1
|
Matsushita D, Toyoda Y, Lee Y, Aoi M, Matsuo H, Takada T, Nishizawa T. Structural basis of urate transport by glucose transporter 9. Cell Rep 2025; 44:115514. [PMID: 40186864 DOI: 10.1016/j.celrep.2025.115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025] Open
Abstract
Glucose transporter 9 (GLUT9) is a critical urate transporter involved in renal reabsorption, playing a pivotal role in regulating physiological urate levels and representing a potential therapeutic target for gout. Despite such clinical significance, the structural basis of urate recognition and transport by GLUT9 remains elusive. Here, we present the cryoelectron microscopy (cryo-EM) structures of GLUT9 in the inward-open conformation in both apo and urate-bound states. Urate binds in a cleft between the N-terminal and C-terminal domains, interacting via hydrogen bonds and hydrophobic interactions. Structural comparison with sugar-transporting GLUTs highlights unique amino acid compositions in the substrate recognition pocket of GLUT9. Functional and mutational studies directly measuring GLUT9-mediated urate uptake further demonstrate the cooperative roles of multiple residues in urate recognition. Our findings elucidate the structural basis of urate transport by GLUT9 and provide valuable insights for the development of uricosuric drugs targeting GLUT9.
Collapse
Affiliation(s)
- Daiki Matsushita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan; Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Yongchan Lee
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Maeda Aoi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| |
Collapse
|
2
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Phan TP, Nicholas Z, Holland AJ. Centriole structural integrity defects are a crucial feature of hydrolethalus syndrome. J Cell Biol 2025; 224:e202403022. [PMID: 40009365 PMCID: PMC11864076 DOI: 10.1083/jcb.202403022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrolethalus syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. How HYLS1 controls centriole function is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of HLS. These phenotypes arise from a loss of centriole integrity that causes tissue-specific defects in cilia assembly and function. We show that HYLS1 is recruited to the centriole by CEP120 and stabilizes the localization of centriole inner scaffold proteins that ensure the integrity of the centriolar microtubule wall. The HLS disease mutation reduced the centriole localization of HYLS1 and caused degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and contribute to HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A. Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R. Gliech
- Department of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E. Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thao P. Phan
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Nicholas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Gutierrez-Morton E, Wang Y. Protocol to modulate SUMOylation of a specific protein in budding yeast using chemical genetic approaches. STAR Protoc 2025; 6:103675. [PMID: 40048421 PMCID: PMC11928796 DOI: 10.1016/j.xpro.2025.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
SUMOylation (small ubiquitin-like modifier) is a ubiquitous and highly dynamic posttranslational modification. Here, we present a protocol to alter the local SUMOylation landscape of target proteins in budding yeast Saccharomyces cerevisiae using chemical genetic tools. We describe steps for recruiting SUMO enzymes (Ulp1PD or Ubc9) to GFP-tagged proteins using GBP (GFP-binding protein)-fusion proteins. We then detail procedures for inducing SUMO conjugation/deconjugation and the subsequent SUMOylation analysis. For complete details on the use and execution of this protocol, please refer to Gutierrez-Morton et al.1.
Collapse
Affiliation(s)
- Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|
4
|
Gao Q, Hofer FW, Filbeck S, Vermeulen BJA, Würtz M, Neuner A, Kaplan C, Zezlina M, Sala C, Shin H, Gruss OJ, Schiebel E, Pfeffer S. Structural mechanisms for centrosomal recruitment and organization of the microtubule nucleator γ-TuRC. Nat Commun 2025; 16:2453. [PMID: 40074789 PMCID: PMC11903878 DOI: 10.1038/s41467-025-57729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) acts as a structural template for microtubule formation at centrosomes, associating with two main compartments: the pericentriolar material and the centriole lumen. In the pericentriolar material, the γ-TuRC is involved in microtubule organization, while the function of the centriole lumenal pool remains unclear. The conformational landscape of the γ-TuRC, which is crucial for its activity, and its centrosomal anchoring mechanisms, which determine γ-TuRC activity and turnover, are not understood. Using cryo-electron tomography, we analyze γ-TuRCs in human cells and purified centrosomes. Pericentriolar γ-TuRCs simultaneously associate with the essential adapter NEDD1 and the microcephaly protein CDK5RAP2. NEDD1 forms a tetrameric structure at the γ-TuRC base through interactions with four GCP3/MZT1 modules and GCP5/6-specific extensions, while multiple copies of CDK5RAP2 engage the γ-TuRC in two distinct binding patterns to promote γ-TuRC closure and activation. In the centriole lumen, the microtubule branching factor Augmin tethers a condensed cluster of γ-TuRCs to the centriole wall with defined directional orientation. Centriole-lumenal γ-TuRC-Augmin is protected from degradation during interphase and released in mitosis to aid chromosome alignment. This study provides a unique view on γ-TuRC structure and molecular organization at centrosomes and identifies an important cellular function of centriole-lumenal γ-TuRCs.
Collapse
Affiliation(s)
- Qi Gao
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Florian W Hofer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Sebastian Filbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | | | - Maja Zezlina
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Cornelia Sala
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Hyesu Shin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | | | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.
| |
Collapse
|
5
|
Wittich C, Ettich J, Hertell M, Ghosh Roy B, Xu HC, Floss DM, Lang PA, Scheller J. An engineered palivizumab IgG2 subclass for synthetic gp130 and fas-mediated signaling. J Biol Chem 2025; 301:108205. [PMID: 39828098 PMCID: PMC11872477 DOI: 10.1016/j.jbc.2025.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Recently, we phenocopied interleukin (IL-)6 signaling using the dimerized single-chain variable fragment (scFv) derived from the respiratory syncytial virus IgG1-antibody palivizumab (PscFvLHFc) to activate a palivizumab antiidiotypic nanobody (AIPVHH)-gp130 receptor fusion protein. Palivizumab was unable to activate STAT3 signaling, so we aimed to create a similar ligand capable of triggering this pathway. Here, we created three variants of the ligand called PscFvLH0Fc, PscFvLH4Fc and PscFvLH8Fc by shortening the spacer region connecting PscFvLH and Fc from 23 amino acids in PscFvLHFc to 0 amino acids or expanding it by rigid linkers of four or eight alpha helical loops, respectively. The rigid-linker ligands had completely altered cellular activation patterns via AIPVHHgp130 fusion proteins. Deleting the extracellular stalk region between transmembrane and AIPVHH in the synthetic receptors AIP2VHHgp130Δstalk and AIP3VHHgp130Δstalk to increase rigidity and enhanced the biological activity of the short spacer PscFvFc ligands. Since scFv constructs are less stable than antibodies and have not been Food and Drug Administration approved, we looked for different antibody backbones. Transferring palivizumab's variable region to a more rigid and hence more agonistic IgG2 backbone (PIgG2) maintained affinity while improving agonistic properties activating cells expressing AIP2VHHgp130Δstalk and AIP3VHHgp130Δstalk but not their full-length counterparts. Furthermore, we engineered a tetravalent palivizumab variant (PscFvPIgG2) capable of inducing higher-order receptor clustering, activating Fas-induced apoptosis. In summary, we engineered a fully-synthetic cytokine/cytokine receptor pair based on the IgG2-variant of palivizumab and the AIPVHHgp130Δstalk variants opening avenues for therapeutic applications using nonphysiological targets in immunotherapy.
Collapse
Affiliation(s)
- Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Marcel Hertell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Biswadeep Ghosh Roy
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Haifeng C Xu
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp A Lang
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Houser A, Baconguis I. Structural insights into subunit-dependent functional regulation in epithelial sodium channels. Structure 2025; 33:349-362.e4. [PMID: 39667931 PMCID: PMC11805665 DOI: 10.1016/j.str.2024.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Epithelial sodium channels (ENaCs) play a crucial role in Na+ reabsorption in mammals. To date, four subunits have been identified-α, β, γ, and δ-believed to form different heteromeric complexes. Currently, only the structure of the αβγ complex is known. To investigate the formation of channels with different subunit compositions and to determine how each subunit contributes to distinct channel properties, we co-expressed human δ, β, and γ. Using single-particle cryoelectron microscopy, we observed three distinct ENaC complexes. The structures unveil a pattern in which β and γ positions are conserved among the different complexes while the α position in αβγ trimer is occupied by either δ or another β. The δ subunit induces structural rearrangements in the γ subunit, which may contribute to the differences in channel activity between αβγ and δβγ channels. These structural changes provide molecular insights into how ENaC subunit composition modulates channel function.
Collapse
Affiliation(s)
- Alexandra Houser
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Isabelle Baconguis
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Licheva M, Pflaum J, Babic R, Mancilla H, Elsässer J, Boyle E, Hollenstein DM, Jimenez-Niebla J, Pleyer J, Heinrich M, Wieland FG, Brenneisen J, Eickhorst C, Brenner J, Jiang S, Hartl M, Welsch S, Hunte C, Timmer J, Wilfling F, Kraft C. Phase separation of initiation hubs on cargo is a trigger switch for selective autophagy. Nat Cell Biol 2025; 27:283-297. [PMID: 39774270 PMCID: PMC11821514 DOI: 10.1038/s41556-024-01572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a key cellular quality control mechanism. Nutrient stress triggers bulk autophagy, which nonselectively degrades cytoplasmic material upon formation and liquid-liquid phase separation of the autophagy-related gene 1 (Atg1) complex. In contrast, selective autophagy eliminates protein aggregates, damaged organelles and other cargoes that are targeted by an autophagy receptor. Phase separation of cargo has been observed, but its regulation and impact on selective autophagy are poorly understood. Here, we find that key autophagy biogenesis factors phase separate into initiation hubs at cargo surfaces in yeast, subsequently maturing into sites that drive phagophore nucleation. This phase separation is dependent on multivalent, low-affinity interactions between autophagy receptors and cargo, creating a dynamic cargo surface. Notably, high-affinity interactions between autophagy receptors and cargo complexes block initiation hub formation and autophagy progression. Using these principles, we converted the mammalian reovirus nonstructural protein µNS, which accumulates as particles in the yeast cytoplasm that are not degraded, into a neo-cargo that is degraded by selective autophagy. We show that initiation hubs also form on the surface of different cargoes in human cells and are key to establish the connection to the endoplasmic reticulum, where the phagophore assembly site is formed to initiate phagophore biogenesis. Overall, our findings suggest that regulated phase separation underscores the initiation of both bulk and selective autophagy in evolutionarily diverse organisms.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jeremy Pflaum
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Riccardo Babic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Hector Mancilla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jana Elsässer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Emily Boyle
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - David M Hollenstein
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Vienna, Austria
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Jorge Jimenez-Niebla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jonas Pleyer
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
| | - Mio Heinrich
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Franz-Georg Wieland
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Joachim Brenneisen
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Johann Brenner
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Shan Jiang
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Markus Hartl
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Vienna, Austria
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jens Timmer
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Sanial M, Miled R, Alves M, Claret S, Joly N, Proux‐Gillardeaux V, Plessis A, Léon S. Direct observation of fluorescent proteins in gels: A rapid, cost-efficient, and quantitative alternative to immunoblotting. Biol Cell 2025; 117:e2400161. [PMID: 39924827 PMCID: PMC11808229 DOI: 10.1111/boc.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND INFORMATION The discovery of green fluorescent protein (GFP) and its derivatives has revolutionized cell biology. These fluorescent proteins (FPs) have enabled the real-time observation of protein localization and dynamics within live cells. Applications of FP vary from monitoring gene/protein expression patterns, visualizing protein-protein interactions, measuring protein stability, assessing protein mobility, and creating biosensors. The utility of FPs also extends to biochemical approaches through immunoblotting and proteomic analyses, aided by anti-FP antibodies and nanobodies. FPs are notoriously robust proteins with a tightly folded domain that confers a strong stability and a relative resistance to degradation and denaturation. METHODS AND RESULTS In this study, we report that various green, orange, and red FPs can be maintained in a native, fluorescent state during the entire process of protein sample extraction, incubation with sample buffer, loading, and migration on SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) with only minor adaptations of traditional protocols. This protocol results in the ability to detect and quantify in-gel fluorescence (IGF) of endogenously-expressed proteins tagged with FPs directly after migration, using standard fluorescence-imaging devices. This approach eliminates the need for antibodies and chemiluminescent reagents, as well as the time-consuming steps inherent in immunoblotting such as transfer onto a membrane and antibody incubations. CONCLUSIONS AND SIGNIFICANCE Overall, IGF detection provides clearer data with less background interference, a sensitivity comparable to or better than antibody-based detection, a better quantification, and a broader dynamic range. After fluorescence imaging, gels can still be used for other applications such as total protein staining or immunoblotting if needed. It also expands possibilities by allowing the detection of FPs for which antibodies are not available. Our study explores the feasibility, limitations, and applications of IGF for detecting endogenously expressed proteins in cell extracts, providing insights into sample preparation, imaging conditions, and sensitivity optimizations, and potential applications such as co-immunoprecipitation experiments.
Collapse
Affiliation(s)
| | - Ryan Miled
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Marine Alves
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Sandra Claret
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Nicolas Joly
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | | | - Anne Plessis
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Sébastien Léon
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| |
Collapse
|
9
|
Hanna SM, Tavafoghi B, Chen JS, Howard I, Ren L, Willet AH, Gould KL. New mutations in the core Schizosaccharomyces pombe spindle pole body scaffold Ppc89 reveal separable functions in regulating cell division. G3 (BETHESDA, MD.) 2025; 15:jkae249. [PMID: 39471327 PMCID: PMC11708228 DOI: 10.1093/g3journal/jkae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and also serve as signaling platforms. In the fission yeast Schizosaccharomyces pombe, genetic ablation and high-resolution imaging indicate that the α-helical Ppc89 is central to SPB structure and function. Here, we developed and characterized conditional and truncation mutants of ppc89. Alleles with mutations in 2 predicted α-helices near the C-terminus were specifically defective in anchoring Sid4, the scaffold for the septation initiation network (SIN), and proteins dependent on Sid4 (Cdc11, Dma1, Mto1, and Mto2). Artificial tethering of Sid4 to the SPB fully rescued these ppc89 mutants. Another ppc89 allele had mutations located throughout the coding region. While this mutant was also defective in Sid4 anchoring, it displayed additional defects including fragmented SPBs and forming and constricting a second cytokinetic ring in 1 daughter cell. These defects were shared with a ppc89 allele truncated of the most C-terminal predicted α-helices that is still able to recruit Sid4 and the SIN. We conclude that Ppc89 not only tethers the SIN to the SPB but is also necessary for the integrity of the SPB and faithful coordination of cytokinesis with mitosis.
Collapse
Affiliation(s)
- Sarah M Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Bita Tavafoghi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Isaac Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Coban I, Krebber H. Snapshot Moments of the Cell Revealed by UV-Crosslinking and RNA Co-immunoprecipitation of Transient RNA-Protein Complexes. Methods Mol Biol 2025; 2863:253-263. [PMID: 39535714 DOI: 10.1007/978-1-0716-4176-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
RNA co-immunoprecipitation serves as a powerful technique for elucidating the interactions between RNA and RNA-binding proteins, pivotal for understanding posttranscriptional regulation mechanisms. This method captures the dynamics of protein-RNA associations across various cellular processes, applicable to both coding and noncoding RNAs. Here we describe a convenient and compelling method using nanobody coupled beads and UV-crosslinking. Importantly, this method can also be utilized to isolate short-lived complexes, for instance in RNA-degradation. The obtained RNA can be used for many downstream applications, such as qPCR or RNA-sequencing.
Collapse
Affiliation(s)
- Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Fridy PC, Rout MP, Ketaren NE. Nanobodies: From High-Throughput Identification to Therapeutic Development. Mol Cell Proteomics 2024; 23:100865. [PMID: 39433212 PMCID: PMC11609455 DOI: 10.1016/j.mcpro.2024.100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The camelid single-domain antibody fragment, commonly referred to as a nanobody, achieves the targeting power of conventional monoclonal antibodies (mAbs) at only a fraction of their size. Isolated from camelid species (including llamas, alpacas, and camels), their small size at ∼15 kDa, low structural complexity, and high stability compared with conventional antibodies have propelled nanobody technology into the limelight of biologic development. Nanobodies are proving themselves to be a potent complement to traditional mAb therapies, showing success in the treatment of, for example, autoimmune diseases and cancer, and more recently as therapeutic options to treat infectious diseases caused by rapidly evolving biological targets such as the SARS-CoV-2 virus. This review highlights the benefits of applying a proteomic approach to identify diverse nanobody sequences against a single antigen. This proteomic approach coupled with conventional yeast/phage display methods enables the production of highly diverse repertoires of nanobodies able to bind the vast epitope landscape of an antigen, with epitope sampling surpassing that of mAbs. Additionally, we aim to highlight recent findings illuminating the structural attributes of nanobodies that make them particularly amenable to comprehensive antigen sampling and to synergistic activity-underscoring the powerful advantage of acquiring a large, diverse nanobody repertoire against a single antigen. Lastly, we highlight the efforts being made in the clinical development of nanobodies, which have great potential as powerful diagnostic reagents and treatment options, especially when targeting infectious disease agents.
Collapse
Affiliation(s)
- Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
12
|
Yang Z, Yoshii SR, Sakai Y, Zhang J, Chino H, Knorr RL, Mizushima N. Autophagy adaptors mediate Parkin-dependent mitophagy by forming sheet-like liquid condensates. EMBO J 2024; 43:5613-5634. [PMID: 39420095 PMCID: PMC11574277 DOI: 10.1038/s44318-024-00272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
During PINK1- and Parkin-mediated mitophagy, autophagy adaptors are recruited to damaged mitochondria to promote their selective degradation. Autophagy adaptors such as optineurin (OPTN) and NDP52 facilitate mitophagy by recruiting the autophagy-initiation machinery, and assisting engulfment of damaged mitochondria through binding to ubiquitinated mitochondrial proteins and autophagosomal ATG8 family proteins. Here, we demonstrate that OPTN and NDP52 form sheet-like phase-separated condensates with liquid-like properties on the surface of ubiquitinated mitochondria. The dynamic and liquid-like nature of OPTN condensates is important for mitophagy activity, because reducing the fluidity of OPTN-ubiquitin condensates suppresses the recruitment of ATG9 vesicles and impairs mitophagy. Based on these results, we propose a dynamic liquid-like, rather than a stoichiometric, model of autophagy adaptors to explain the interactions between autophagic membranes (i.e., ATG9 vesicles and isolation membranes) and mitochondrial membranes during Parkin-mediated mitophagy. This model underscores the importance of liquid-liquid phase separation in facilitating membrane-membrane contacts, likely through the generation of capillary forces.
Collapse
Affiliation(s)
- Zi Yang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Saori R Yoshii
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN, Wako, Saitama, Japan
- School of Science/Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Chino
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology, Harvard Medical school, Boston, MA, USA
| | - Roland L Knorr
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Hu Y, Huo L, Chen W, Shen J, Wang W. Resistance-based directed evolution of nanobodies for higher affinity in prokaryotes. Biochim Biophys Acta Gen Subj 2024; 1868:130710. [PMID: 39245149 DOI: 10.1016/j.bbagen.2024.130710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
A prokaryotic resistance-based directed evolution system leveraging protein-fragment complementation assay (PCA) was devised, and its proficiency in detecting protein-protein interactions and discriminating varying degrees of binding affinity was demonstrated by two well-characterized protein pairs. Furthermore, we constructed a random mutant library based on the GBPR36K/E45K mutant, characterized by almost no affinity towards EGFP. This library was subjected to PCA-based prokaryotic directed evolution, resulting in the isolation of back-mutated variants. In summary, we have established an expedited, cost-effective, and structural information-independent PCA-based prokaryotic directed evolution platform for nanobody affinity maturation, featuring tunable screening stringency via modulation of antibiotic concentrations.
Collapse
Affiliation(s)
- Yue Hu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Li Huo
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Weiwei Chen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China.
| | - Wenyi Wang
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
14
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
15
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
16
|
Uribe-Salazar JM, Kaya G, Weyenberg K, Radke B, Hino K, Soto DC, Shiu JL, Zhang W, Ingamells C, Haghani NK, Xu E, Rosas J, Simó S, Miesfeld J, Glaser T, Baraban SC, Jao LE, Dennis MY. Zebrafish models of human-duplicated SRGAP2 reveal novel functions in microglia and visual system development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612570. [PMID: 39314374 PMCID: PMC11418993 DOI: 10.1101/2024.09.11.612570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The expansion of the human SRGAP2 family, resulting in a human-specific paralog SRGAP2C, likely contributed to altered evolutionary brain features. The introduction of SRGAP2C in mouse models is associated with changes in cortical neuronal migration, axon guidance, synaptogenesis, and sensory-task performance. Truncated SRGAP2C heterodimerizes with the full-length ancestral gene product SRGAP2A and antagonizes its functions. However, the significance of SRGAP2 duplication beyond neocortex development has not been elucidated due to the embryonic lethality of complete Srgap2 knockout in mice. Using zebrafish, we show that srgap2 knockout results in viable offspring and that these larvae phenocopy "humanized" SRGAP2C larvae, including altered morphometric features (i.e., reduced body length and inter-eye distance) and differential expression of synapse-, axonogenesis-, and vision-related genes. Through single-cell transcriptome analysis, we demonstrate a skewed balance of excitatory and inhibitory neurons that likely contribute to increased susceptibility to seizures displayed by Srgap2 mutant larvae, a phenotype resembling SRGAP2 loss-of-function in a child with early infantile epileptic encephalopathy. Single-cell data also shows strong endogenous expression of srgap2 in microglia with mutants exhibiting altered membrane dynamics and likely delayed maturation of microglial cells. Microglia cells expressing srgap2 were also detected in the developing eye together with altered expression of genes related to axonogenesis in mutant retinal cells. Consistent with the perturbed gene expression in the retina, we found that SRGAP2 mutant larvae exhibited increased sensitivity to broad and fine visual cues. Finally, comparing the transcriptomes of relevant cell types between human (+SRGAP2C) and non-human primates (-SRGAP2C) revealed significant overlaps of gene alterations with mutant cells in our zebrafish models; this suggests that SRGAP2C plays a similar role altering microglia and the visual system in modern humans. Together, our functional characterization of conserved ortholog Srgap2 and human SRGAP2C in zebrafish uncovered novel gene functions and highlights the strength of cross-species analysis in understanding the development of human-specific features.
Collapse
Affiliation(s)
- José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Gulhan Kaya
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - KaeChandra Weyenberg
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Brittany Radke
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Jia-Lin Shiu
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Wenzhu Zhang
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Cole Ingamells
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Nicholas K. Haghani
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Emily Xu
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Joseph Rosas
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Joel Miesfeld
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, WI, USA
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Scott C. Baraban
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Panichnantakul P, Aguilar LC, Daynard E, Guest M, Peters C, Vogel J, Oeffinger M. Protein UFMylation regulates early events during ribosomal DNA-damage response. Cell Rep 2024; 43:114738. [PMID: 39277864 DOI: 10.1016/j.celrep.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Lisbeth C Aguilar
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Evan Daynard
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mackenzie Guest
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Colten Peters
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jackie Vogel
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Département de biochimie et médicine moléculaire, Faculté de Médicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
18
|
Charlton SJ, Flury V, Kanoh Y, Genzor AV, Kollenstart L, Ao W, Brøgger P, Weisser MB, Adamus M, Alcaraz N, Delvaux de Fenffe CM, Mattiroli F, Montoya G, Masai H, Groth A, Thon G. The fork protection complex promotes parental histone recycling and epigenetic memory. Cell 2024; 187:5029-5047.e21. [PMID: 39094569 PMCID: PMC11383432 DOI: 10.1016/j.cell.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/16/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
Collapse
Affiliation(s)
- Sebastian Jespersen Charlton
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yutaka Kanoh
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Wantong Ao
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Marek Adamus
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
19
|
Weng D, Yang L, Xie Y. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis. Protein Expr Purif 2024; 221:106501. [PMID: 38782081 DOI: 10.1016/j.pep.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nanobodies are single-variable domain antibodies with excellent properties, which are evolving as versatile tools to guide cognate antigens in vitro and in vivo for biological research, diagnosis, and treatment. Given their simple structure, nanobodies are readily produced in multiple systems. However, selecting an appropriate expression system is crucial because different conditions might cause proteins to produce different folds or post-translational modifications (PTMs), and these differences often result in different functions. At present, the strategies of PTMs are rarely reported. The GFP nanobody can specifically target the GFP protein. Here, we engineered a GFP nanobody fused with 6 × His tag and Fc tag, respectively, and expressed in bacteria and mammalian cells. The 6 × His-GFP-nanobody was produced from Escherichia coli at high yields and the pull-down assay indicated that it can precipitate the GFP protein. Meanwhile, the Fc-GFP-nanobody can be expressed in HEK293T cells, and the co-immunoprecipitation experiment can trace and target the GFP-tagged protein in vivo. Furthermore, some different PTMs in antigen-binding regions have been identified after using mass spectrometry (MS) to analyze the GFP nanobodies, which are expressed in prokaryotes and eukaryotes. In this study, a GFP nanobody was designed, and its binding ability was verified by using the eukaryotic and prokaryotic protein expression systems. In addition, this GFP nanobody was transformed into a useful instrument for more in-depth functional investigations of GFP fusion proteins. MS was further used to explore the reason for the difference in binding ability, providing a novel perspective for the study of GFP nanobodies and protein expression purification.
Collapse
Affiliation(s)
- Dunchu Weng
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Gelová Z, Ingles-Prieto A, Bohstedt T, Frommelt F, Chi G, Chang YN, Garcia J, Wolf G, Azzollini L, Tremolada S, Scacioc A, Hansen JS, Serrano I, Droce A, Bernal JC, Burgess-Brown NA, Carpenter EP, Dürr KL, Kristensen P, Geertsma ER, Štefanić S, Scarabottolo L, Wiedmer T, Puetter V, Sauer DB, Superti-Furga G. Protein Binder Toolbox for Studies of Solute Carrier Transporters. J Mol Biol 2024; 436:168665. [PMID: 38878854 DOI: 10.1016/j.jmb.2024.168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.
Collapse
Affiliation(s)
- Zuzana Gelová
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tina Bohstedt
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julio Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Andreea Scacioc
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jesper S Hansen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iciar Serrano
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Aida Droce
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elisabeth P Carpenter
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Saša Štefanić
- Nanobody Service Facility, University of Zurich, AgroVet-Strickhof, Eschikon, Switzerland
| | | | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Madan A, Kelly KP, Bahk P, Sullivan CE, Poling ME, Brent AE, Alassaf M, Dubrulle J, Rajan A. Atg8/LC3 controls systemic nutrient surplus signaling in flies and humans. Curr Biol 2024; 34:3327-3341.e9. [PMID: 38955177 PMCID: PMC11303106 DOI: 10.1016/j.cub.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Organisms experience constant nutritional flux. Mechanisms at the interface of opposing nutritional states-scarcity and surplus-enable organismal energy homeostasis. Contingent on nutritional stores, adipocytes secrete adipokines, such as the fat hormone leptin, to signal nutrient status to the central brain. Increased leptin secretion underlies metabolic dysregulation during common obesity, but the molecular mechanisms regulating leptin secretion from human adipocytes are poorly understood. Here, we report that Atg8/LC3 family proteins, best known for their role in autophagy during nutrient scarcity, play an evolutionarily conserved role during nutrient surplus by promoting adipokine secretion. We show that in a well-fed state, Atg8/LC3 promotes the secretion of the Drosophila functional leptin ortholog unpaired 2 (Upd2) and leptin from human adipocytes. Proteomic analyses reveal that LC3 directs leptin to a secretory pathway in human cells. We identified LC3-dependent extracellular vesicle (EV) loading and secretion (LDELS) as a required step for leptin release, highlighting a unique secretory route adopted by leptin in human adipocytes. In Drosophila, mutations to Upd2's Atg8 interaction motif (AIM) result in constitutive adipokine retention. Atg8-mediated Upd2 retention alters lipid storage and hunger response and rewires the bulk organismal transcriptome in a manner conducive to starvation survival. Thus, Atg8/LC3's bidirectional role in nutrient sensing-conveying nutrient surplus and responding to nutrient deprivation-enables organisms to manage nutrient flux effectively. We posit that decoding how bidirectional molecular switches-such as Atg8/LC3-operate at the nexus of nutritional scarcity and surplus will inform therapeutic strategies to tackle chronic metabolic disorders.
Collapse
Affiliation(s)
- Aditi Madan
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | - Kevin P Kelly
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | - Patrick Bahk
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | | | | | - Ava E Brent
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | - Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | - Julien Dubrulle
- Cellular Imaging Core, Shared Resources, Fred Hutch, Seattle, WA 98109, USA
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Froehlich T, Jenner A, Cavarischia-Rega C, Fagbadebo FO, Lurz Y, Frecot DI, Kaiser PD, Nueske S, Scholz AM, Schäffer E, Garcia-Saez AJ, Macek B, Rothbauer U. Nanobodies as novel tools to monitor the mitochondrial fission factor Drp1. Life Sci Alliance 2024; 7:e202402608. [PMID: 38816213 PMCID: PMC11140114 DOI: 10.26508/lsa.202402608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
In cells, mitochondria undergo constant fusion and fission. An essential factor for fission is the mammalian dynamin-related protein 1 (Drp1). Dysregulation of Drp1 is associated with neurodegenerative diseases including Parkinson's, cardiovascular diseases and cancer, making Drp1 a pivotal biomarker for monitoring mitochondrial status and potential pathophysiological conditions. Here, we developed nanobodies (Nbs) as versatile binding molecules for proteomics, advanced microscopy and live cell imaging of Drp1. To specifically enrich endogenous Drp1 with interacting proteins for proteomics, we functionalized high-affinity Nbs into advanced capture matrices. Furthermore, we detected Drp1 by bivalent Nbs combined with site-directed fluorophore labelling in super-resolution STORM microscopy. For real-time imaging of Drp1, we intracellularly expressed fluorescently labelled Nbs, so-called chromobodies (Cbs). To improve the signal-to-noise ratio, we further converted Cbs into a "turnover-accelerated" format. With these imaging probes, we visualized the dynamics of endogenous Drp1 upon compound-induced mitochondrial fission in living cells. Considering the wide range of research applications, the presented Nb toolset will open up new possibilities for advanced functional studies of Drp1 in disease-relevant models.
Collapse
Affiliation(s)
- Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Yannic Lurz
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Stefan Nueske
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Armin M Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Willet AH, Ren L, Turner LA, Gould KL. Transient PP2A SIP complex localization to mitotic SPBs for SIN inhibition is mediated solely by the Csc1 FHA domain. Mol Biol Cell 2024; 35:br14. [PMID: 38865179 PMCID: PMC11321038 DOI: 10.1091/mbc.e24-04-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Many organisms utilize an actin- and myosin-based cytokinetic ring (CR) to help complete cytokinesis. In Schizosaccharomyces pombe, the Septation Initiation Network (SIN) promotes proper CR function and stability. The SIN is a conserved and essential signaling network consisting of a GTPase and a cascade of kinases assembled at the spindle pole body (SPB). The PP2A SIN inhibitory phosphatase (SIP) complex related to the STRIPAK phosphatase complex is one inhibitor of SIN signaling. The SIP consists of Csc1, Csc2, Csc3, Csc4, Paa1, and the phosphatase subunit Ppa3. Here, we determine that the SIP is anchored at the SPB via the Csc1 FHA domain and that constitutive SPB localization of the SIP is lethal due to persistent SIN inhibition. Disrupting SIP docking at the SPB with a point mutation within the FHA domain or eliminating phosphatase activity by introducing a point mutation within Ppa3 resulted in intact SIP complexes without SIN inhibitory function. Lastly, we defined the unique features of Ppa3 that allow it, but not two other PP2A catalytic subunits, to incorporate into the SIP. Overall, we provide insight into how the SIP complex assembles, localizes, and functions to counteract the SIN with spatiotemporal precision during cytokinesis.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
24
|
Baumgärtner LAF, Ettich J, Balles H, Lapp DJ, Mossner S, Bassenge C, Ouzin M, Hanenberg H, Scheller J, Floss DM. Unpaired cysteine insertions favor transmembrane dimerization and induce ligand-independent constitutive cytokine receptor signaling. Biol Chem 2024; 405:531-544. [PMID: 38695485 DOI: 10.1515/hsz-2023-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024]
Abstract
Naturally occurring gain-of-function (GOF) mutants have been identified in patients for a variety of cytokine receptors. Although this constitutive activation of cytokine receptors is strongly associated with malignant disorders, ligand-independent receptor activation is also a useful tool in synthetic biology e.g. to improve adoptive cellular therapies with genetically modified T-cells. Balanced Interleukin (IL-)7 signaling via a heterodimer of IL-7 receptor (IL-7Rα) and the common γ-chain (γc) controls T- and B-cell development and expansion, whereas uncontrolled IL-7 signaling can drive acute lymphoid leukemia (ALL) development. The ALL-driver mutation PPCL in the transmembrane domain of IL-7Rα is a mutational insertion of the four amino acids proline-proline-cysteine-leucine and leads to ligand-independent receptor dimerization and constitutive activation. We showed here in the cytokine-dependent pre-B-cell line Ba/F3 that the PPCL-insertion in a synthetic version of the IL-7Rα induced γc-independent STAT5 and ERK phosphorylation and also proliferation of the cells and that booster-stimulation by arteficial ligands additionally generated non-canonical STAT3 phosphorylation via the synthetic IL-7Rα-PPCL-receptors. Transfer of the IL-7Rα transmembrane domain with the PPCL insertion into natural and synthetic cytokine receptor chains of the IL-6, IL-12 and Interferon families also resulted in constitutive receptor signaling. In conclusion, our data suggested that the insertion of the mutated PPCL IL-7Rα transmembrane domain is an universal approach to generate ligand-independent, constitutively active cytokine receptors.
Collapse
Affiliation(s)
- Lynn Affrica Felicitas Baumgärtner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Helene Balles
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dorothee Johanna Lapp
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Christin Bassenge
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Meryem Ouzin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, D-45122 Essen, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Doreen Manuela Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Gutierrez-Morton E, Haluska C, Collins L, Rizkallah R, Tomko RJ, Wang Y. The polySUMOylation axis promotes nucleolar release of Tof2 for mitotic exit. Cell Rep 2024; 43:114492. [PMID: 39002125 PMCID: PMC11298248 DOI: 10.1016/j.celrep.2024.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown. Here, we show that Tof2 exhibits cell-cycle-regulated nucleolar delocalization and turnover. Depletion of the nuclear small ubiquitin-like modifier (SUMO) protease Ulp2 not only causes Tof2 polySUMOylation, nucleolar delocalization, and degradation but also leads to Cdc14 nucleolar release and activation. This outcome depends on polySUMOylation and the activity of downstream enzymes, including SUMO-targeted ubiquitin ligase and Cdc48/p97 segregase. We further developed a system to tether SUMO machinery to Tof2 and generated a SUMO-deficient tof2 mutant, and the results indicate that Tof2 polySUMOylation is necessary and sufficient for its nucleolar delocalization and degradation. Together, our work reveals a polySUMO-dependent mechanism that delocalizes Tof2 from the nucleolus to facilitate mitotic exit.
Collapse
Affiliation(s)
- Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Cory Haluska
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liam Collins
- College of Arts and Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
26
|
Oberegger S, Misslinger M, Faserl K, Sarg B, Farhan H, Haas H. The cytosolic form of dual localized BolA family protein Bol3 is important for adaptation to iron starvation in Aspergillus fumigatus. Open Biol 2024; 14:240033. [PMID: 38919062 PMCID: PMC11285713 DOI: 10.1098/rsob.240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Aspergillus fumigatus is the predominant mould pathogen for humans. Adaption to host-imposed iron limitation has previously been demonstrated to be essential for its virulence. [2Fe-2S] clusters are crucial as cofactors of several metabolic pathways and mediate cytosolic/nuclear iron sensing in fungi including A. fumigatus. [2Fe-2S] cluster trafficking has been shown to involve BolA family proteins in both mitochondria and the cytosol/nucleus. Interestingly, both A. fumigatus homologues, termed Bol1 and Bol3, possess mitochondrial targeting sequences, suggesting the lack of cytosolic/nuclear versions. Here, we show by the combination of mutational, proteomic and fluorescence microscopic analyses that expression of the Bol3 encoding gene leads to dual localization of gene products to mitochondria and the cytosol/nucleus via alternative translation initiation downstream of the mitochondrial targeting sequence, which appears to be highly conserved in various Aspergillus species. Lack of either mitochondrial Bol1 or Bol3 was phenotypically inconspicuous while lack of cytosolic/nuclear Bol3 impaired growth during iron limitation but not iron sensing which indicates a particular importance of [2Fe-2S] cluster trafficking during iron limitation. Remarkably, cytosolic/nuclear Bol3 differs from the mitochondrial version only by N-terminal acetylation, a finding that was only possible by mutational hypothesis testing.
Collapse
Affiliation(s)
- Simon Oberegger
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Misslinger
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Faserl
- Institute of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Hesso Farhan
- Institute of Pathophysiology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Houser A, Baconguis I. Structural Insights into Subunit-Dependent Functional Regulation in Epithelial Sodium Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595834. [PMID: 38853903 PMCID: PMC11160588 DOI: 10.1101/2024.05.28.595834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epithelial sodium channels (ENaC) play a crucial role in Na + reabsorption in mammals. To date, four subunits have been identified-α, β, γ, and δ-believed to form different heteromeric complexes. Currently, only the structure of the αβγ complex is known. To understand how these channels form with varying subunit compositions and define the contribution of each subunit to distinct properties, we co-expressed human δ, β, and γ. Using single-particle cryo-electron microscopy, we observed three distinct ENaC complexes. The structures unveil a pattern in which β and γ positions are conserved among the different complexes while the α position in αβγ trimer is occupied by either δ or another β. The presence of δ induces structural rearrangements in the γ subunit explaining the differences in channel activity observed between αβγ and δβγ channels. These structures define the mechanism by which ENaC subunit composition tunes ENaC function.
Collapse
|
28
|
Odorčić I, Hamed MB, Lismont S, Chávez-Gutiérrez L, Efremov RG. Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform. Nat Commun 2024; 15:4479. [PMID: 38802343 PMCID: PMC11130327 DOI: 10.1038/s41467-024-48776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Deposition of amyloid-β (Aβ) peptides in the brain is a hallmark of Alzheimer's disease. Aβs are generated through sequential proteolysis of the amyloid precursor protein by the γ-secretase complexes (GSECs). Aβ peptide length, modulated by the Presenilin (PSEN) and APH-1 subunits of GSEC, is critical for Alzheimer's pathogenesis. Despite high relevance, mechanistic understanding of the proteolysis of Aβ, and its modulation by APH-1, remain incomplete. Here, we report cryo-EM structures of human GSEC (PSEN1/APH-1B) reconstituted into lipid nanodiscs in apo form and in complex with the intermediate Aβ46 substrate without cross-linking. We find that three non-conserved and structurally divergent APH-1 regions establish contacts with PSEN1, and that substrate-binding induces concerted rearrangements in one of the identified PSEN1/APH-1 interfaces, providing structural basis for APH-1 allosteric-like effects. In addition, the GSEC-Aβ46 structure reveals an interaction between Aβ46 and loop 1PSEN1, and identifies three other H-bonding interactions that, according to functional validation, are required for substrate recognition and efficient sequential catalysis.
Collapse
Affiliation(s)
- Ivica Odorčić
- Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Mohamed Belal Hamed
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium.
| | - Rouslan G Efremov
- Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
29
|
Roberts EL, Greenwood J, Kapadia N, Auchynnikava T, Basu S, Nurse P. CDK activity at the centrosome regulates the cell cycle. Cell Rep 2024; 43:114066. [PMID: 38578823 PMCID: PMC11554571 DOI: 10.1016/j.celrep.2024.114066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
In human cells and yeast, an intact "hydrophobic patch" substrate docking site is needed for mitotic cyclin centrosomal localization. A hydrophobic patch mutant (HPM) of the fission yeast mitotic cyclin Cdc13 cannot enter mitosis, but whether this is due to defective centrosomal localization or defective cyclin-substrate docking more widely is unknown. Here, we show that artificially restoring Cdc13-HPM centrosomal localization promotes mitotic entry and increases CDK (cyclin-dependent kinase) substrate phosphorylation at the centrosome and in the cytoplasm. We also show that the S-phase B-cyclin hydrophobic patch is required for centrosomal localization but not for S phase. We propose that the hydrophobic patch is essential for mitosis due to its requirement for the local concentration of cyclin-CDK with CDK substrates and regulators at the centrosome. Our findings emphasize the central importance of the centrosome as a hub coordinating cell-cycle control and explain why the cyclin hydrophobic patch is essential for mitosis.
Collapse
Affiliation(s)
- Emma L Roberts
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK.
| | - Jessica Greenwood
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Nitin Kapadia
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Tania Auchynnikava
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK; Protein Analysis and Proteomics Platform, The Francis Crick Institute, NW1 1AT London, UK
| | - Souradeep Basu
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
30
|
Sahraoui PF, Vadas O, Kalia YN. Non-Invasive Delivery of Negatively Charged Nanobodies by Anodal Iontophoresis: When Electroosmosis Dominates Electromigration. Pharmaceutics 2024; 16:539. [PMID: 38675200 PMCID: PMC11055110 DOI: 10.3390/pharmaceutics16040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Iontophoresis enables the non-invasive transdermal delivery of moderately-sized proteins and the needle-free cutaneous delivery of antibodies. However, simple descriptors of protein characteristics cannot accurately predict the feasibility of iontophoretic transport. This study investigated the cathodal and anodal iontophoretic transport of the negatively charged M7D12H nanobody and a series of negatively charged variants with single amino acid substitutions. Surprisingly, M7D12H and its variants were only delivered transdermally by anodal iontophoresis. In contrast, transdermal permeation after cathodal iontophoresis and passive diffusion was
Collapse
Affiliation(s)
- Phedra Firdaws Sahraoui
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
31
|
Lewinski M, Brüggemann M, Köster T, Reichel M, Bergelt T, Meyer K, König J, Zarnack K, Staiger D. Mapping protein-RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2). Nat Protoc 2024; 19:1183-1234. [PMID: 38278964 DOI: 10.1038/s41596-023-00935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/20/2023] [Indexed: 01/28/2024]
Abstract
Despite crucial roles of RNA-binding proteins (RBPs) in plant physiology and development, methods for determining their transcriptome-wide binding landscape are less developed than those used in other model organisms. Cross-linking and immunoprecipitation (CLIP) methods (based on UV-mediated generation of covalent bonds between RNAs and cognate RBPs in vivo, purification of the cross-linked complexes and identification of the co-purified RNAs by high-throughput sequencing) have been applied mainly in mammalian cells growing in monolayers or in translucent tissue. We have developed plant iCLIP2, an efficient protocol for performing individual-nucleotide-resolution CLIP (iCLIP) in plants, tailored to overcome the experimental hurdles posed by plant tissue. We optimized the UV dosage to efficiently cross-link RNA and proteins in plants and expressed epitope-tagged RBPs under the control of their native promoters in loss-of-function mutants. We select epitopes for which nanobodies are available, allowing stringent conditions for immunopurification of the RNA-protein complexes to be established. To overcome the inherently high RNase content of plant cells, RNase inhibitors are added and the limited RNA fragmentation step is modified. We combine the optimized isolation of RBP-bound RNAs with iCLIP2, a streamlined protocol that greatly enhances the efficiency of library preparation for high-throughput sequencing. Plant researchers with experience in molecular biology and handling of RNA can complete this iCLIP2 protocol in ~5 d. Finally, we describe a bioinformatics workflow to determine targets of Arabidopsis RBPs from iCLIP data, covering all steps from downloading sequencing reads to identifying cross-linking events ( https://github.com/malewins/Plant-iCLIPseq ), and present the R/Bioconductor package BindingSiteFinder to extract reproducible binding sites ( https://bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html ).
Collapse
Affiliation(s)
- Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Thorsten Bergelt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
32
|
Fung KYY, Ho TWW, Xu Z, Neculai D, Beauchemin CAA, Lee WL, Fairn GD. Apolipoprotein A1 and high-density lipoprotein limit low-density lipoprotein transcytosis by binding SR-B1. J Lipid Res 2024; 65:100530. [PMID: 38479648 PMCID: PMC11004410 DOI: 10.1016/j.jlr.2024.100530] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Tse Wing Winnie Ho
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Zizhen Xu
- Department of Cell Biology, and Department of Pathology Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dante Neculai
- Department of Cell Biology, and Department of Pathology Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Catherine A A Beauchemin
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) program, RIKEN, Wako, Saitama, Japan
| | - Warren L Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
33
|
Abstract
The vesicular monoamine transporter 2 (VMAT2) is a proton-dependent antiporter responsible for loading monoamine neurotransmitters into synaptic vesicles. Dysregulation of VMAT2 can lead to several neuropsychiatric disorders including Parkinson's disease and schizophrenia. Furthermore, drugs such as amphetamine and MDMA are known to act on VMAT2, exemplifying its role in the mechanisms of actions for drugs of abuse. Despite VMAT2's importance, there remains a critical lack of mechanistic understanding, largely driven by a lack of structural information. Here, we report a 3.1 Å resolution cryo-electron microscopy (cryo-EM) structure of VMAT2 complexed with tetrabenazine (TBZ), a non-competitive inhibitor used in the treatment of Huntington's chorea. We find TBZ interacts with residues in a central binding site, locking VMAT2 in an occluded conformation and providing a mechanistic basis for non-competitive inhibition. We further identify residues critical for cytosolic and lumenal gating, including a cluster of hydrophobic residues which are involved in a lumenal gating strategy. Our structure also highlights three distinct polar networks that may determine VMAT2 conformational dynamics and play a role in proton transduction. The structure elucidates mechanisms of VMAT2 inhibition and transport, providing insights into VMAT2 architecture, function, and the design of small-molecule therapeutics.
Collapse
Affiliation(s)
- Michael P Dalton
- Department of Structural Biology, University of PittsburghPittsburghUnited States
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook UniversityStony BrookUnited States
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook UniversityStony BrookUnited States
| | - Jonathan A Coleman
- Department of Structural Biology, University of PittsburghPittsburghUnited States
| |
Collapse
|
34
|
Steiman S, Miyake T, McDermott JC. FoxP1 Represses MEF2A in Striated Muscle. Mol Cell Biol 2024; 44:57-71. [PMID: 38483114 PMCID: PMC10950271 DOI: 10.1080/10985549.2024.2323959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
Myocyte enhancer factor 2 (MEF2) proteins are involved in multiple developmental, physiological, and pathological processes in vertebrates. Protein-protein interactions underlie the plethora of biological processes impacted by MEF2A, necessitating a detailed characterization of the MEF2A interactome. A nanobody based affinity-purification/mass spectrometry strategy was employed to achieve this goal. Specifically, the MEF2A protein complexes were captured from myogenic lysates using a GFP-tagged MEF2A protein immobilized with a GBP-nanobody followed by LC-MS/MS proteomic analysis to identify MEF2A interactors. After bioinformatic analysis, we further characterized the interaction of MEF2A with a transcriptional repressor, FOXP1. FOXP1 coprecipitated with MEF2A in proliferating myogenic cells which diminished upon differentiation (myotube formation). Ectopic expression of FOXP1 inhibited MEF2A driven myogenic reporter genes (derived from the creatine kinase muscle and myogenin genes) and delayed induction of endogenous myogenin during differentiation. Conversely, FOXP1 depletion enhanced MEF2A transactivation properties and myogenin expression. The FoxP1:MEF2A interaction is also preserved in cardiomyocytes and FoxP1 depletion enhanced cardiomyocyte hypertrophy. FOXP1 prevented MEF2A phosphorylation and activation by the p38MAPK pathway. Overall, these data implicate FOXP1 in restricting MEF2A function in order to avoid premature differentiation in myogenic progenitors and also to possibly prevent re-activation of embryonic gene expression in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Sydney Steiman
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - John C. McDermott
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| |
Collapse
|
35
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Holland AJ. Centriole structural integrity defects are a crucial feature of Hydrolethalus Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583733. [PMID: 38496445 PMCID: PMC10942441 DOI: 10.1101/2024.03.06.583733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hydrolethalus Syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. However, how HYLS1 facilitates the centriole-based templating of cilia is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of the human disease. These phenotypes arise from tissue-specific defects in cilia assembly and function caused by a loss of centriole integrity. We show that HYLS1 is recruited to the centriole by CEP120 and functions to recruit centriole inner scaffold proteins that stabilize the centriolar microtubule wall. The HLS mutation disrupts the interaction of HYLS1 with CEP120 leading to HYLS1 displacement and degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and drive HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Rymaszewski W, Giska F, Piechocki MA, Zembek PB, Krzymowska M. Formation of HopQ1:14-3-3 complex in the host cytoplasm modulates nuclear import rate of Pseudomonas syringae effector in Nicotiana benthamiana cells. FRONTIERS IN PLANT SCIENCE 2024; 15:1335830. [PMID: 38501137 PMCID: PMC10944878 DOI: 10.3389/fpls.2024.1335830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
HopQ1, a type three effector from Pseudomonas syringae upon phosphorylation coopts plant 14-3-3 proteins to control its stability and subcellular localization. Mass spectrometry of the cytoplasm-restricted effector revealed that HopQ1 already in this subcellular compartment undergoes phosphorylation at serine 51 within the canonical 14-3-3 binding motif and within the second putative 14-3-3 binding site, 24RTPSES29. Our analyses revealed that the stoichiometry of the HopQ1:14-3-3a complex is 1:2 indicating that both binding sites of HopQ1 are involved in the interaction. Notably, 24RTPSES29 comprises a putative nuclear translocation signal (NTS). Although a peptide containing NTS mediates nuclear import of a Cargo protein suggesting its role in the nuclear trafficking of HopQ1, a deletion of 25TPS27 does not change HopQ1 distribution. In contrast, elimination of 14-3-3 binding site, accelerates nuclear trafficking the effector. Collectively, we show that formation of the HopQ1:14-3-3 complex occurs in the host cytoplasm and slows down the effector translocation into the nucleus. These results provide a mechanism that maintains the proper nucleocytoplasmic partitioning of HopQ1, and at the same time is responsible for the relocation of 14-3-3s from the nucleus to cytoplasm in the presence of the effector.
Collapse
Affiliation(s)
| | | | | | | | - Magdalena Krzymowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
37
|
Schmitt J, Poole E, Groves I, Owen DJ, Graham SC, Sinclair J, Kelly BT. Repurposing an endogenous degradation domain for antibody-mediated disposal of cell-surface proteins. EMBO Rep 2024; 25:951-970. [PMID: 38287192 PMCID: PMC10933360 DOI: 10.1038/s44319-024-00063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
The exquisite specificity of antibodies can be harnessed to effect targeted degradation of membrane proteins. Here, we demonstrate targeted protein removal utilising a protein degradation domain derived from the endogenous human protein Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9). Recombinant antibodies genetically fused to this domain drive the degradation of membrane proteins that undergo constitutive internalisation and recycling, including the transferrin receptor and the human cytomegalovirus latency-associated protein US28. We term this approach PACTAC (PCSK9-Antibody Clearance-Targeting Chimeras).
Collapse
Affiliation(s)
- Janika Schmitt
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Hills Road, CB2 0SP, Cambridge, UK
- Faculty of Medicine, Charité Berlin, 10117, Berlin, Germany
- Faculty of Medicine, University of Heidelberg, 69210, Heidelberg, Germany
| | - Emma Poole
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Hills Road, CB2 0SP, Cambridge, UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ian Groves
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Hills Road, CB2 0SP, Cambridge, UK
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - David J Owen
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK.
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | - John Sinclair
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Hills Road, CB2 0SP, Cambridge, UK.
| | - Bernard T Kelly
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
38
|
Arnold B, Riegger RJ, Okuda EK, Slišković I, Keller M, Bakisoglu C, McNicoll F, Zarnack K, Müller-McNicoll M. hGRAD: A versatile "one-fits-all" system to acutely deplete RNA binding proteins from condensates. J Cell Biol 2024; 223:e202304030. [PMID: 38108808 PMCID: PMC10726014 DOI: 10.1083/jcb.202304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Nuclear RNA binding proteins (RBPs) are difficult to study because they often belong to large protein families and form extensive networks of auto- and crossregulation. They are highly abundant and many localize to condensates with a slow turnover, requiring long depletion times or knockouts that cannot distinguish between direct and indirect or compensatory effects. Here, we developed a system that is optimized for the rapid degradation of nuclear RBPs, called hGRAD. It comes as a "one-fits-all" plasmid, and integration into any cell line with endogenously GFP-tagged proteins allows for an inducible, rapid, and complete knockdown. We show that the nuclear RBPs SRSF3, SRSF5, SRRM2, and NONO are completely cleared from nuclear speckles and paraspeckles within 2 h. hGRAD works in various cell types, is more efficient than previous methods, and does not require the expression of exogenous ubiquitin ligases. Combining SRSF5 hGRAD degradation with Nascent-seq uncovered transient transcript changes, compensatory mechanisms, and an effect of SRSF5 on transcript stability.
Collapse
Affiliation(s)
- Benjamin Arnold
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ricarda J. Riegger
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ellen Kazumi Okuda
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- International Max Planck Research School for Cellular Biophysics, Frankfurt am Main, Germany
| | - Irena Slišković
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Keller
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cem Bakisoglu
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - François McNicoll
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
39
|
Jojoa-Cruz S, Burendei B, Lee WH, Ward AB. Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain. Structure 2024; 32:157-167.e5. [PMID: 38103547 PMCID: PMC10872982 DOI: 10.1016/j.str.2023.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Members of the OSCA/TMEM63 family are mechanically activated ion channels and structures of some OSCA members have revealed the architecture of these channels and structural features that are potentially involved in mechanosensation. However, these structures are all in a similar state and information about the motion of different elements of the structure is limited, preventing a deeper understanding of how these channels work. Here, we used cryoelectron microscopy to determine high-resolution structures of Arabidopsis thaliana OSCA1.2 and OSCA2.3 in peptidiscs. The structure of OSCA1.2 matches previous structures of the same protein in different environments. Yet, in OSCA2.3, the TM6a-TM7 linker adopts a different conformation that constricts the pore on its cytoplasmic side. Furthermore, coevolutionary sequence analysis uncovered a conserved interaction between the TM6a-TM7 linker and the beam-like domain (BLD). Our results reveal conformational heterogeneity and differences in conserved interactions between the TMD and BLD among members of the OSCA family.
Collapse
Affiliation(s)
- Sebastian Jojoa-Cruz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Batuujin Burendei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Dalton MP, Cheng MH, Bahar I, Coleman JA. Structural mechanisms for VMAT2 inhibition by tetrabenazine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556211. [PMID: 37732203 PMCID: PMC10508774 DOI: 10.1101/2023.09.05.556211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The vesicular monoamine transporter 2 (VMAT2) is a proton-dependent antiporter responsible for loading monoamine neurotransmitters into synaptic vesicles. Dysregulation of VMAT2 can lead to several neuropsychiatric disorders including Parkinson's disease and schizophrenia. Furthermore, drugs such as amphetamine and MDMA are known to act on VMAT2, exemplifying its role in the mechanisms of actions for drugs of abuse. Despite VMAT2's importance, there remains a critical lack of mechanistic understanding, largely driven by a lack of structural information. Here we report a 3.1 Å resolution cryo-EM structure of VMAT2 complexed with tetrabenazine (TBZ), a non-competitive inhibitor used in the treatment of Huntington's chorea. We find TBZ interacts with residues in a central binding site, locking VMAT2 in an occluded conformation and providing a mechanistic basis for non-competitive inhibition. We further identify residues critical for cytosolic and lumenal gating, including a cluster of hydrophobic residues which are involved in a lumenal gating strategy. Our structure also highlights three distinct polar networks that may determine VMAT2 conformational dynamics and play a role in proton transduction. The structure elucidates mechanisms of VMAT2 inhibition and transport, providing insights into VMAT2 architecture, function, and the design of small-molecule therapeutics.
Collapse
Affiliation(s)
- Michael P Dalton
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
41
|
Dorosky RJ, Schreier JE, Lola SL, Sava RL, Coryell MP, Akue A, KuKuruga M, Carlson PE, Dreher-Lesnick SM, Stibitz S. Nanobodies as potential tools for microbiological testing of live biotherapeutic products. AMB Express 2024; 14:9. [PMID: 38245586 PMCID: PMC10799837 DOI: 10.1186/s13568-023-01659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/22/2024] Open
Abstract
Nanobodies are highly specific binding domains derived from naturally occurring single chain camelid antibodies. Live biotherapeutic products (LBPs) are biological products containing preparations of live organisms, such as Lactobacillus, that are intended for use as drugs, i.e. to address a specific disease or condition. Demonstrating potency of multi-strain LBPs can be challenging. The approach investigated here is to use strain-specific nanobody reagents in LBP potency assays. Llamas were immunized with radiation-killed Lactobacillus jensenii or L. crispatus whole cell preparations. A nanobody phage-display library was constructed and panned against bacterial preparations to identify nanobodies specific for each species. Nanobody-encoding DNA sequences were subcloned and the nanobodies were expressed, purified, and characterized. Colony immunoblots and flow cytometry showed that binding by Lj75 and Lj94 nanobodies were limited to a subset of L. jensenii strains while binding by Lc38 and Lc58 nanobodies were limited to L. crispatus strains. Mass spectrometry was used to demonstrate that Lj75 specifically bound a peptidase of L. jensenii, and that Lc58 bound an S-layer protein of L. crispatus. The utility of fluorescent nanobodies in evaluating multi-strain LBP potency assays was assessed by evaluating a L. crispatus and L. jensenii mixture by fluorescence microscopy, flow cytometry, and colony immunoblots. Our results showed that the fluorescent nanobody labelling enabled differentiation and quantitation of the strains in mixture by these methods. Development of these nanobody reagents represents a potential advance in LBP testing, informing the advancement of future LBP potency assays and, thereby, facilitation of clinical investigation of LBPs.
Collapse
Affiliation(s)
- Robert J Dorosky
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Stephanie L Lola
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rosa L Sava
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael P Coryell
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Adovi Akue
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mark KuKuruga
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Paul E Carlson
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sheila M Dreher-Lesnick
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Scott Stibitz
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
42
|
Uysal Özdemir Ö, Krapp A, Mangeat B, Spaltenstein M, Simanis V. A role for the carbon source of the cell and protein kinase A in regulating the S. pombe septation initiation network. J Cell Sci 2024; 137:jcs261488. [PMID: 38197775 PMCID: PMC10906493 DOI: 10.1242/jcs.261488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
The septation initiation network (SIN) is a conserved signal transduction network, which is important for cytokinesis in Schizosaccharomyces pombe. The SIN component Etd1p is required for association of some SIN proteins with the spindle pole body (SPB) during anaphase and for contractile ring formation. We show that tethering of Cdc7p or Sid1p to the SIN scaffold Cdc11p at the SPB, rescues etd1-Δ. Analysis of a suppressor of the mutant etd1-M9 revealed that SIN signalling is influenced by the carbon source of the cell. Growth on a non-fermentable carbon source glycerol reduces the requirement for SIN signalling but does not bypass it. The decreased need for SIN signalling is mediated largely by reduction of protein kinase A activity, and it is phenocopied by deletion of pka1 on glucose medium. We conclude that protein kinase A is an important regulator of the SIN, and that SIN signalling is regulated by the carbon source of the cell.
Collapse
Affiliation(s)
- Özge Uysal Özdemir
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH - 1015 Lausanne, Switzerland
| | - Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH - 1015 Lausanne, Switzerland
| | - Bastien Mangeat
- EPFL SV PTECH PTEG, SV 1535 (Bâtiment SV), Station 19, CH-1015 Lausanne, Switzerland
| | - Marc Spaltenstein
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH - 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH - 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Claes Z, Bollen M. A split-luciferase lysate-based approach to identify small-molecule modulators of phosphatase subunit interactions. Cell Chem Biol 2023; 30:1666-1679.e6. [PMID: 37625414 DOI: 10.1016/j.chembiol.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1β and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
44
|
Hampel N, Georgy J, Mehrabipour M, Lang A, Lehmkuhl I, Scheller J, Ahmadian MR, Floss DM, Piekorz RP. CoCl 2 -triggered pseudohypoxic stress induces proteasomal degradation of SIRT4 via polyubiquitination of lysines K78 and K299. FEBS Open Bio 2023; 13:2187-2199. [PMID: 37803520 PMCID: PMC10699113 DOI: 10.1002/2211-5463.13715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
SIRT4, together with SIRT3 and SIRT5, comprises the mitochondrially localized subgroup of sirtuins. SIRT4 regulates mitochondrial bioenergetics, dynamics (mitochondrial fusion), and quality control (mitophagy) via its NAD+ -dependent enzymatic activities. Here, we address the regulation of SIRT4 itself by characterizing its protein stability and degradation upon CoCl2 -induced pseudohypoxic stress that typically triggers mitophagy. Interestingly, we observed that of the mitochondrial sirtuins, only the protein levels of SIRT4 or ectopically expressed SIRT4-eGFP decrease upon CoCl2 treatment of HEK293 cells. Co-treatment with BafA1, an inhibitor of autophagosome-lysosome fusion required for autophagy/mitophagy, or the use of the proteasome inhibitor MG132, prevented CoCl2 -induced SIRT4 downregulation. Consistent with the proteasomal degradation of SIRT4, the lysine mutants SIRT4(K78R) and SIRT4(K299R) showed significantly reduced polyubiquitination upon CoCl2 treatment and were more resistant to pseudohypoxia-induced degradation as compared to SIRT4. Moreover, SIRT4(K78R) and SIRT4(K299R) displayed increased basal protein stability as compared to wild-type SIRT4 when subjected to MG132 treatment or cycloheximide (CHX) chase assays. Thus, our data indicate that stress-induced protein degradation of SIRT4 occurs through two mechanisms: (a) via mitochondrial autophagy/mitophagy, and (b) as a separate process via proteasomal degradation within the cytoplasm.
Collapse
Affiliation(s)
- Nils Hampel
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Jacqueline Georgy
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
- Present address:
Department of Cardiology, Pulmonology, and Vascular Medicine, Medical FacultyHeinrich Heine University DüsseldorfGermany
| | - Isabell Lehmkuhl
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Doreen M. Floss
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| |
Collapse
|
45
|
Okada H, Chen X, Wang K, Marquardt J, Bi E. Bni5 tethers myosin-II to septins to enhance retrograde actin flow and the robustness of cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566094. [PMID: 37986946 PMCID: PMC10659389 DOI: 10.1101/2023.11.07.566094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The collaboration between septins and myosin-II in driving processes outside of cytokinesis remains largely uncharted. Here, we demonstrate that Bni5 in the budding yeast S. cerevisiae interacts with myosin-II, septin filaments, and the septin-associated kinase Elm1 via distinct domains at its N- and C-termini, thereby tethering the mobile myosin-II to the stable septin hourglass at the division site from bud emergence to the onset of cytokinesis. The septin and Elm1-binding domains, together with a central disordered region, of Bni5 control timely remodeling of the septin hourglass into a double ring, enabling the actomyosin ring constriction. The Bni5-tethered myosin-II enhances retrograde actin cable flow, which contributes to the asymmetric inheritance of mitochondria-associated protein aggregates during cell division, and also strengthens cytokinesis against various perturbations. Thus, we have established a biochemical pathway involving septin-Bni5-myosin-II interactions at the division site, which can inform mechanistic understanding of the role of myosin-II in other retrograde flow systems.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Current affiliation: Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
46
|
Ettich J, Wittich C, Moll JM, Behnke K, Floss DM, Reiners J, Christmann A, Lang PA, Smits SHJ, Kolmar H, Scheller J. Respiratory syncytial virus-approved mAb Palivizumab as ligand for anti-idiotype nanobody-based synthetic cytokine receptors. J Biol Chem 2023; 299:105270. [PMID: 37734558 PMCID: PMC10630626 DOI: 10.1016/j.jbc.2023.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Synthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus-approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIPVHH) as synthetic receptors. Importantly, Palivizumab is neither cross-reactive with human proteins nor immunogenic. For the synthetic receptors, AIPVHH were fused to the activating interleukin-6 cytokine receptor gp130 and the apoptosis-inducing receptor Fas. We found that the synthetic cytokine receptor AIPVHHgp130 was efficiently activated by dimeric Palivizumab single-chain variable fragments. In summary, we created an in vitro nonimmunogenic full-synthetic cytokine/cytokine receptor pair as a proof of concept for future in vivo therapeutic strategies utilizing nonphysiological targets during immunotherapy.
Collapse
Affiliation(s)
- Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; PROvendis GmbH, Muelheim an der Ruhr, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens Reiners
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Christmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Philipp A Lang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; Centre of Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
47
|
Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies - an ongoing success story of small binders in biological research. J Cell Sci 2023; 136:jcs261395. [PMID: 37937477 DOI: 10.1242/jcs.261395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
A milestone in the field of recombinant binding molecules was achieved 30 years ago with the discovery of single-domain antibodies from which antigen-binding variable domains, better known as nanobodies (Nbs), can be derived. Being only one tenth the size of conventional antibodies, Nbs feature high affinity and specificity, while being highly stable and soluble. In addition, they display accessibility to cryptic sites, low off-target accumulation and deep tissue penetration. Efficient selection methods, such as (semi-)synthetic/naïve or immunized cDNA libraries and display technologies, have facilitated the isolation of Nbs against diverse targets, and their single-gene format enables easy functionalization and high-yield production. This Review highlights recent advances in Nb applications in various areas of biological research, including structural biology, proteomics and high-resolution and in vivo imaging. In addition, we provide insights into intracellular applications of Nbs, such as live-cell imaging, biosensors and targeted protein degradation.
Collapse
Affiliation(s)
- Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Reutlingen, Germany
| | - Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
48
|
Harish RK, Gupta M, Zöller D, Hartmann H, Gheisari A, Machate A, Hans S, Brand M. Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development 2023; 150:dev201559. [PMID: 37665167 PMCID: PMC10565248 DOI: 10.1242/dev.201559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential.
Collapse
Affiliation(s)
- Rohit Krishnan Harish
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Mansi Gupta
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Daniela Zöller
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Hella Hartmann
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- CMCB Technology Platform, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Ali Gheisari
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- CMCB Technology Platform, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Anja Machate
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Stefan Hans
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Michael Brand
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| |
Collapse
|
49
|
Willet AH, Chen JS, Ren L, Gould KL. Membrane binding of endocytic myosin-1s is inhibited by a class of ankyrin repeat proteins. Mol Biol Cell 2023; 34:br17. [PMID: 37531259 PMCID: PMC10559312 DOI: 10.1091/mbc.e23-06-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
Myosin-1s are monomeric actin-based motors that function at membranes. Myo1 is the single myosin-1 isoform in Schizosaccharomyces pombe that works redundantly with Wsp1-Vrp1 to activate the Arp2/3 complex for endocytosis. Here, we identified Ank1 as an uncharacterized cytoplasmic Myo1 binding partner. We found that in ank1Δ cells, Myo1 dramatically redistributed from endocytic patches to decorate the entire plasma membrane and endocytosis was defective. Biochemical analysis and structural predictions suggested that the Ank1 ankyrin repeats bind the Myo1 lever arm and the Ank1 acidic tail binds the Myo1 TH1 domain to prevent TH1-dependent Myo1 membrane binding. Indeed, Ank1 overexpression precluded Myo1 membrane localization and recombinant Ank1 reduced purified Myo1 liposome binding in vitro. Based on biochemical and cell biological analyses, we propose budding yeast Ank1 and human OSTF1 are functional Ank1 orthologs and that cytoplasmic sequestration by small ankyrin repeat proteins is a conserved mechanism regulating myosin-1s in endocytosis.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
50
|
Bensidoun P, Zenklusen D, Oeffinger M. Differential affinity purification and mass spectrometry analysis of two nuclear pore complex isoforms in yeast S. cerevisiae. STAR Protoc 2023; 4:102359. [PMID: 37327111 PMCID: PMC10300402 DOI: 10.1016/j.xpro.2023.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023] Open
Abstract
Two isoforms of the nuclear pore complex (NPC) have been identified in the yeast S. cerevisiae, which coexist at the periphery of the nucleus and differ by the presence or absence of a nuclear basket. Here, we present a protocol to isolate the two types of NPCs from the same cell extract and dissect their interactomes. We describe steps for powder preparation and magnetic bead conjunction and detail differential affinity purification and outcome evaluation through SDS-PAGE, silver staining, and mass spectrometry analysis. For complete details on the use and execution of this protocol, please refer to Bensidoun et al.1.
Collapse
Affiliation(s)
- Pierre Bensidoun
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Daniel Zenklusen
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|