins is done using an ultrasonic probe (30 kHz ultrasonic frequency, 50% ultrasonic amplitude, 2 min of ultrasonic duty time, 1 mm diameter tip). Third, a rapid ultrasonic digestion of complex proteomes is performed using a microplate horn assembly device (20 kHz ultrasonic frequency, 25% ultrasonic amplitude, 4 min of ultrasonic duty time). As a proof of concept, the new workflow was applied to human normal and tumor kidney biopsies including chromophobe renal cell carcinomas (chRCCs) and renal oncocytomas (ROs). A successful cluster of proteomics profiles was obtained comprising 511 and 172 unique proteins found in chRCC and RO samples, respectively. The new method provides high sample throughput and comprehensive protein recovery from OCT samples.
Collapse
Affiliation(s)
- Susana Jorge
- BIOSCOPE Research Group, LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal.,PROTEOMASS Scientific Society , Madan Park, Rua dos Inventores , 2825-152 Caparica , Portugal
| | - José L Capelo
- BIOSCOPE Research Group, LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal.,PROTEOMASS Scientific Society , Madan Park, Rua dos Inventores , 2825-152 Caparica , Portugal
| | - William LaFramboise
- Department of Pathology , University of Pittsburgh Medical Center , Pittsburgh , Pennsylvania 15261 , United States
| | - Rajiv Dhir
- Department of Pathology , University of Pittsburgh Medical Center , Pittsburgh , Pennsylvania 15261 , United States
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal.,PROTEOMASS Scientific Society , Madan Park, Rua dos Inventores , 2825-152 Caparica , Portugal
| | - Hugo M Santos
- BIOSCOPE Research Group, LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal.,PROTEOMASS Scientific Society , Madan Park, Rua dos Inventores , 2825-152 Caparica , Portugal
| |
Collapse
|
3
|
Kinoshita M, Suzuki KG, Murata M, Matsumori N. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem Phys Lipids 2018; 215:84-95. [DOI: 10.1016/j.chemphyslip.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
|
4
|
Kurreck A, Vandergrift LA, Fuss TL, Habbel P, Agar NYR, Cheng LL. Prostate cancer diagnosis and characterization with mass spectrometry imaging. Prostate Cancer Prostatic Dis 2017; 21:297-305. [PMID: 29209003 PMCID: PMC5988647 DOI: 10.1038/s41391-017-0011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Background Prostate cancer (PCa), the most common cancer and second leading cause of cancer death in American men, presents the clinical challenge of distinguishing between indolent and aggressive tumors for proper treatment. PCa presents significant alterations in metabolic pathways that can potentially be measured using techniques like mass spectrometry (MS) or mass spectrometry imaging (MSI) and used to characterize PCa aggressiveness. MS quantifies metabolomic, proteomic, and lipidomic profiles of biological systems that can be further visualized for their spatial distributions through MSI. Methods PubMed was queried for all publications relating to MS and MSI in human prostate cancer from April 2007 to April 2017. With the goal of reviewing the utility of MSI in diagnosis and prognostication of human PCa, MSI articles that reported investigations of PCa-specific metabolites or metabolites indicating PCa aggressiveness were selected for inclusion. Articles were included that covered MS and MSI principles, limitations, and applications in PCa. Results We identified nine key studies on MSI in intact human prostate tissue specimens that determined metabolites which could either differentiate between benign and malignant prostate tissue or indicate prostate cancer aggressiveness. These MSI-detected biomarkers show promise in reliably identifying PCa and determining disease aggressiveness. Conclusions MSI represents an innovative technique with the ability to interrogate cancer biomarkers in relation to tissue pathologies and investigate tumor aggressiveness. We propose MSI as a powerful adjuvant histopathology imaging tool for prostate tissue evaluations, where clinical translation of this ex vivo technique could make possible the use of MSI for personalized medicine in diagnosis and prognosis of prostate cancer. Moreover, the knowledge provided from this technique can majorly contribute to the understanding of molecular pathogenesis of PCa and other malignant diseases.
Collapse
Affiliation(s)
- Annika Kurreck
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Hematology and Oncology, Charité Medical University of Berlin, Berlin, Germany
| | - Lindsey A Vandergrift
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor L Fuss
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Berlin, Germany
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leo L Cheng
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
MALDI imaging: beyond classic diagnosis. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:212-218. [PMID: 29382489 DOI: 10.1016/j.bmhimx.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 02/04/2023] Open
Abstract
Mass spectrometry has been the focus of technology development and application for imaging for several decades. Imaging mass spectrometry using matrix-assisted laser desorption ionization is a new and effective tool for molecular studies of complex biological samples such as tissue sections. As histological features remain intact throughout the analysis of a section, distribution maps of multiple analytes can be correlated with histological and clinical features. Spatial molecular arrangements can be assessed without the need for target-specific reagents, allowing the discovery of diagnostic and prognostic markers of different cancer types and enabling the determination of effective therapies.
Collapse
|
6
|
Apparicio M, Santos VG, Rocha D, Ferreira CR, Macente BI, Magalhães GM, Alves AE, Motheo TF, Padilha-Nakaghi LC, Pires-Buttler EA, Luvoni GC, Eberlin MN, Vicente W. Matrix-assisted laser desorption/ionization imaging mass spectrometry for the spatial location of feline oviductal proteins. Reprod Domest Anim 2016; 52 Suppl 2:88-92. [PMID: 27807892 DOI: 10.1111/rda.12842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With the purpose of identifying factors involved in early stages of embryo development in the domestic cat, matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) was used for the first time to describe the spatial localization of proteins in the oviducts of queens. Oviducts were obtained from two 2 and 4 years old cross-bred queens, divided into three segments, snap-frozen in liquid nitrogen and then stored at -80°C until use. Next, they were sectioned in a cryostat, fixed on ITO (indium tin oxide) conductive glass slides for MALDI-IMS and serial sections were collected on microscope slides for histology. As confirmed by histology, MALDI-IMS was able to show contrasting protein distributions in the oviductal infundibulum, ampulla and isthmus. Mass spectra were characterized by abundant ions of m/z 1,259, 4,939, 4,960 and 10,626, which have been tentatively attributed to keratin, thymosin β10, thymosin β4 and S100, respectively. Keratin and thymosins are involved in the biological response to tissue damage. S100 proteins are calcium-modulated proteins implicated in a variety of cellular activities, including cell differentiation and regulation of cell motility. These results suggest that protein composition differs between segments of the cat oviduct, which corresponds to morphological changes within these sections. Further functional studies could elucidate the effects of these proteins on feline reproductive physiology.
Collapse
Affiliation(s)
- M Apparicio
- Programa de Mestrado em Ciência Animal, Universidade de Franca, UNIFRAN, Franca/SP, Brazil
| | - V G Santos
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, Campinas/SP, Brazil
| | - Dfo Rocha
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, Campinas/SP, Brazil
| | - C R Ferreira
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, Campinas/SP, Brazil
| | - B I Macente
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP, Jaboticabal/SP, Brazil
| | - G M Magalhães
- Programa de Mestrado em Ciência Animal, Universidade de Franca, UNIFRAN, Franca/SP, Brazil
| | - A E Alves
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP, Jaboticabal/SP, Brazil
| | - T F Motheo
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP, Jaboticabal/SP, Brazil
| | - L C Padilha-Nakaghi
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP, Jaboticabal/SP, Brazil
| | - E A Pires-Buttler
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP, Jaboticabal/SP, Brazil
| | - G C Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milan, Italy
| | - M N Eberlin
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, Campinas/SP, Brazil
| | - Wrr Vicente
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP, Jaboticabal/SP, Brazil
| |
Collapse
|
7
|
|
8
|
Comprehensive proteome analysis of fresh frozen and optimal cutting temperature (OCT) embedded primary non-small cell lung carcinoma by LC-MS/MS. Methods 2015; 81:50-5. [PMID: 25721092 DOI: 10.1016/j.ymeth.2015.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 11/23/2022] Open
Abstract
Clinical tissue samples provide valuable information for understanding human diseases. One major type of clinical tissue sample that is amenable to various kinds of analysis is fresh frozen and optimal cutting temperature (OCT)-embedded primary patient tissue. Recent advances in mass spectrometry (MS) technologies have been widely applied to study human proteomes by using clinical specimens. However, polymeric compounds such as OCT can interfere with MS analyses. Here we present methods that enable the preparation and analysis of fresh frozen and OCT embedded primary tissue samples by LC-MS/MS. A scraping method was first introduced to reduce the heterogeneity of OCT-embedded non-small cell lung carcinoma tumor sections. OCT compound was reproducibly removed by a series of washing steps involving ethanol and water prior to trypsin digestion. In data-dependent acquisition mode, optimized dynamic exclusion duration settings were established to maximize peptide identifications. These sample preparation conditions and MS parameter settings should be utilized or carefully adjusted in order to achieve optimal comprehensive proteome characterization starting from fresh frozen and OCT embedded clinical tissue specimens.
Collapse
|
9
|
Wang X, Han J, Yang J, Pan J, Borchers CH. Matrix coating assisted by an electric field (MCAEF) for enhanced tissue imaging by MALDI-MS. Chem Sci 2015; 6:729-738. [PMID: 28706636 PMCID: PMC5494562 DOI: 10.1039/c4sc01850h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/09/2014] [Indexed: 01/13/2023] Open
Abstract
A novel technique, termed matrix coating assisted by an electric field (MCAEF), for enhancing tissue imaging by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was developed in this study. In this technique a static and uniform electric field is applied to sliced tissue sections during matrix spray-coating, resulting in the enrichment of positively or negatively chargeable analytes in the MALDI matrix layer. Experimental results show that MCAEF not only increased the sensitivity of lipid and protein detection across the board in the subsequent MALDI-MS analyses, but also resulted in successful imaging of a larger number of analytes. MALDI imaging enhancement with MCAEF was observed for various tissues (rat liver, rat brain, and porcine adrenal gland) and with different MALDI matrices (e.g., quercetin, 2-mercaptobenzothiazole, dithranol, 9-aminoacridine, and sinapinic acid) and the sensitivity increases were independent of the solvent compositions and pH values of the matrix solutions. Taking rat brain as an example, MCAEF led to the on-tissue detection and imaging of 648 identified lipids by combining positive and negative ion detection by MALDI-Fourier transform ion cyclotron resonance MS and with quercetin as the matrix, as compared to only 344 lipids without MCAEF. For protein imaging, up to 232 protein signals were successfully detected in rat brain tissue sections by MALDI-time-of-flight MS within a mass range of 3500 to 37 000 Da, as compared to 119 without MCAEF. MCAEF also enabled the detection of higher molecular-weight proteins. These results demonstrate the advantages of MCAEF for overall performance improvements in MALDI imaging and we believe that this technique has the potential to become a standard practice for MALDI tissue imaging.
Collapse
Affiliation(s)
- Xiaodong Wang
- University of Victoria - Genome British Columbia Proteomics Centre , Vancouver Island Technology Park, #3101-4464 Markham St. , Victoria , BC V8Z 7X8 , Canada . ; ; Tel: +1-250-483-3221
| | - Jun Han
- University of Victoria - Genome British Columbia Proteomics Centre , Vancouver Island Technology Park, #3101-4464 Markham St. , Victoria , BC V8Z 7X8 , Canada . ; ; Tel: +1-250-483-3221
| | - Juncong Yang
- University of Victoria - Genome British Columbia Proteomics Centre , Vancouver Island Technology Park, #3101-4464 Markham St. , Victoria , BC V8Z 7X8 , Canada . ; ; Tel: +1-250-483-3221
| | - Jingxi Pan
- University of Victoria - Genome British Columbia Proteomics Centre , Vancouver Island Technology Park, #3101-4464 Markham St. , Victoria , BC V8Z 7X8 , Canada . ; ; Tel: +1-250-483-3221
| | - Christoph H Borchers
- University of Victoria - Genome British Columbia Proteomics Centre , Vancouver Island Technology Park, #3101-4464 Markham St. , Victoria , BC V8Z 7X8 , Canada . ; ; Tel: +1-250-483-3221
- Department of Biochemistry and Microbiology , University of Victoria , Petch Building Room 207, 3800 Finnerty Rd. , Victoria , BC V8P 5C2 , Canada
| |
Collapse
|
10
|
Fournaise E, Chaurand P. Increasing specificity in imaging mass spectrometry: high spatial fidelity transfer of proteins from tissue sections to functionalized surfaces. Anal Bioanal Chem 2014; 407:2159-66. [DOI: 10.1007/s00216-014-8300-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/05/2023]
|
11
|
Weston LA, Hummon AB. Comparative LC-MS/MS analysis of optimal cutting temperature (OCT) compound removal for the study of mammalian proteomes. Analyst 2014; 138:6380-4. [PMID: 24051509 DOI: 10.1039/c3an01121f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary tissue samples are valuable resources for investigators interested in understanding disease. In order to maximize the information content that can be gained from these precious samples, proper storage, handling, and preparation are essential. Some tissue preservation techniques utilize the cryopreservation medium, optimal cutting temperature (OCT) compound. While this medium provides benefits for traditional molecular studies, certain components can interfere with mass spectrometric analyses. Mass spectrometry based proteomics is a growing field with many applications for disease research. Our goal is to determine a reliable method for separating the proteins from the contaminating species in OCT embedded samples, thus making these samples compatible with mass spectrometric analyses. The novel applications of ether-methanol precipitation, filter-aided sample preparation (FASP), and SDS-PAGE provide researchers with protocols for removing OCT contaminating species from valuable samples. The results presented in this study show that all three methods reproducibly remove OCT; however, precipitation and FASP outperform SDS-PAGE by common proteomic metrics.
Collapse
Affiliation(s)
- Leigh A Weston
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
12
|
Sugihara Y, Végvári Á, Welinder C, Jönsson G, Ingvar C, Lundgren L, Olsson H, Breslin T, Wieslander E, Laurell T, Rezeli M, Jansson B, Nishimura T, Fehniger TE, Baldetorp B, Marko-Varga G. A new look at drugs targeting malignant melanoma-An application for mass spectrometry imaging. Proteomics 2014; 14:1963-70. [DOI: 10.1002/pmic.201300476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 06/25/2014] [Accepted: 07/16/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yutaka Sugihara
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Ákos Végvári
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
- CREATE Health; Lund University; Lund Sweden
| | - Charlotte Welinder
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Göran Jönsson
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Christian Ingvar
- Department of Surgery; Clinical Sciences; Lund University; Lund Sweden
| | - Lotta Lundgren
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Håkan Olsson
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Thomas Breslin
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Elisabet Wieslander
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
| | - Melinda Rezeli
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
| | | | - Toshihide Nishimura
- Center of Excellence in Biological and Medical Mass Spectrometry; Lund University; Lund Sweden
| | - Thomas E. Fehniger
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
- Center of Excellence in Biological and Medical Mass Spectrometry; Lund University; Lund Sweden
| | - Bo Baldetorp
- Department of Oncology; Clinical Sciences; Lund University and Skåne University Hospital; Lund Sweden
| | - György Marko-Varga
- Department of Biomedical Engineering; Clinical Protein Science & Imaging; Biomedical Center; Lund University; Lund Sweden
- Center of Excellence in Biological and Medical Mass Spectrometry; Lund University; Lund Sweden
- First Department of Surgery; Tokyo Medical University; Tokyo Japan
| |
Collapse
|
13
|
Johnson H, White FM. Quantitative analysis of signaling networks across differentially embedded tumors highlights interpatient heterogeneity in human glioblastoma. J Proteome Res 2014; 13:4581-93. [PMID: 24927040 PMCID: PMC4227552 DOI: 10.1021/pr500418w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Glioblastoma
multiforme (GBM) is the most aggressive malignant
primary brain tumor, with a dismal mean survival even with the current
standard of care. Although in vitro cell systems can provide mechanistic
insight into the regulatory networks governing GBM cell proliferation
and migration, clinical samples provide a more physiologically relevant
view of oncogenic signaling networks. However, clinical samples are
not widely available and may be embedded for histopathologic analysis.
With the goal of accurately identifying activated signaling networks
in GBM tumor samples, we investigated the impact of embedding in optimal
cutting temperature (OCT) compound followed by flash freezing in LN2 vs immediate flash freezing (iFF) in LN2 on protein
expression and phosphorylation-mediated signaling networks. Quantitative
proteomic and phosphoproteomic analysis of 8 pairs of tumor specimens
revealed minimal impact of the different sample processing strategies
and highlighted the large interpatient heterogeneity present in these
tumors. Correlation analyses of the differentially processed tumor
sections identified activated signaling networks present in selected
tumors and revealed the differential expression of transcription,
translation, and degradation associated proteins. This study demonstrates
the capability of quantitative mass spectrometry for identification
of in vivo oncogenic signaling networks from human tumor specimens
that were either OCT-embedded or immediately flash-frozen.
Collapse
Affiliation(s)
- Hannah Johnson
- Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
14
|
Le Faouder J, Laouirem S, Alexandrov T, Ben-Harzallah S, Léger T, Albuquerque M, Bedossa P, Paradis V. Tumoral heterogeneity of hepatic cholangiocarcinomas revealed by MALDI imaging mass spectrometry. Proteomics 2014; 14:965-72. [DOI: 10.1002/pmic.201300463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Julie Le Faouder
- Claude Bernard Institute; Paris-Diderot University; Paris France
- INSERM U773; Biomedical Research Center; Paris-Diderot University; Paris France
| | - Samira Laouirem
- INSERM U773; Biomedical Research Center; Paris-Diderot University; Paris France
| | - Theodore Alexandrov
- Center for Industrial Mathematics; University of Bremen; Bremen Germany
- Steinbeis Innovation Center SCiLS Research; Bremen Germany
- SCiLS GmbH; Bremen Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla CA USA
| | | | - Thibaut Léger
- Mass Spectrometry Facility; Jacques Monod Institute; UMR7592-CNRS; University Paris-Diderot; Paris France
| | - Miguel Albuquerque
- Pathology Department; Beaujon Hospital; Assistance Publique-Hôpitaux de Paris; Clichy France
| | - Pierre Bedossa
- INSERM U773; Biomedical Research Center; Paris-Diderot University; Paris France
- Pathology Department; Beaujon Hospital; Assistance Publique-Hôpitaux de Paris; Clichy France
| | - Valérie Paradis
- INSERM U773; Biomedical Research Center; Paris-Diderot University; Paris France
- Pathology Department; Beaujon Hospital; Assistance Publique-Hôpitaux de Paris; Clichy France
| |
Collapse
|
15
|
Spur EM, Decelle EA, Cheng LL. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry. Eur J Nucl Med Mol Imaging 2013; 40 Suppl 1:S60-71. [PMID: 23549758 DOI: 10.1007/s00259-013-2379-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/14/2022]
Abstract
Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases.
Collapse
Affiliation(s)
- Eva-Margarete Spur
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, CNY-6, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | | | | |
Collapse
|
16
|
Sample preparation for mass spectrometry imaging: Small mistakes can lead to big consequences. J Proteomics 2012; 75:4893-4911. [DOI: 10.1016/j.jprot.2012.04.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
|
17
|
Mass Spectrometry Imaging: facts and perspectives from a non-mass spectrometrist point of view. Methods 2012; 57:417-22. [PMID: 22713555 DOI: 10.1016/j.ymeth.2012.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022] Open
Abstract
Mass Spectrometry Imaging (MSI, also called Imaging Mass Spectrometry) can be used to map molecules according to their chemical abundance and spatial distribution. This technique is not widely used in mass spectrometry circles and is barely known by other scientists. In this review, a brief overview of the mass spectrometer hardware used in MSI and some of the possible applications of this powerful technique are discussed. I intend to call attention to MSI uses from cell biology to histopathology for biological scientists who have little background in mass spectrometry. MSI facts and perspectives are presented from a non-mass spectrometrist point of view.
Collapse
|
18
|
Xiong X, Xu W, Eberlin LS, Wiseman JM, Fang X, Jiang Y, Huang Z, Zhang Y, Cooks RG, Ouyang Z. Data processing for 3D mass spectrometry imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1147-1156. [PMID: 22392622 DOI: 10.1007/s13361-012-0361-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
Data processing for three dimensional mass spectrometry (3D-MS) imaging was investigated, starting with a consideration of the challenges in its practical implementation using a series of sections of a tissue volume. The technical issues related to data reduction, 2D imaging data alignment, 3D visualization, and statistical data analysis were identified. Software solutions for these tasks were developed using functions in MATLAB. Peak detection and peak alignment were applied to reduce the data size, while retaining the mass accuracy. The main morphologic features of tissue sections were extracted using a classification method for data alignment. Data insertion was performed to construct a 3D data set with spectral information that can be used for generating 3D views and for data analysis. The imaging data previously obtained for a mouse brain using desorption electrospray ionization mass spectrometry (DESI-MS) imaging have been used to test and demonstrate the new methodology.
Collapse
Affiliation(s)
- Xingchuang Xiong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J Proteomics 2012; 75:4883-4892. [PMID: 22525544 DOI: 10.1016/j.jprot.2012.04.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 12/21/2022]
Abstract
Imaging mass spectrometry (MS) allows to monitor the spatial distribution and abundance of endogenous and administered compounds present within tissue specimens. Several different but complementary imaging MS technologies have been developed allowing the analysis of a wide variety of compounds including inorganic elementals, metabolites, lipids, peptides, proteins and xenobiotics with spatial resolutions from micrometer to nanometer scales. In the past decade, an enormous collective body of work has been done to develop and improve the imaging MS technology. This article gives a historical perspective, an overview of the principle and status of the technology and lists the main fields of applications. It also enumerates some of the critical challenges we need to collectively address for imaging MS to be considered a mainstream analytical method.
Collapse
|
20
|
Lagarrigue M, Lavigne R, Guével B, Com E, Chaurand P, Pineau C. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry: A Promising Technique for Reproductive Research1. Biol Reprod 2012; 86:74. [DOI: 10.1095/biolreprod.111.094896] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
21
|
XIONG XC, FANG X, OU YZ, JIANG Y, HUANG ZJ, ZHANG YK. Artificial Neural Networks for Classification and Identification of Data of Biological Tissue Obtained by Mass-Spectrometry Imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60525-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Pallua JD, Recheis W, Pöder R, Pfaller K, Pezzei C, Hahn H, Huck-Pezzei V, Bittner LK, Schaefer G, Steiner E, Andre G, Hutwimmer S, Felber S, Pallua AK, Pallua AF, Bonn GK, Huck CW. Morphological and tissue characterization of the medicinal fungus Hericium coralloides by a structural and molecular imaging platform. Analyst 2012; 137:1584-95. [DOI: 10.1039/c1an15615b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Prolyl cis/trans isomerase signalling pathways in cancer. Curr Opin Pharmacol 2011; 11:281-7. [DOI: 10.1016/j.coph.2011.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/21/2011] [Indexed: 01/05/2023]
|
24
|
Rauser S, Deininger SO, Suckau D, Höfler H, Walch A. Approaching MALDI molecular imaging for clinical proteomic research: current state and fields of application. Expert Rev Proteomics 2011; 7:927-41. [PMID: 21142893 DOI: 10.1586/epr.10.83] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MALDI imaging mass spectrometry ('MALDI imaging') is an increasingly recognized technique for biomarker research. After years of method development in the scientific community, the technique is now increasingly applied in clinical research. In this article, we discuss the use of MALDI imaging in clinical proteomics and put it in context with classical proteomics techniques. We also highlight a number of upcoming challenges for personalized medicine, development of targeted therapies and diagnostic molecular pathology where MALDI imaging could help.
Collapse
Affiliation(s)
- Sandra Rauser
- Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
25
|
Zhang FZ, Hong D. Elastic net-based framework for imaging mass spectrometry data biomarker selection and classification. Stat Med 2010; 30:753-68. [DOI: 10.1002/sim.4147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 10/22/2010] [Indexed: 12/20/2022]
|
26
|
Molecular mass spectrometry imaging in biomedical and life science research. Histochem Cell Biol 2010; 134:423-43. [DOI: 10.1007/s00418-010-0753-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
27
|
Fredolini C, Liotta LA, Petricoin EF. Application of proteomic technologies for prostate cancer detection, prognosis, and tailored therapy. Crit Rev Clin Lab Sci 2010; 47:125-38. [PMID: 20858067 DOI: 10.3109/10408363.2010.503558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostate cancer affects 3 in 10 men over the age of 50 years, and, unfortunately, the clinical course of the disease is poorly predicted. At present, there is no means that can distinguish indolent from aggressive/metastatic tumors. Thus, a personalized clinical approach could be helpful in diagnosing clinically relevant disease and guiding appropriate patient therapy. Individualized medicine requires a deep knowledge of the molecular mechanisms underpinning prostate cancer carcinogenesis. Proteomics may be the most powerful way to uncover biomarkers of detection, prognosis, and prediction, as proteins do the work of the cell and represent the majority of the diagnostic markers and drug targets today. Proteomic technologies are rapidly advancing beyond the two-dimensional gel separation techniques of the past to new types of mass spectrometry and protein microarray analyses. Biological fluids and tissue-cell proteomes from men with prostate cancer are being explored to identify diagnostic and prognostic biomarkers and therapeutic targets using these new proteomic approaches. Traditional and novel proteomic technology and their application to prostate cancer studies in translational research will be presented and discussed in this review. Proteomics coupled with powerful nanotechnology-based biomarker discovery approaches may provide a new and exciting opportunity for body fluid-borne biomarker discovery and characterization. While innovative mass spectrometry technology and nanotrap could be applied to improve the discovery and measurement of biomarkers for the early detection of prostate cancer, the use of tissue proteomic tools such as the reverse-phase protein microarray may provide new approaches for personalization of therapies tailored to each tumor's unique pathway activation network.
Collapse
|
28
|
Goodwin RJA, Lang AM, Allingham H, Borén M, Pitt AR. Stopping the clock on proteomic degradation by heat treatment at the point of tissue excision. Proteomics 2010; 10:1751-61. [PMID: 20217868 DOI: 10.1002/pmic.200900641] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effectiveness of rapid and controlled heating of intact tissue to inactivate native enzymatic activity and prevent proteome degradation has been evaluated. Mouse brains were bisected immediately following excision, with one hemisphere being heat treated followed by snap freezing in liquid nitrogen while the other hemisphere was snap frozen immediately. Sections were cut by cryostatic microtome and analyzed by MALDI-MS imaging and minimal label 2-D DIGE, to monitor time-dependent relative changes in intensities of protein and peptide signals. Analysis by MALDI-MS imaging demonstrated that the relative intensities of markers varied across a time course (0-5 min) when the tissues were not stabilized by heat treatment. However, the same markers were seen to be stabilized when the tissues were heat treated before snap freezing. Intensity profiles for proteins indicative of both degradation and stabilization were generated when samples of treated and nontreated tissues were analyzed by 2-D DIGE, with protein extracted before and after a 10-min warming of samples. Thus, heat treatment of tissues at the time of excision is shown to prevent subsequent uncontrolled degradation of tissues at the proteomic level before any quantitative analysis, and to be compatible with downstream proteomic analysis.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Division of Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
29
|
Chaurand P, Cornett DS, Angel PM, Caprioli RM. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics 2010; 10:O110.004259. [PMID: 20736411 DOI: 10.1074/mcp.o110.004259] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.
Collapse
Affiliation(s)
- Pierre Chaurand
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8575, USA
| | | | | | | |
Collapse
|
30
|
Lee J, Kim SS. Current implications of cyclophilins in human cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:97. [PMID: 20637127 PMCID: PMC2912272 DOI: 10.1186/1756-9966-29-97] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/19/2010] [Indexed: 12/28/2022]
Affiliation(s)
- Jinhwa Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan 617-716, Korea
| | | |
Collapse
|
31
|
Touboul D, Brunelle A, Laprévote O. Mass spectrometry imaging: Towards a lipid microscope? Biochimie 2010; 93:113-9. [PMID: 20570708 DOI: 10.1016/j.biochi.2010.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians. Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position. Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition.
Collapse
Affiliation(s)
- David Touboul
- Centre de recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Kamila Chughtai
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M.A. Heeren
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
33
|
Patti GJ, Woo HK, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon JV, Steenwyk R, Manchester M, Siuzdak G. Detection of carbohydrates and steroids by cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for biofluid analysis and tissue imaging. Anal Chem 2010; 82:121-8. [PMID: 19961200 DOI: 10.1021/ac9014353] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanostructure-initiator mass spectrometry (NIMS) is a highly sensitive, matrix-free technique that is well suited for biofluid analysis and imaging of biological tissues. Here we provide a new technical variation of NIMS to analyze carbohydrates and steroids, molecules that are challenging to detect with traditional mass spectrometric approaches. Analysis of carbohydrates and steroids was accomplished by spray depositing NaCl or AgNO(3) on the NIMS porous silicon surface to provide a uniform environment rich with cationization agents prior to desorption of the fluorinated polymer initiator. Laser desorption/ionization of the ion-coated NIMS surface allowed for Na(+) cationization of carbohydrates and Ag(+) cationization of steroids. The reliability of the approach is quantitatively demonstrated with a calibration curve over the physiological range of glucose and cholesterol concentrations in human serum (1-200 microM). Additionally, we illustrate the sensitivity of the method by showing its ability to detect carbohydrates and steroids down to the 800-amol and 100-fmol levels, respectively. The technique developed is well suited for tissue imaging of biologically significant metabolites such as sucrose and cholesterol. To highlight its applicability, we used cation-enhanced NIMS to image the distribution of sucrose in a Gerbera jamesonii flower stem and the distribution of cholesterol in a mouse brain. The flower stem and brain sections were placed directly on the ion-coated NIMS surface without further preparation and analyzed directly. The overall results reported underscore the potential of NIMS to analyze and image chemically diverse compounds that have been traditionally challenging to observe with mass spectrometry-based techniques.
Collapse
Affiliation(s)
- Gary J Patti
- Department of Molecular Biology, Scripps Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK, Wiel IMVD, Wisztorski M, Fournier I, Heeren RMA. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:338-47. [PMID: 19926301 DOI: 10.1016/j.jasms.2009.09.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 05/06/2023]
Abstract
MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues--formalin fixed paraffin embedded (FFPE) and frozen tissues--are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics "bottom-up" strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.
Collapse
Affiliation(s)
- Jonathan Stauber
- FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zimmerman TA, Rubakhin SS, Sweedler JV. Mass spectrometry imaging using the stretched sample approach. Methods Mol Biol 2010; 656:465-79. [PMID: 20680608 DOI: 10.1007/978-1-60761-746-4_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) can determine tissue localization for a variety of analytes with high sensitivity, chemical specificity, and spatial resolution. MS image quality typically depends on the MALDI matrix application method used, particularly when the matrix solution or powder is applied directly to the tissue surface. Improper matrix application results in spatial redistribution of analytes and reduced MS signal quality. Here we present a stretched sample imaging protocol that removes the dependence of MS image quality on the matrix application process and improves analyte extraction and sample desalting. First, the tissue sample is placed on a monolayer of solid support beads that are embedded in a hydrophobic membrane. Stretching the membrane fragments the tissue into thousands of nearly single-cell sized islands, with the pieces physically isolated from each other by the membrane. This spatial isolation prevents analyte transfer between beads, allowing for longer exposure of the tissue fragments to the MALDI matrix, thereby improving detectability of small analyte quantities without sacrificing spatial resolution. When using this method to reconstruct chemical images, complications result from non-uniform stretching of the supporting membrane. Addressing this concern, several computational tools enable automated data acquisition at individual bead locations and allow reconstruction of ion images corresponding to the original spatial conformation of the tissue section. Using mouse pituitary, we demonstrate the utility of this stretched imaging technique for characterizing peptide distributions in heterogeneous tissues at nearly single-cell resolution.
Collapse
Affiliation(s)
- Tyler A Zimmerman
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
36
|
Abstract
MALDI imaging as a molecular mass spectrometry imaging technique (MSI) can provide accurate information about molecular composition on a surface. The last decade of MSI development has brought the technology to clinical and biomedical applications as a complementary technique of MRI and other molecular imaging. Then, this IMS technique is used for endogenous and exogenous molecule detection in pharmaceutical and biomedical fields. However, some limitations still exist due to physical and chemical aspects, and sensitivity of certain compounds is very low. Thus, we developed a multiplex technique for fast detection of different compound natures. The multiplex MALDI imaging technique uses a photocleavable group that can be detect easily by MALDI instrument. These techniques of targeted imaging using Tag-Mass molecules allow the multiplex detection of compounds like antibodies or oligonucleotides. Here, we describe how we used this technique to detect huge proteins and mRNA by MALDI imaging in rat brain and in a model for regeneration; the leech.
Collapse
Affiliation(s)
- Jonathan Stauber
- Laboratoire de Neuroimmunologie et Neurochimie Evolutives, FRE CNRS 3249, MALDI Imaging Team, Université Lille Nord de France, Université Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
37
|
Zhang X, Ladd A, Dragoescu E, Budd WT, Ware JL, Zehner ZE. MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 2009; 26:965-79. [PMID: 19771525 DOI: 10.1007/s10585-009-9287-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/04/2009] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRs) are a novel class of RNAs with important roles in regulating gene expression. To identify miRs controlling prostate tumor progression, we utilized unique human prostate sublines derived from the parental P69 cell line, which differ in their tumorigenic properties in vivo. Grown embedded in laminin-rich extracellular matrix (lrECM) gels these genetically-related sublines displayed drastically different morphologies correlating with their behaviour in vivo. The non-tumorigenic P69 subline grew as multicellular acini with a defined lumen and basal/polar expression of relevant marker proteins. M12, a highly tumorigenic, metastatic derivative, grew as a disorganized mass of cells with no polarization, whereas the F6 subline, a weakly tumorigenic, non-metastatic M12 variant, reverted to acini formation akin to the P69 cell line. These sublines also differed in expression of vimentin, which was high in M12, but low in F6 and P69 sublines. Analysis of vimentin's conserved 3'-UTR suggested several miRs that could regulate vimentin expression. The lack of miR-17-3p expression correlated with an increase in vimentin synthesis and tumorigenicity. Stable expression of miR-17-3p in the M12 subline reduced vimentin levels 85% and reverted growth to organized, polarized acini in lrECM gels. In vitro motility and invasion assays suggested a decrease in tumorigenic behaviour, confirmed by reduced tumor growth in male athymic, nude mice dependent on miR-17-3p expression. Analysis of LCM-purified clinical human prostatectomy specimens confirmed that miR-17-3p levels were reduced in tumor cells. These results suggest that miR-17-3p functions as a tumor suppressor, representing a novel target to block prostate tumor progression.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry & Molecular Biology and The Massey Cancer Center, School of Medicine, VCU Medical Center, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
38
|
Franck J, Arafah K, Barnes A, Wisztorski M, Salzet M, Fournier I. Improving Tissue Preparation for Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging. Part 1: Using Microspotting. Anal Chem 2009; 81:8193-202. [DOI: 10.1021/ac901328p] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Franck
- Université de Lille1, CNRS, Team, Laboratoire de Neuroimmunologie des Annélides, MALDI Imaging, F-59655 Villeneuve d’Ascq Cedex, France, and Shimadzu Corporation, Wharfside, Trafford Wharf Road, Manchester, U.K
| | - Karim Arafah
- Université de Lille1, CNRS, Team, Laboratoire de Neuroimmunologie des Annélides, MALDI Imaging, F-59655 Villeneuve d’Ascq Cedex, France, and Shimadzu Corporation, Wharfside, Trafford Wharf Road, Manchester, U.K
| | - Alan Barnes
- Université de Lille1, CNRS, Team, Laboratoire de Neuroimmunologie des Annélides, MALDI Imaging, F-59655 Villeneuve d’Ascq Cedex, France, and Shimadzu Corporation, Wharfside, Trafford Wharf Road, Manchester, U.K
| | - Maxence Wisztorski
- Université de Lille1, CNRS, Team, Laboratoire de Neuroimmunologie des Annélides, MALDI Imaging, F-59655 Villeneuve d’Ascq Cedex, France, and Shimadzu Corporation, Wharfside, Trafford Wharf Road, Manchester, U.K
| | - Michel Salzet
- Université de Lille1, CNRS, Team, Laboratoire de Neuroimmunologie des Annélides, MALDI Imaging, F-59655 Villeneuve d’Ascq Cedex, France, and Shimadzu Corporation, Wharfside, Trafford Wharf Road, Manchester, U.K
| | - Isabelle Fournier
- Université de Lille1, CNRS, Team, Laboratoire de Neuroimmunologie des Annélides, MALDI Imaging, F-59655 Villeneuve d’Ascq Cedex, France, and Shimadzu Corporation, Wharfside, Trafford Wharf Road, Manchester, U.K
| |
Collapse
|
39
|
Cazares LH, Troyer D, Mendrinos S, Lance RA, Nyalwidhe JO, Beydoun HA, Clements MA, Drake RR, Semmes OJ. Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin Cancer Res 2009; 15:5541-51. [PMID: 19690195 DOI: 10.1158/1078-0432.ccr-08-2892] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Histopathology is the standard approach for tissue diagnostics and centerpiece of pathology. Although the current system provides prognostic information, there is need for molecular markers that enhance diagnosis and better predict clinical prognosis. The ability to localize disease-specific molecular changes in biopsy tissue would help improve critical pathology decision making. Direct profiling of proteins from tissue using matrix-assisted laser desorption/ionization imaging mass spectrometry has the potential to supplement morphology with underlying molecular detail. EXPERIMENTAL DESIGN A discovery set of 11 prostate cancer (PCa)-containing and 10 benign prostate tissue sections was evaluated for protein expression differences. A separate validation set of 54 tissue sections (23 PCa and 31 benign) was used to verify the results. Cryosectioning was done to yield tissue sections analyzed by a pathologist to determine tissue morphology and mirror sections for imaging mass spectrometry. Spectra were acquired and the intensity of signals was plotted as a function of the location within the tissue. RESULTS An expression profile was found that discriminates between PCa and normal tissue. The overexpression of a single ion at m/z 4,355 was able to discriminate cancer from uninvolved tissue. Tandem mass spectrometry identified this marker as a fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 (MEKK2). The ability of MEKK2 to discriminate tumor from normal cells was orthogonally confirmed. CONCLUSIONS This study highlights the potential of this approach to uncover molecular detail that can be correlated with pathology decision making. In addition, the identification of MEKK2 shows the ability to discover proteins of relevance to PCa biology.
Collapse
Affiliation(s)
- Lisa H Cazares
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
MacAleese L, Stauber J, Heeren RMA. Perspectives for imaging mass spectrometry in the proteomics landscape. Proteomics 2009; 9:819-34. [PMID: 19212956 DOI: 10.1002/pmic.200800363] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of techniques are used in the field of proteomics that can be combined to get the most molecular information from a specific biological sample, fluid or tissue. Imaging techniques are often used to obtain local information from tissue samples. However, imaging experiments are often staining experiments, which rely on specific or aspecific interactions between fluorescent markers and pre-defined (families of) peptide or protein. Therefore, imaging is often used as a screening or validation tool for the local presence of proteins that have been identified by other means. Imaging mass spectrometry (IMS) combines the advantages of MS and microscopy in a single experiment. It is a technique that does not require any labeling of the analytes and provides a high multiplexing capability combined with the potential for analyte identification. It enables simultaneous detection of potentially all peptides and proteins present at a tissue surface and is used for the determination and identification of tissue-specific disease markers. The workflows of IMS experiments closely resemble those of conventional proteomics. In this review, we describe IMS experiments step-by-step to position and evaluate the role of IMS in a comparative proteomics landscape. We illustrate in a concise review that IMS is a true discovery oriented tool for proteomics that seamlessly integrates in conventional proteomics workflows and can be perceived as either an alternative or complementary proteomics technique.
Collapse
Affiliation(s)
- Luke MacAleese
- FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Vaezzadeh AR, Steen H, Freeman MR, Lee RS. Proteomics and opportunities for clinical translation in urological disease. J Urol 2009; 182:835-43. [PMID: 19616261 DOI: 10.1016/j.juro.2009.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Indexed: 12/15/2022]
Abstract
PURPOSE Proteomics is a rapidly growing new discipline that has the potential to increase and improve the understanding of protein function and interaction in the context of systems biology. As a translational science it has the potential to identify many new therapeutic targets as well as diagnostic and prognostic biomarkers of disease. Proteomics approaches consist of a combination of powerful technologies such as protein/peptide separation, identification and bioinformatic detection, and quantitation based on powerful computational data processing tools. We present an overview of current proteomics technologies, a review of proteomics applications in urology and a perspective on the future of proteomics in clinical medicine. MATERIALS AND METHODS A literature search was performed on the basic concepts of proteomics and technologies commonly used in this field. Advantages, challenges and limitations of current proteomics approaches are discussed, and proteomics applications in the field of urology are presented. RESULTS The proteomics approaches to answer clinical questions have only recently been introduced. Many different technologies have been used in this field, which is moving from simple description to quantitative clinical applications. CONCLUSIONS Proteomics offers new approaches to the study of genitourinary tract diseases, and the potential to identify clinically relevant biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Ali R Vaezzadeh
- Department of Urology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
42
|
Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, Vinatier D, Wisztorski M, Day R, Fournier I, Salzet M. MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Mol Cell Proteomics 2009; 8:2023-33. [PMID: 19451175 DOI: 10.1074/mcp.r800016-mcp200] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A decade after its inception, MALDI imaging mass spectrometry has become a unique technique in the proteomics arsenal for biomarker hunting in a variety of diseases. At this stage of development, it is important to ask whether we can consider this technique to be sufficiently developed for routine use in a clinical setting or an indispensable technology used in translational research. In this report, we consider the contributions of MALDI imaging mass spectrometry and profiling technologies to clinical studies. In addition, we outline new directions that are required to align these technologies with the objectives of clinical proteomics, including: 1) diagnosis based on profile signatures that complement histopathology, 2) early detection of disease, 3) selection of therapeutic combinations based on the individual patient's entire disease-specific protein network, 4) real time assessment of therapeutic efficacy and toxicity, 5) rational redirection of therapy based on changes in the diseased protein network that are associated with drug resistance, and 6) combinatorial therapy in which the signaling pathway itself is viewed as the target rather than any single "node" in the pathway.
Collapse
Affiliation(s)
- Julien Franck
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, IFR 147, CNR-FRE 2933, University of Lille1, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Challenges in cancer research and multifaceted approaches for cancer biomarker quest. FEBS Lett 2009; 583:1772-84. [DOI: 10.1016/j.febslet.2009.03.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/18/2009] [Accepted: 03/18/2009] [Indexed: 12/15/2022]
|
44
|
Ageta H, Asai S, Sugiura Y, Goto-Inoue N, Zaima N, Setou M. Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol 2009; 42:16-23. [PMID: 19294488 DOI: 10.1007/s00795-008-0427-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 10/29/2008] [Indexed: 12/11/2022]
Abstract
Lipids are major structural component of the brain and play key roles in signaling functions in the central nervous system (CNS), such as the hippocampus. In particular, sulfatide is an abundant glycosphingolipid component of both the central and the peripheral nervous system and is an essential lipid component of myelin membranes. Lack of sulfatide is observed in myelin deformation and neurological deficits. Previous studies with antisulfatide antibody have investigated distribution of sulfatide expression in neurons; however, this method cannot distinguish the differences of sulfatide lipid species raised by difference of carbon-chain length in the ceramide portion in addition to the differences of sulfatide and seminolipid. In this study, we solved the problem by our recently developed nanoparticle-assisted laser desorption/ionization (nano-PALDI)-based imaging mass spectrometry (IMS). We revealed that the level of sulfatide in the middle molecular layer was significantly higher than that in granule cell layers and the inner molecular layer in the dentate gyrus of rat hippocampus.
Collapse
Affiliation(s)
- Hiroshi Ageta
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Hood BL, Stewart NA, Conrads TP. Development of High-Throughput Mass Spectrometry–Based Approaches for Cancer Biomarker Discovery and Implementation. Clin Lab Med 2009; 29:115-38. [DOI: 10.1016/j.cll.2009.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Evans CA, Glen A, Eaton CL, Larré S, Catto JWF, Hamdy FC, Wright PC, Rehman I. Prostate cancer proteomics: The urgent need for clinically validated biomarkers. Proteomics Clin Appl 2009; 3:197-212. [DOI: 10.1002/prca.200800154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Indexed: 11/11/2022]
|
47
|
Minerva L, Clerens S, Baggerman G, Arckens L. Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics 2008; 8:3763-74. [PMID: 18712771 DOI: 10.1002/pmic.200800237] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Imaging mass spectrometry (IMS) technology utilizes MALDI MS to map molecules of interest in thin tissue sections. In this study, we have evaluated the potential of MALDI IMS to study peptide expression patterns in the mouse pancreas under normal and pathological conditions, and to in situ identify peptides of interest using MS/MS. Different regions of the pancreas of both control and ob/ob mice were imaged, resulting in peptide-specific profiles. The distribution of ions of m/z 3120 and 3439 displayed a striking resemblance with Langerhans islet's histology and, following MS/MS fragmentation and database searching were identified as C-peptide of insulin and glicentin-related polypeptide, respectively. In addition, a significant increase of the 3120 peak intensity in the obese mice was observed. This study underscores the potential of MALDI IMS to study the contribution of peptides to pancreas pathology.
Collapse
Affiliation(s)
- Laurens Minerva
- Laboratory of Neuroplasticity and Neuroproteomics, K.U.Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
48
|
Goodwin RJA, Dungworth JC, Cobb SR, Pitt AR. Time-dependent evolution of tissue markers by MALDI-MS imaging. Proteomics 2008; 8:3801-8. [PMID: 18712770 DOI: 10.1002/pmic.200800201] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have used MALDI-MS imaging (MALDI-MSI) to monitor the time dependent appearance and loss of signals when tissue slices are brought rapidly to room temperature for short to medium periods of time. Sections from mouse brain were cut in a cryostat microtome, placed on a MALDI target and allowed to warm to room temperature for 30 s to 3 h. Sections were then refrozen, fixed by ethanol treatment and analysed by MALDI-MSI. The intensity of a range of markers were seen to vary across the time course, both increasing and decreasing, with the intensity of some markers changing significantly within 30 s and markers also showed tissue location specific evolution. The markers resulting from this autolysis were compared directly to those that evolved in a comparable 16 h on-tissue trypsin digest, and the markers that evolved in the two studies were seen to be substantially different. These changes offer an important additional level of location-dependent information for mapping changes and seeking disease-dependent biomarkers in the tissue. They also indicate that considerable care is required to allow comparison of biomarkers between MALDI-MSI experiments and also has implications for the standard practice of thaw-mounting multiple tissue sections onto MALDI-MS targets.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
49
|
Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 2008; 3:e3232. [PMID: 18800170 PMCID: PMC2532745 DOI: 10.1371/journal.pone.0003232] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 08/25/2008] [Indexed: 12/28/2022] Open
Abstract
Gangliosides are particularly abundant in the central nervous system (CNS) and thought to play important roles in memory formation, neuritogenesis, synaptic transmission, and other neural functions. Although several molecular species of gangliosides have been characterized and their individual functions elucidated, their differential distribution in the CNS are not well understood. In particular, whether the different molecular species show different distribution patterns in the brain remains unclear. We report the distinct and characteristic distributions of ganglioside molecular species, as revealed by imaging mass spectrometry (IMS). This technique can discriminate the molecular species, raised from both oligosaccharide and ceramide structure by determining the difference of the mass-to-charge ratio, and structural analysis by tandem mass spectrometry. Gangliosides in the CNS are characterized by the structure of the long-chain base (LCB) in the ceramide moiety. The LCB of the main ganglioside species has either 18 or 20 carbons (i.e., C18- or C20-sphingosine); we found that these 2 types of gangliosides are differentially distributed in the mouse brain. While the C18-species was widely distributed throughout the frontal brain, the C20-species selectively localized along the entorhinal-hippocampus projections, especially in the molecular layer (ML) of the dentate gyrus (DG). We revealed development- and aging-related accumulation of the C-20 species in the ML-DG. Thus it is possible to consider that this brain-region specific regulation of LCB chain length is particularly important for the distinct function in cells of CNS.
Collapse
|
50
|
Abstract
Imaging MS (IMS) is an emerging technology that permits the direct analysis and determination of the distribution of molecules in tissue sections. Biological molecules such as proteins, peptides, lipids, xenobiotics, and metabolites can be analyzed in a high-throughput manner with molecular specificity not readily achievable through other means. Tissues are analyzed intact and thus spatial localization of molecules within a tissue is preserved. Several studies are presented that focus on the unique types of information obtainable by IMS, such as Abeta isoform distributions in Alzheimer's plaques, protein maps in mouse brain, and spatial protein distributions in human breast carcinoma. The analysis of a biopsy taken 100 years ago from a patient with amyloidosis illustrates the use of IMS with formalin-fixed tissues. Finally, the registration and correlation of IMS with MRI is presented.
Collapse
|