1
|
He X, Zhang J, Huang M, Wang J, Yang S, Yu X, Xu Y, Yang W. Serum apolipoprotein H determines ferroptosis resistance by modulating cellular lipid composition. Cell Death Dis 2024; 15:718. [PMID: 39353906 PMCID: PMC11445452 DOI: 10.1038/s41419-024-07099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Ferroptosis is a regulated cell death process dependent on iron, triggered by the accumulation of lipid peroxidation. The environmental context significantly impacts cellular sensitivities to ferroptosis. Serum, constituting the extracellular fluid composition in vivo, provides crucial environmental biomolecules. In this study, we investigated the influence of sera on ferroptosis induction, pinpointing the serum protein apolipoprotein H (APOH) as a pivotal inhibitor of ferroptosis. Moreover, we elucidated that APOH suppresses ferroptosis by activating the phosphoinositide 3-kinase (PI3K)-AKT-sterol regulatory element-binding proteins (SREBPs) pathway, thereby elevating stearoyl-CoA desaturase (SCD) levels and augmenting cellular monounsaturated fatty acid-containing phospholipids (MUFA-PLs). Furthermore, ApoHinfer, the peptide derivative of the active region of APOH, mimics its ferroptosis inhibitory activity. Our findings underscore the critical role of serum protein APOH in the inhibition of ferroptosis and indicates potential therapeutic applications in treating cancer and diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Xiang He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Loock M, Antunes LB, Heslop RT, De Lauri AA, Brito Lira A, Cestari I. High-Efficiency Transformation and Expression of Genomic Libraries in Yeast. Methods Protoc 2023; 6:89. [PMID: 37736972 PMCID: PMC10514863 DOI: 10.3390/mps6050089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Saccharomyces cerevisiae is a powerful system for the expression of genome-wide or combinatorial libraries for diverse types of screening. However, expressing large libraries in yeast requires high-efficiency transformation and controlled expression. Transformation of yeast using electroporation methods is more efficient than chemical methods; however, protocols described for electroporation require large amounts of linearized plasmid DNA and often yield approximately 106 cfu/µg of plasmid DNA. We optimized the electroporation of yeast cells for the expression of whole-genome libraries to yield up to 108 cfu/µg plasmid DNA. The protocol generates sufficient transformants for 10-100× coverage of diverse genome libraries with small amounts of genomic libraries (0.1 µg of DNA per reaction) and provides guidance on calculations to estimate library size coverage and transformation efficiency. It describes the preparation of electrocompetent yeast cells with lithium acetate and dithiothreitol conditioning step and the transformation of cells by electroporation with carrier DNA. We validated the protocol using three yeast surface display libraries and demonstrated using nanopore sequencing that libraries' size and diversity are preserved. Moreover, expression analysis confirmed library functionality and the method's efficacy. Hence, this protocol yields a sufficient representation of the genome of interest for downstream screening purposes while limiting the amount of the genomic library required.
Collapse
Affiliation(s)
- Mira Loock
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | | | - Rhiannon T Heslop
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada
- Infectious Diseases and One Health Consortium, Faculté de Pharmacie de Tours, 31, Avenue Monge, 37200 Tours, France
| | | | - Andressa Brito Lira
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada
- Program of Postgraduate Studies in Natural Products and Synthetic Bioactives, Federal University of Paraıba, João Pessoa 58051-900, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Teymennet-Ramírez KV, Martínez-Morales F, Trejo-Hernández MR. Yeast Surface Display System: Strategies for Improvement and Biotechnological Applications. Front Bioeng Biotechnol 2022; 9:794742. [PMID: 35083204 PMCID: PMC8784408 DOI: 10.3389/fbioe.2021.794742] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Yeast surface display (YSD) is a “whole-cell” platform used for the heterologous expression of proteins immobilized on the yeast’s cell surface. YSD combines the advantages eukaryotic systems offer such as post-translational modifications, correct folding and glycosylation of proteins, with ease of cell culturing and genetic manipulation, and allows of protein immobilization and recovery. Additionally, proteins displayed on the surface of yeast cells may show enhanced stability against changes in temperature, pH, organic solvents, and proteases. This platform has been used to study protein-protein interactions, antibody design and protein engineering. Other applications for YSD include library screening, whole-proteome studies, bioremediation, vaccine and antibiotics development, production of biosensors, ethanol production and biocatalysis. YSD is a promising technology that is not yet optimized for biotechnological applications. This mini review is focused on recent strategies to improve the efficiency and selection of displayed proteins. YSD is presented as a cutting-edge technology for the vectorial expression of proteins and peptides. Finally, recent biotechnological applications are summarized. The different approaches described herein could allow for a better strategy cascade for increasing protein/peptide interaction and production.
Collapse
Affiliation(s)
- Karla V Teymennet-Ramírez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| | - María R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| |
Collapse
|
4
|
Fang F, Ye S, Tang J, Bennett MJ, Liang W. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice. THE NEW PHYTOLOGIST 2020; 225:1234-1246. [PMID: 31550392 DOI: 10.1111/nph.16216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/14/2019] [Indexed: 05/27/2023]
Abstract
Uniform growth of the main shoot and tillers significantly influences rice plant architecture and grain yield. The WUSCHEL-related homeobox transcription factor DWT1 is a key regulator of this important agronomic trait, disruption of which causes enhanced main shoot dominance and tiller dwarfism by an unknown mechanism. Here, we have used yeast-two-hybrid screening to identify OsPIP5K1, a member of the rice phosphatidylinositol-4-phosphate 5-kinase family, as a protein that interacts with DWT1. Cytological analyses confirmed that DWT1 induces accumulation of OsPIP5K1 and its product PI(4,5)P2 , a phosphoinositide secondary messenger, in nuclear bodies. Mutation of OsPIP5K1 compounds the dwarf dwt1 phenotype but abolishes the main shoot dominance. Conversely, overexpression of OsPIP5K1 partially rescues dwt1 developmental defects. Furthermore, we showed that DWL2, the homologue of DWT1, is also able to interact with OsPIP5K1 and shares partial functional redundancy with DWT1 in controlling rice uniformity. Overall, our data suggest that nuclear localised OsPIP5K1 acts with DWT1 and/or DWL2 to coordinate the uniform growth of rice shoots, likely to be through nuclear phosphoinositide signals, and provides insights into the regulation of rice uniformity via a largely unexplored plant nuclear signalling pathway.
Collapse
Affiliation(s)
- Fang Fang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Shiwei Ye
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Jingyao Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| |
Collapse
|
5
|
Kubota K, Funabashi M, Ogura Y. Target deconvolution from phenotype-based drug discovery by using chemical proteomics approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:22-27. [DOI: 10.1016/j.bbapap.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/19/2018] [Accepted: 08/09/2018] [Indexed: 11/16/2022]
|
6
|
Sasaki M, Ueda K, Fukuda T, Tanaka N, Shimizu H, Kubota K. Target identification of hepcidin production inhibitors by a combination of chemical proteomics and radioactive compound binding assay. Biochem Biophys Res Commun 2018; 503:2878-2884. [DOI: 10.1016/j.bbrc.2018.08.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
|
7
|
Karbanowicz T, Dover E, Mu X, Tabor A, Rodriguez-Valle M. Extracellular expression of the HT1 neurotoxin from the Australian paralysis tick in two Saccharomyces cerevisiae strains. Toxicon 2017; 140:1-10. [DOI: 10.1016/j.toxicon.2017.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
|
8
|
Bidlingmaier S, Ha K, Lee NK, Su Y, Liu B. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing. Mol Cell Proteomics 2016; 15:1232-45. [PMID: 26729710 DOI: 10.1074/mcp.m115.055954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Kevin Ha
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Nam-Kyung Lee
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Yang Su
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Bin Liu
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| |
Collapse
|
9
|
Stijf-Bultsma Y, Sommer L, Tauber M, Baalbaki M, Giardoglou P, Jones DR, Gelato KA, van Pelt J, Shah Z, Rahnamoun H, Toma C, Anderson KE, Hawkins P, Lauberth SM, Haramis APG, Hart D, Fischle W, Divecha N. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol Cell 2015; 58:453-67. [PMID: 25866244 PMCID: PMC4429956 DOI: 10.1016/j.molcel.2015.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/20/2015] [Accepted: 03/06/2015] [Indexed: 12/17/2022]
Abstract
Phosphoinositides (PI) are important signaling molecules in the nucleus that influence gene expression. However, if and how nuclear PI directly affects the transcriptional machinery is not known. We report that the lipid kinase PIP4K2B regulates nuclear PI5P and the expression of myogenic genes during myoblast differentiation. A targeted screen for PI interactors identified the PHD finger of TAF3, a TATA box binding protein-associated factor with important roles in transcription regulation, pluripotency, and differentiation. We show that the PI interaction site is distinct from the known H3K4me3 binding region of TAF3 and that PI binding modulates association of TAF3 with H3K4me3 in vitro and with chromatin in vivo. Analysis of TAF3 mutants indicates that TAF3 transduces PIP4K2B-mediated alterations in PI into changes in specific gene transcription. Our study reveals TAF3 as a direct target of nuclear PI and further illustrates the importance of basal transcription components as signal transducers.
Collapse
Affiliation(s)
- Yvette Stijf-Bultsma
- The Inositide Laboratory, Centre for Biological Sciences, Highfield Campus, University of Southampton, Southampton SO171BJ, UK; The Inositide Laboratory, the CRUK Manchester Institute, the University of Manchester, Wilmslow Road, Manchester M204BX, UK
| | - Lilly Sommer
- The Inositide Laboratory, the CRUK Manchester Institute, the University of Manchester, Wilmslow Road, Manchester M204BX, UK
| | - Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Mai Baalbaki
- University of California, San Francisco, Mail Code 3120, Smith Cardiovascular Research Building, 555 Mission Bay Boulevard, South San Francisco, CA 94158-9001, USA
| | - Panagiota Giardoglou
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - David R Jones
- The Inositide Laboratory, the CRUK Manchester Institute, the University of Manchester, Wilmslow Road, Manchester M204BX, UK
| | - Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jason van Pelt
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Zahid Shah
- The Inositide Laboratory, Centre for Biological Sciences, Highfield Campus, University of Southampton, Southampton SO171BJ, UK
| | - Homa Rahnamoun
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clara Toma
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen E Anderson
- Signaling Laboratory, The Babraham Institute, Cambridge, Cambridgeshire CB22 3AT, UK
| | - Philip Hawkins
- Signaling Laboratory, The Babraham Institute, Cambridge, Cambridgeshire CB22 3AT, UK
| | - Shannon M Lauberth
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna-Pavlina G Haramis
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Daniel Hart
- University of California, San Francisco, Mail Code 3120, Smith Cardiovascular Research Building, 555 Mission Bay Boulevard, South San Francisco, CA 94158-9001, USA
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Nullin Divecha
- The Inositide Laboratory, Centre for Biological Sciences, Highfield Campus, University of Southampton, Southampton SO171BJ, UK; The Inositide Laboratory, the CRUK Manchester Institute, the University of Manchester, Wilmslow Road, Manchester M204BX, UK.
| |
Collapse
|
10
|
Bidlingmaier S, Liu B. Identification of Novel Protein-Ligand Interactions by Exon Microarray Analysis of Yeast Surface Displayed cDNA Library Selection Outputs. Methods Mol Biol 2015; 1319:179-192. [PMID: 26060075 PMCID: PMC4842228 DOI: 10.1007/978-1-4939-2748-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Yeast surface display is widely utilized to screen large libraries for proteins or protein fragments with specific binding properties. We have previously constructed and utilized yeast surface displayed human cDNA libraries to identify protein fragments that bind to various target ligands. Conventional approaches employ monoclonal screening and sequencing of polyclonal outputs that have been enriched for binding to a target molecule by several rounds of affinity-based selection. Frequently, a small number of clones will dominate the selection output, making it difficult to comprehensively identify potentially important interactions due to low representation in the selection output. We have developed a novel method to address this problem. By analyzing selection outputs using high-density human exon microarrays, the full potential of selection output diversity can be revealed in one experiment. FACS-based selection using yeast surface displayed human cDNA libraries combined with exon microarray analysis of the selection outputs is a powerful way of rapidly identifying protein fragments with affinity for any soluble ligand that can be fluorescently detected, including small biological molecules and drugs. In this report we present protocols for exon microarray-based analysis of yeast surface display human cDNA library selection outputs.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
11
|
Bidlingmaier S, Su Y, Liu B. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies. Methods Mol Biol 2015; 1319:51-63. [PMID: 26060069 DOI: 10.1007/978-1-4939-2748-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | | | |
Collapse
|
12
|
Bidlingmaier S, Liu B. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions. Methods Mol Biol 2015; 1319:203-14. [PMID: 26060077 PMCID: PMC4838597 DOI: 10.1007/978-1-4939-2748-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small molecule-protein interactions, thus facilitating the study of cellular signaling pathways and mechanisms of drug action or toxicity.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, Box 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
13
|
Abstract
The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine.
Collapse
|
14
|
Bidlingmaier S, Liu B. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries. Methods Mol Biol 2015; 1319:193-202. [PMID: 26060076 DOI: 10.1007/978-1-4939-2748-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
15
|
Shah ZH, Jones DR, Sommer L, Foulger R, Bultsma Y, D'Santos C, Divecha N. Nuclear phosphoinositides and their impact on nuclear functions. FEBS J 2013; 280:6295-310. [PMID: 24112514 DOI: 10.1111/febs.12543] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/23/2022]
Abstract
Polyphosphoinositides (PPIn) are important lipid molecules whose levels are de-regulated in human diseases such as cancer, neurodegenerative disorders and metabolic syndromes. PPIn are synthesized and degraded by an array of kinases, phosphatases and lipases which are localized to various subcellular compartments and are subject to regulation in response to both extra- and intracellular cues. Changes in the activities of enzymes that metabolize PPIn lead to changes in the profiles of PPIn in various subcellular compartments. Understanding how subcellular PPIn are regulated and how they affect downstream signaling is critical to understanding their roles in human diseases. PPIn are present in the nucleus, and their levels are changed in response to various stimuli, suggesting that they may serve to regulate specific nuclear functions. However, the lack of nuclear downstream targets has hindered the definition of which pathways nuclear PPIn affect. Over recent years, targeted and global proteomic studies have identified a plethora of potential PPIn-interacting proteins involved in many aspects of transcription, chromatin remodelling and mRNA maturation, suggesting that PPIn signalling within the nucleus represents a largely unexplored novel layer of complexity in the regulation of nuclear functions.
Collapse
Affiliation(s)
- Zahid H Shah
- Cancer Research UK Inositide Laboratory, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Van Dorst B, Mehta J, Rouah-Martin E, Blust R, Robbens J. Phage display as a method for discovering cellular targets of small molecules. Methods 2012; 58:56-61. [PMID: 22819857 DOI: 10.1016/j.ymeth.2012.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 07/11/2012] [Indexed: 12/12/2022] Open
Abstract
Phage display can be used for the discovery of cellular targets of small molecules in order to unravel their mechanism of action, which is important in the drug discovery field to assess biological effects of drugs at the molecular level and to investigate pharmacokinetic characteristics of drugs in clinical use. The potential of phage display in the drug discovery field is shown by a lot of successful cellular target identifications of drug-like small molecules in the last decade. More recently, phage display was also introduced in environmental science to predict risks of small molecules, like nickel, 17β estradiol and bisphenol A on both environmental and human health, wherefore knowledge about the mechanism of action and cellular targets is essential. This paper discusses some important aspects of the phage display approach for the discovery of cellular targets of small molecules. The different phage display libraries and immobilization strategies used for the discovery of cellular target of small molecules are described. In general, the phage display approach is very useful in drug discovery and environmental science as a fast and cost-effective in vitro tool to determine cellular targets of small molecules, which increases our understanding of the mechanisms of action of small molecules.
Collapse
Affiliation(s)
- Bieke Van Dorst
- University Antwerp, Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Gera N, Hussain M, Rao BM. Protein selection using yeast surface display. Methods 2012; 60:15-26. [PMID: 22465794 DOI: 10.1016/j.ymeth.2012.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/09/2012] [Indexed: 12/16/2022] Open
Abstract
Binding proteins are typically isolated from combinatorial libraries of scaffold proteins using one of the many library screening tools available, such as phage display, yeast surface display or mRNA display. A key principle underlying these screening technologies is the establishment of a link between each unique mutant protein and its corresponding genetic code. The mutant proteins binding a desired target species are separated and subsequently identified using the genetic code. In this review, we largely focus on the use of yeast surface display for the isolation of binding proteins from combinatorial libraries. In yeast surface display, the yeast cell links the mutant protein to its coding DNA. Each yeast cell expresses the mutant proteins as fusions to a yeast cell wall protein; the yeast cell also carries plasmid DNA that codes for the mutant protein. Over the years, the yeast surface display platform has emerged as a powerful tool for protein engineering, and has been used in a variety of applications including affinity maturation, epitope mapping and biophysical characterization of proteins. Here we present a broad overview of the yeast surface display system and its applications, and compare it with other contemporary screening platforms. Further, we present detailed protocols for the use of yeast surface display to isolate de novo binding proteins from combinatorial libraries, and subsequent biophysical characterization of binders. These protocols can also be easily modified for affinity maturation of the isolated de novo binders.
Collapse
Affiliation(s)
- Nimish Gera
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
18
|
Bidlingmaier S, Liu B. Identification of protein/target molecule interactions using yeast surface-displayed cDNA libraries. Methods Mol Biol 2011; 729:211-223. [PMID: 21365493 PMCID: PMC3229213 DOI: 10.1007/978-1-61779-065-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We describe a novel expression cloning method based on screening yeast surface-displayed human cDNA libraries by direct affinity interaction to identify cellular proteins binding to a broad spectrum of target molecules. Being a eukaryote, yeast protein expression pathways are similar to those found in mammalian cells, and therefore, mammalian protein fragments displayed on the yeast cell wall are more likely to be properly folded and functional than proteins displayed using prokaryotic systems. Yeast surface-displayed human cDNA libraries have been successfully used to screen for proteins that bind to posttranslationally modified phosphorylated peptides, small signaling molecule phosphatidylinositides, and monoclonal antibodies. In this article, we describe protocols for using yeast surface-displayed cDNA libraries, coupled with fluorescence-activated cell sorting, to select protein fragments with affinity for various target molecules including posttranslationally modified peptides, small signaling molecules, monoclonal phage antibodies, and monoclonal IgG molecules.
Collapse
Affiliation(s)
| | - Bin Liu
- Corresponding author: Department of Anesthesia, 1001 Potrero Ave., Rm 3C38, San Francisco, CA 94110, Phone: (415) 206-6973, Fax: (415) 206-6276,
| |
Collapse
|
19
|
Abstract
Using yeast display, heterologous protein fragments can be efficiently displayed at high copy levels on the Saccharomyces cerevisiae cell wall. Yeast display can be used to screen large expressed protein libraries for proteins or protein fragments with specific binding properties. Recently, yeast surface-displayed cDNA libraries have been constructed and used to identify proteins that bind to various target molecules such as peptides, small molecules, and antibodies. Because yeast protein expression pathways are similar to those found in mammalian cells, human protein fragments displayed on the yeast cell wall are likely to be properly folded and functional. Coupled with fluorescence-activated cell sorting, yeast surface-displayed cDNA libraries potentially allow the selection of protein fragments or domains with affinity for any soluble molecule that can be fluorescently detected. In this report, we describe protocols for the construction and validation of yeast surface-displayed cDNA libraries using preexisting yeast two-hybrid cDNA libraries as a starting point.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- UCSF Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
20
|
Bidlingmaier S, Wang Y, Liu Y, Zhang N, Liu B. Comprehensive analysis of yeast surface displayed cDNA library selection outputs by exon microarray to identify novel protein-ligand interactions. Mol Cell Proteomics 2010; 10:M110.005116. [PMID: 21127146 DOI: 10.1074/mcp.m110.005116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositides are important signaling molecules that interact with a myriad of cellular proteins, many of which remain unidentified. We previously screened a yeast surface displayed human proteome library to identify protein fragments with affinity for the phosphatidylinositides, phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate. Much of the diversity in the screened selection outputs was represented by clones present at low frequencies, suggesting that a significant number of additional phosphatidylinositide-binding protein fragments might be present in the selection outputs. In the studies described in this report, we developed a novel cDNA library analysis method and comprehensively analyzed the polyclonal selection outputs from the phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate selections using a high-density exon microarray. In addition to the nine previously reported phosphatidylinositide-binding protein fragments, we identified 37 new phosphatidylinositide-binding candidates. Nine of 37 contain known phosphatidylinositide-binding domains, whereas the remaining 28 contain no known phosphatidylinositide-binding domain. We cloned and confirmed phosphatidylinositide binding by fluorescence-activated cell sorting for 17 of these novel candidate protein fragments. Our experiments suggest that phosphatidylinositide binding by these 17 novel protein fragments is dependent on both the inositol phosphate "headgroup" and the lipid "tail." This is in contrast with the PH domain containing fragments we tested, for which the inositol phosphate headgroup was sufficient for binding. The novel PtdIns-binding fragments come from a wide variety of proteins, including splicing factors, transcription factors, a kinase, and a polymerase. Intriguingly, 11 of the phosphatidylinositide-binding protein fragments are from nuclear proteins, including four containing homeobox domains. We found that phosphatidylinositides and double-stranded DNA oligonucleotides derived from homeobox domain target sequences compete for binding to homeobox domain-containing protein fragments, suggesting a possible mechanism for phospholipid-dependent transcriptional regulation. FACS enrichment of target-binding clones in yeast human cDNA display libraries coupled with comprehensive analysis of the selection output by DNA microarray analysis is an effective method for investigating common as well as rare protein interactions. In particular, this method is well suited for the study of small molecule/protein and drug/protein interactions.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94110, USA
| | | | | | | | | |
Collapse
|
21
|
Van Dorst B, Mehta J, Rouah-Martin E, De Coen W, Blust R, Robbens J. The identification of cellular targets of 17β estradiol using a lytic (T7) cDNA phage display approach. Toxicol In Vitro 2010; 25:388-93. [PMID: 21034808 DOI: 10.1016/j.tiv.2010.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 11/18/2022]
Abstract
To unravel the mechanism of action of chemical compounds, it is crucial to know their cellular targets. A novel in vitro tool that can be used as a fast, simple and cost effective alternative is cDNA phage display. This tool is used in our study to select cellular targets of 17β estradiol (E2). It was possible to select two potential cellular targets of E2 out of the T7 Select™ Human Breast cDNA phage library. The selected cellular targets, autophagy/beclin-1 regulator 1 (beclin 1) and ATP synthase F(0) subunit 6 (ATP6) have so far been unknown as binding proteins of E2. To confirm the E2 binding properties of these selected proteins, surface plasmon resonance (SPR) was used. With SPR the K(d) values were determined to be 0.178±0.031 and 0.401±0.142 nM for the ATP6 phage and beclin 1 phage, respectively. These K(d) values in the low nM range verify that the selected cellular proteins are indeed binding proteins for E2. The selection and identification of these two potential cellular targets of E2, can enhance our current understanding of its mechanism of action. This illustrates the potential of lytic (T7) cDNA phage display in toxicology, to provide important information about cellular targets of chemical compounds.
Collapse
Affiliation(s)
- Bieke Van Dorst
- University Antwerp, Department of Biology, Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
22
|
Touchberry CD, Bales IK, Stone JK, Rohrberg TJ, Parelkar NK, Nguyen T, Fuentes O, Liu X, Qu CK, Andresen JJ, Valdivia HH, Brotto M, Wacker MJ. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) potentiates cardiac contractility via activation of the ryanodine receptor. J Biol Chem 2010; 285:40312-21. [PMID: 20947503 DOI: 10.1074/jbc.m110.179689] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is the most recently identified phosphoinositide, and its functions have yet to be fully elucidated. Recently, members of our muscle group have shown that PI(3,5)P2 plays an important role in skeletal muscle function by altering Ca(2+) homeostasis. Therefore, we hypothesized that PI(3,5)P2 may also modulate cardiac muscle contractility by altering intracellular Ca(2+) ([Ca(2+)](i)) in cardiac myocytes. We first confirmed that PI(3,5)P2 was present and increased by insulin treatment of cardiomyocytes via immunohistochemistry. To examine the acute effects of PI(3,5)P2 treatment, electrically paced left ventricular muscle strips were incubated with PI(3,5)P2. Treatment with PI(3,5)P2 increased the magnitude of isometric force, the rate of force development, and the area associated with the contractile waveforms. These enhanced contractile responses were also observed in MIP/Mtmr14(-/-) mouse hearts, which we found to have elevated levels of PI(3,5)P2. In cardiac myocytes loaded with fura-2, PI(3,5)P2 produced a robust elevation in [Ca(2+)](i). The PI(3,5)P2-induced elevation of [Ca(2+)](i) was not present in conditions free of extracellular Ca(2+) and was completely blocked by ryanodine. We investigated whether the phosphoinositide acted directly with the Ca(2+) release channels of the sarcoplasmic reticulum (ryanodine receptors; RyR2). PI(3,5)P2 increased [(3)H]ryanodine binding and increased the open probability (P(o)) of single RyR2 channels reconstituted in lipid bilayers. This strongly suggests that the phosphoinositide binds directly to the RyR2 channel. Thus, we provide inaugural evidence that PI(3,5)P2 is a powerful activator of sarcoplasmic reticulum Ca(2+) release and thereby modulates cardiac contractility.
Collapse
Affiliation(s)
- Chad D Touchberry
- Schools of Medicine, University of Missouri, Kansas City, Missouri 64108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Van Dorst B, Mehta J, Rouah-Martin E, Somers V, De Coen W, Blust R, Robbens J. cDNA phage display as a novel tool to screen for cellular targets of chemical compounds. Toxicol In Vitro 2010; 24:1435-40. [DOI: 10.1016/j.tiv.2010.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/26/2022]
|
24
|
He J, Wang Y, Feng J, Zhu X, Lan X, Iyer AK, Zhang N, Seo Y, VanBrocklin HF, Liu B. Targeting prostate cancer cells in vivo using a rapidly internalizing novel human single-chain antibody fragment. J Nucl Med 2010; 51:427-32. [PMID: 20150269 DOI: 10.2967/jnumed.109.069492] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Human antibodies targeting prostate cancer cell surface epitopes may be useful for imaging and therapy. The objective of this study was to evaluate the tumor targeting of an internalizing human antibody fragment, a small-size platform, to provide high contrast in a mouse model of human prostate carcinoma. METHODS A prostate tumor-targeting single-chain antibody fragment (scFv), UA20, along with a nonbinding control scFv, N3M2, were labeled with (99m)Tc and evaluated for binding and rapid internalization into human prostate tumor cells in vitro and tumor homing in vivo using xenograft models. For the in vitro studies, the labeled UA20 scFv was incubated at 37 degrees C for 1 h with metastatic prostate cancer cells (DU145) to assess the total cellular uptake versus intracellular uptake. For the animal studies, labeled UA20 and N3M2 scFvs were administered to athymic mice implanted subcutaneously with DU145 cells. Mice were imaged with small-animal SPECT/CT with concomitant biodistribution at 1 and 3 h after injection. RESULTS The UA20 scFv was labeled in 55%-65% yield and remained stable in phosphate buffer within 24 h. The labeled UA20 scFv was taken up specifically by prostate tumor cells. Internalization was rapid, because incubation at 37 degrees C for less than 1 h resulted in 93% internalization of total cell-associated scFvs. In animal studies, SPECT/CT showed significant tumor uptake as early as 1 h after injection. At 3 h after injection, tumor uptake was 4.4 percentage injected dose per gram (%ID/g), significantly greater than all organs or tissues studied (liver, 2.7 %ID/g; other organs or tissues, <1 %ID/g), except the kidneys (81.4 %ID/g), giving tumor-to-blood and tumor-to-muscle ratios of 12:1 and 70:1, respectively. In contrast, the control antibody exhibited a tumor uptake of only 0.26 %ID/g, similar to that of muscle and fat. Tumor-specific targeting was evidenced by reduced tumor uptake of nearly 70% on administration of a 10-fold excess of unlabeled UA20 scFv. Kidney uptake was nonspecific, consistent with the route of excretion by scFvs. CONCLUSION The UA20 scFv showed rapid and specific internalization in prostate tumor cells in vitro and accumulation in prostate tumor xenografts in vivo, demonstrating the potential for future development for prostate cancer imaging and targeted therapy.
Collapse
Affiliation(s)
- Jiang He
- Department of Radiology and Biomedical Imaging, Center for Molecular and Functional Imaging, University of California at San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Human antibodies targeting cell surface antigens overexpressed by the hormone refractory metastatic prostate cancer cells: ICAM-1 is a tumor antigen that mediates prostate cancer cell invasion. J Mol Med (Berl) 2009; 87:507-14. [PMID: 19219419 PMCID: PMC2796542 DOI: 10.1007/s00109-009-0446-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/09/2008] [Accepted: 01/19/2009] [Indexed: 12/24/2022]
Abstract
Transition from hormone-sensitive to hormone-refractory metastatic tumor types poses a major challenge for prostate cancer treatment. Tumor antigens that are differentially expressed during this transition are likely to play important roles in imparting prostate cancer cells with the ability to grow in a hormone-deprived environment and to metastasize to distal sites such as the bone and thus, are likely targets for therapeutic intervention. To identify those molecules and particularly cell surface antigens that accompany this transition, we studied the changes in cell surface antigenic profiles between a hormone-sensitive prostate cancer line LNCaP and its hormone-refractory derivative C4-2B, using an antibody library-based affinity proteomic approach. We selected a naïve phage antibody display library to identify human single-chain antibodies that bind specifically to C4-2B but not LNCaP. Using mass spectrometry, we identified one of the antibody-targeted antigens as the ICAM-1/CD54/human rhinovirus receptor. Recombinant IgG1 derived from this single-chain antibody binds to a neutralizing epitope of ICAM-1 and blocks C4-2B cell invasion through extracellular matrix in vitro. ICAM-1 is thus differentially expressed during the transition of the hormone-sensitive prostate cancer cell line LNCaP to its hormone-refractory derivative C4-2B, plays an important role in imparting the C4-2B line with the ability to invade, and may therefore be a target for therapeutic intervention.
Collapse
|
26
|
Bidlingmaier S, He J, Wang Y, An F, Feng J, Barbone D, Gao D, Franc B, Broaddus VC, Liu B. Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res 2009; 69:1570-7. [PMID: 19221091 DOI: 10.1158/0008-5472.can-08-1363] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prognosis for patients diagnosed with mesothelioma is generally poor, and currently available treatments are usually ineffective. Therapies that specifically target tumor cells hold much promise for the treatment of cancers that are resistant to current approaches. We have previously selected phage antibody display libraries on mesothelioma cell lines to identify a panel of internalizing human single chain (scFv) antibodies that target mesothelioma-associated, clinically represented cell surface antigens and further exploited the internalizing function of these scFvs to specifically deliver lethal doses of liposome-encapsulated small molecule drugs to both epithelioid and sarcomatous subtypes of mesothelioma cells. Here, we report the identification of MCAM/MUC18/CD146 as the surface antigen bound by one of the mesothelioma-targeting scFvs using a novel cloning strategy based on yeast surface human proteome display. Immunohistochemical analysis of mesothelioma tissue microarrays confirmed that MCAM is widely expressed by both epithelioid and sarcomatous types of mesothelioma tumor cells in situ but not by normal mesothelial cells. In addition, quantum dot-labeled anti-MCAM scFv targets primary meosthelioma cells in tumor fragment spheroids cultured ex vivo. As the first step in evaluating the therapeutic potential of MCAM-targeting antibodies, we performed single-photon emission computed tomography studies using the anti-MCAM scFv and found that it recognizes mesothelioma organotypic xenografts in vivo. The combination of phage antibody library selection on tumor cells and rapid target antigen identification by screening the yeast surface-displayed human proteome could be a powerful method for mapping the targetable tumor cell surface epitope space.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, San Francisco General Hospita, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
An F, Drummond DC, Wilson S, Kirpotin DB, Nishimura SL, Broaddus VC, Liu B. Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single-chain antibodies. Mol Cancer Ther 2008; 7:569-78. [PMID: 18319332 DOI: 10.1158/1535-7163.mct-07-2132] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesothelioma is a malignancy of the mesothelium and current treatments are generally ineffective. One promising area of anticancer drug development is to explore tumor susceptibility to targeted therapy. To achieve efficient, targeted intracellular delivery of therapeutic agents to mesothelioma cells, we selected a naive human single-chain (scFv) phage antibody display library directly on the surface of live mesothelioma cells to identify internalizing antibodies that target mesothelioma-associated cell surface antigens. We have identified a panel of internalizing scFvs that bind to mesothelioma cell lines derived from both epithelioid (M28) and sarcomatous (VAMT-1) types of this disease. Most importantly, these antibodies stain mesothelioma cells in situ and therefore define a panel of clinically represented tumor antigens. We have further exploited the internalizing function of these scFvs to achieve targeted intracellular drug delivery to mesothelioma cells. We showed that scFv-targeted immunoliposomes were efficiently and specifically taken up by both epithelioid and sarcomatous mesothelioma cells, but not control cells, and immunoliposomes encapsulating the small-molecule drug topotecan caused targeted killing of both types of mesothelioma cells in vitro.
Collapse
Affiliation(s)
- Feng An
- Department of Anesthesia, University of California San Francisco, San Francisco, CA 94110, USA
| | | | | | | | | | | | | |
Collapse
|