1
|
Huang D, Xu F, Xu L, Tang Z, Hu Y, Li J, Yu J. Triiodothyronine promotes the proliferation and chemoresistance of cholangiocarcinoma cells via HIF-1α/Glut1-stimulated glycolysis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167814. [PMID: 40168755 DOI: 10.1016/j.bbadis.2025.167814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Thyroid hormones not only are crucial for normal growth, development, and metabolism but also influence the development and progression of various malignancies. The effects of thyroid hormones on cholangiocarcinoma remain unclear. Here, we examined the effects of triiodothyronine (T3), a major thyroid hormone, on the behavior of cultured human cholangiocarcinoma cells after short-term (1 week) or long-term (6 months) T3 treatment. Whereas short-term T3 treatment did not influence the growth or behavior of cholangiocarcinoma cells, long-term T3 treatment had several significant effects. Cell proliferation, colony-forming and spheroid formation assays indicated the long-term T3 treatment increased cholangiocarcinoma cell growth in vitro and in mouse xenografts, and increased resistance to gemcitabine and cisplatin. Cells exposed to T3 long-term also exhibited increased glycolysis in a manner dependent on the glucose transporter 1 (Glut1). Expression of both Glut1 and hypoxia-inducible transcription factor 1α (HIF-1α) was upregulated in long-term T3-treated cholangiocarcinoma cells. Either pharmacological inhibition of Glut1 activity or siRNA-mediated knockdown of HIF-1α expression suppressed the increase in proliferation and chemoresistance induced by long-term T3 treatment. Notably, HIF-1α knockdown also reversed the effects of T3 exposure on Glut1 expression and glycolytic rate. Moreover, inhibition of lactate dehydrogenase suppressed upregulated expression of HIF-1α in long-term T3-treated cells. Finally, we found that elevated T3 levels activated the HIF-1α/Glut1 axis in ICC tissues and was associated with a worse prognosis of ICC patients. These results demonstrate that chronic exposure to T3 can promote the proliferation and chemoresistance of cholangiocarcinoma cells through a pathway involving HIF-1α, Glut1, and glycolysis.
Collapse
Affiliation(s)
- Dihua Huang
- Department of Endocrinology, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Feng Xu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Luohang Xu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Zekai Tang
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China
| | - Yanxin Hu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Jiandong Li
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China
| | - Jianhua Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
2
|
Puhr HC, Reiter TJ, El-Mahrouk M, Saliternig L, Wolf P, Mair MJ, Steindl A, Paireder M, Asari R, Schoppmann SF, Berghoff AS, Preusser M, Ilhan-Mutlu A. Thyroid Hormone Replacement Therapy Is Associated with Longer Overall Survival in Patients with Resectable Gastroesophageal Cancer: A Retrospective Single-Center Analysis. Cancers (Basel) 2021; 13:5050. [PMID: 34680197 PMCID: PMC8534173 DOI: 10.3390/cancers13205050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION As thyroid hormones modulate proliferative pathways it is surmised that they can be associated with cancer development. Since the potential association of gastroesophageal cancer and thyroid disorders has not been addressed so far, the aim of this study was to investigate the association of thyroid hormone parameters with the outcome of these patients, so novel prognostic and even potentially therapeutic markers can be defined. MATERIAL AND METHODS Clinical and endocrinological parameters of patients with resectable gastroesophageal cancer treated between 1990 and 2018 at the Vienna General Hospital, Austria, including history of endocrinological disorders and laboratory analyses of thyroid hormones at first cancer diagnosis were investigated and correlated with the overall survival (OS). RESULTS In a total of 865 patients, a tendency towards prolonged OS in hypothyroid patients (euthyroid, n = 647: median OS 29.7 months; hyperthyroid, n = 50: 23.1 months; hypothyroid, n = 70: 47.9 months; p = 0.069) as well as a significant positive correlation of thyroid hormone replacement therapy with the OS was observed (without, n = 53: median OS 30.6 months; with, n = 67: 51.3 months; p = 0.017). Furthermore, triiodothyronine (T3) levels were also associated with the OS (median OS within the limit of normal: 23.4, above: 32.4, below: 9.6 months; p = 0.045). CONCLUSIONS Thyroid disorders and their therapeutic interventions might be associated with the OS in patients with resectable gastroesophageal cancer. As data on the correlation of these parameters is scarce, this study proposes an important impulse for further analyses concerning the association of thyroid hormones with the outcome in patients with gastroesophageal tumors.
Collapse
Affiliation(s)
- Hannah C. Puhr
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| | - Thorsten J. Reiter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| | - Mohamed El-Mahrouk
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| | - Lena Saliternig
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| | - Peter Wolf
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maximilian J. Mair
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| | - Ariane Steindl
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| | - Matthias Paireder
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Reza Asari
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian F. Schoppmann
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna S. Berghoff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| | - Aysegül Ilhan-Mutlu
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (T.J.R.); (M.E.-M.); (L.S.); (M.J.M.); (A.S.); (A.S.B.); (M.P.)
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (R.A.); (S.F.S.)
| |
Collapse
|
3
|
Almatroodi SA, Alsahli MA, Almatroudi A, Verma AK, Aloliqi A, Allemailem KS, Khan AA, Rahmani AH. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules 2021; 26:1315. [PMID: 33804548 PMCID: PMC7957552 DOI: 10.3390/molecules26051315] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphenolic flavonoids are considered natural, non-toxic chemopreventers, which are most commonly derived from plants, fruits, and vegetables. Most of these polyphenolics exhibit remarkable antioxidant, anti-inflammatory, and anticancer properties. Quercetin (Qu) is a chief representative of these polyphenolic compounds, which exhibits excellent antioxidant and anticancer potential, and has attracted the attention of researchers working in the area of cancer biology. Qu can regulate numerous tumor-related activities, such as oxidative stress, angiogenesis, cell cycle, tumor necrosis factor, proliferation, apoptosis, and metastasis. The anticancer properties of Qu mainly occur through the modulation of vascular endothelial growth factor (VEGF), apoptosis, phosphatidyl inositol-3-kinase (P13K)/Akt (proteinase-kinase B)/mTOR (mammalian target of rapamycin), MAPK (mitogen activated protein kinase)/ERK1/2 (extracellular signal-regulated kinase 1/2), and Wnt/β-catenin signaling pathways. The anticancer potential of Qu is documented in numerous in vivo and in vitro studies, involving several animal models and cell lines. Remarkably, this phytochemical possesses toxic activities against cancerous cells only, with limited toxic effects on normal cells. In this review, we present extensive research investigations aimed to discuss the therapeutic potential of Qu in the management of different types of cancers. The anticancer potential of Qu is specifically discussed by focusing its ability to target specific molecular signaling, such as p53, epidermal growth factor receptor (EGFR), VEGF, signal transducer and activator of transcription (STAT), PI3K/Akt, and nuclear factor kappa B (NF-κB) pathways. The anticancer potential of Qu has gained remarkable interest, but the exact mechanism of its action remains unclear. However, this natural compound has great pharmacological potential; it is now believed to be a complementary-or alternative-medicine for the prevention and treatment of different cancers.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 51542, India;
| | - Abdulaziz Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| |
Collapse
|
4
|
Links between Inflammation and Postoperative Cancer Recurrence. J Clin Med 2021; 10:jcm10020228. [PMID: 33435255 PMCID: PMC7827039 DOI: 10.3390/jcm10020228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Despite complete resection, cancer recurrence frequently occurs in clinical practice. This indicates that cancer cells had already metastasized from their organ of origin at the time of resection or had circulated throughout the body via the lymphatic and vascular systems. To obtain this potential for metastasis, cancer cells must undergo essential and intrinsic processes that are supported by the tumor microenvironment. Cancer-associated inflammation may be engaged in cancer development, progression, and metastasis. Despite numerous reports detailing the interplays between cancer and its microenvironment via the inflammatory network, the status of cancer-associated inflammation remains difficult to recognize in clinical settings. In the current paper, we reviewed clinical reports on the relevance between inflammation and cancer recurrence after surgical resection, focusing on inflammatory indicators and cancer recurrence predictors according to cancer type and clinical indicators.
Collapse
|
5
|
Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev 2020; 101:319-352. [PMID: 32584192 DOI: 10.1152/physrev.00038.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Male Predominance of Gastric Cancer among Patients with Hypothyroidism from a Defined Geographic Area. J Clin Med 2020; 9:jcm9010135. [PMID: 31947827 PMCID: PMC7019714 DOI: 10.3390/jcm9010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the past, hypothyroidism has been associated with an increased susceptibility to gastric cancer (GC). Although several epidemiological studies have corroborated this association, a precise mechanistic explanation remains elusive. In this study, this hypothesis was tested by using a large database of subjects who underwent upper endoscopy for various reasons. This was a retrospective, case-control, single-center study. Subjects with GC (cases) were compared with subjects without (controls), according to hypothyroidism status. Overall, the prevalence of GC was 0.73% in the total cohort and was significantly higher in males compared to females (1.4% versus 0.4%, p < 0.0001). Multivariate logistic regression analysis confirmed an increased risk in males with hypothyroidism (OR 5.10; p < 0.0001) after adjusting for potential confounders, especially H. pylori infection. Interestingly, only hypothyroidism and not treatment with levothyroxine was a significant predictor of GC, ruling out a possible direct carcinogenic effect of the replacement therapy. The present study suggests a male-restricted association of gastric carcinogenesis with a hypothyroid state. If the results of this study are confirmed by longitudinal studies, an attractive perspective could open up for the better management of males with concomitant hypothyroidism and a higher risk of GC.
Collapse
|
7
|
Karsch-Bluman A, Benny O. Necrosis in the Tumor Microenvironment and Its Role in Cancer Recurrence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:89-98. [PMID: 32030649 DOI: 10.1007/978-3-030-35727-6_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer recurrence is one of the most imminent problems in the current world of medicine, and it is responsible for most of the cancer-related death rates worldwide. Long-term administration of anticancer cytotoxic drugs may act as a double-edged sword, as necrosis may lead to renewed cancer progression and treatment resistance. The lack of nutrients, coupled with the induced hypoxia, triggers cell death and secretion of signals that affect the tumor niche. Many efforts have been made to better understand the contribution of hypoxia and metabolic stress to cancer progression and resistance, but mostly with respect to inflammation. Here we provide an overview of the direct anticancer effects of necrotic signals, which are not necessarily mediated by inflammation and the role of DAMPs (damage-associated molecular patterns) on the formation of a pro-cancerous environment.
Collapse
Affiliation(s)
- Adi Karsch-Bluman
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Benny
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Schmohl KA, Nelson PJ, Spitzweg C. Tetrac as an anti-angiogenic agent in cancer. Endocr Relat Cancer 2019; 26:R287-R304. [PMID: 31063970 DOI: 10.1530/erc-19-0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
Abstract
The thyroid hormones T3 and T4 have emerged as pro-angiogenic hormones with important implications for cancer management. Endogenous circulating hormone levels may help stimulate cancer progression and limit the effectiveness of anticancer therapy, though clinical data remain inconclusive. The capacity of thyroid hormones to modulate angiogenesis is mediated through non-canonical mechanisms initiated at the cell surface receptor integrin αvβ3. This integrin is predominantly expressed on tumour cells, proliferating endothelial cells and tumour stroma-associated cells, emphasising its potential relevance in angiogenesis and tumour biology. Thyroid hormone/integrin αvβ3 signalling results in the activation of intracellular pathways that are commonly associated with angiogenesis and are mediated through classical pro-angiogenic molecules such as vascular endothelial growth factor. The naturally occurring T4 analogue tetrac blocks the pro-angiogenic actions of thyroid hormones at the integrin receptor, in addition to agonist-independent anti-angiogenic effects. Tetrac reduces endothelial cell proliferation, migration and tube formation through a reduction in the transcription of vascular growth factors/growth factor receptors, hypoxia-inducible factor-1α, pro-angiogenic cytokines and a number of other pro-angiogenic genes, while at the same time stimulating the expression of endogenous angiogenesis inhibitors. It further modulates vascular growth factor activity by disrupting the crosstalk between integrin αvβ3 and adjacent growth factor receptors. Moreover, tetrac disrupts thyroid hormone-stimulated tumour recruitment, differentiation and the pro-angiogenic signalling of tumour stroma-associated mesenchymal stem cells. Tetrac affects tumour-associated angiogenesis via multiple mechanisms and interferes with other cancer cell survival pathways. In conjunction with its low toxicity and high tissue selectivity, tetrac is a promising candidate for clinical application.
Collapse
Affiliation(s)
- Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Yu HE, Wang F, Yu F, Zeng ZL, Wang Y, Lu YX, Jin Y, Wang DS, Qiu MZ, Pu HY, Kang TB, Xie D, Ju HQ, Xu RH, Luo HY. Suppression of fumarate hydratase activity increases the efficacy of cisplatin-mediated chemotherapy in gastric cancer. Cell Death Dis 2019; 10:413. [PMID: 31138787 PMCID: PMC6538639 DOI: 10.1038/s41419-019-1652-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/27/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Due to the low rate of early detection, most GC patients were diagnosed as advance stages and had poor response to chemotherapy. Some studies found that Fumarate hydratase (FH) participated in the DNA damage response and its deficiency was associated with tumorigenesis in some cancers. In this study, we investigated the relationship between FH and cisplatin (CDDP) sensitivity in GC cell lines. We found that FH was the most significant gene which induced by CDDP treatment and the suppression of FH could enhance the cytotoxicity of CDDP. Miconazole Nitrate (MN) could inhibit FH activity and enhance the effect of CDDP in vitro and in vivo. We also investigated the significance of expression of FH in GC tissues. The FH expression, which was higher in GC tissues than in noncancerous tissues, was negatively associated with the prognosis of patients. Together, these results revealed that FH is a reliable indicator for response to CDDP treatment in GC and the inhibition of FH may be a potential strategy to improve the effects of CDDP-based chemotherapy.
Collapse
Affiliation(s)
- Hong-En Yu
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Feng Wang
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,0000 0004 1803 6191grid.488530.2Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Fang Yu
- 0000 0004 1762 1794grid.412558.fDepartment of Health Examination, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510700 P. R. China
| | - Zhao-Lei Zeng
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,0000 0004 1803 6191grid.488530.2Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yun Wang
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Yun-Xin Lu
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,0000 0004 1803 6191grid.488530.2Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ying Jin
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,0000 0004 1803 6191grid.488530.2Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - De-Shen Wang
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,0000 0004 1803 6191grid.488530.2Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Miao-Zhen Qiu
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,0000 0004 1803 6191grid.488530.2Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Heng-Ying Pu
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Tie-Bang Kang
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Dan Xie
- 0000 0004 1803 6191grid.488530.2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China. .,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Hui-Yan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China. .,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
10
|
Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies. Front Endocrinol (Lausanne) 2019; 10:59. [PMID: 30814976 PMCID: PMC6381772 DOI: 10.3389/fendo.2019.00059] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormones take major part in normal growth, development and metabolism. Over a century of research has supported a relationship between thyroid hormones and the pathophysiology of various cancer types. In vitro studies as well as research in animal models demonstrated an effect of the thyroid hormones T3 and T4 on cancer proliferation, apoptosis, invasiveness and angiogenesis. Thyroid hormones mediate their effects on the cancer cell through several non-genomic pathways including activation of the plasma membrane receptor integrin αvβ3. Furthermore, cancer development and progression are affected by dysregulation of local bioavailability of thyroid hormones. Case-control and population-based studies provide conflicting results regarding the association between thyroid hormones and cancer. However, a large body of evidence suggests that subclinical and clinical hyperthyroidism increase the risk of several solid malignancies while hypothyroidism may reduce aggressiveness or delay the onset of cancer. Additional support is provided from studies in which dysregulation of the thyroid hormone axis secondary to cancer treatment or thyroid hormone supplementation was shown to affect cancer outcomes. Recent preclinical and clinical studies in various cancer types have further shown promising outcomes following chemical reduction of thyroid hormones or inhibition or their binding to the integrin receptor. This review provides a comprehensive overview of the preclinical and clinical research conducted so far.
Collapse
Affiliation(s)
- Eilon Krashin
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Martin Ellis
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Osnat Ashur-Fabian
| |
Collapse
|
11
|
Tissue necrosis and its role in cancer progression. Oncogene 2018; 38:1920-1935. [PMID: 30390074 DOI: 10.1038/s41388-018-0555-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/31/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Abstract
Great efforts have been made in revealing the mechanisms governing cancer resistance and recurrence. The in-situ effects of cell death, caused by hypoxia and metabolic stress, were largely studied in association with inflammation. However, in this work, we focused on the direct effects of necrosis on cancer promotion and on the tumor microenvironment. The conditions leading to cell necrosis, upon nutrient and oxygen deprivation, were recapitulated in-vitro and were used to generate samples for computational proteomic analysis. Under these conditions, we identified clusters of enriched pathways that may be involved in tumor resistance, leading to cancer recurrence. We show that the content of necrotic cells enhances angiogenesis and proliferation of endothelial cells, induces vasculature, as well as increases migration, invasion, and cell-cell interactions. In-vivo studies, where MDA-MB-231 xenografts were exposed to necrotic lysates, resulted in an increase in both proliferation and angiogenesis. Histological analysis of tumor tissues revealed high expression levels of key mediators that were identified by proteomic analysis. Moreover, when cells were injected systemically, coupled with necrotic lysates, a higher number of large lesions was detected in the lung. Finally, using xenografts, we demonstrated that combining an antagonist of a necrotic signal with an anticancer treatment potentiates the prolonged therapeutic effect. This approach suggests a paradigm shift in which targeting late necrotic-secreted factors may increase survival and enhance the efficacy of anticancer therapy.
Collapse
|
12
|
Xie X, Jiang Y, Yuan Y, Wang P, Li X, Chen F, Sun C, Zhao H, Zeng X, Jiang L, Zhou Y, Dan H, Feng M, Liu R, Chen Q. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis. Oncotarget 2018; 7:59987-60004. [PMID: 27509054 PMCID: PMC5312364 DOI: 10.18632/oncotarget.11046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/09/2016] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development.
Collapse
Affiliation(s)
- Xiaoyan Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangman Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chongkui Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Zhou X, Yao K, Zhang L, Zhang Y, Han Y, Liu HL, Liu XW, Su G, Yuan WZ, Wei XD, Guan QL, Zhu BD. Identification of Differentiation-Related Proteins in Gastric Adenocarcinoma Tissues by Proteomics. Technol Cancer Res Treat 2017; 15:697-706. [PMID: 27624754 DOI: 10.1177/1533034615595792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/25/2015] [Indexed: 11/15/2022] Open
Abstract
There is a significant correlation between the degree of tumor differentiation and the survival of patients with gastric cancers. In this report, we compared proteomic differences between poorly differentiated gastric adenocarcinoma tissues and well-differentiated gastric adenocarcinoma tissues in order to identify differentiation-related proteins that may be closely correlated with differentiation of gastric cancer pathogenesis. We identified 7 proteins, of which calreticulin precursor, tapasinERP57 heterodimer, pyruvate kinase isozymes M1/M2 isoform M2, class Pi glutathione S-transferase, and chain A crystal structure of human enolase 1 were upregulated in poorly differentiated gastric adenocarcinoma compared with well-differentiated gastric adenocarcinoma, while myosin-11 isoform SM2A and actin alpha cardiac were downregulated. Two of them, pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 are enzymes involved in glycolytic pathway. The upregulation of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 in poorly differentiated gastric adenocarcinoma was confirmed by Western blotting and immunohistochemistry. Furthermore, we observed 107 cases with gastric adenocarcinoma and found that the high expression of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 correlates with tumor size (P = .0001 and P = .0017, respectively), depth of invasion (P = .0024 and P = .0261, respectively), and poor prognosis of patients. In conclusion, with this proteomic analysis, pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 were identified upregulated in poorly differentiated gastric adenocarcinoma comparing with well-differentiated gastric adenocarcinoma. The expression level of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 was significantly correlated with overall survival. Some of them would be differentiation-related cancer biomarkers and are associated with tumor metastasis, invasion, and prognosis.
Collapse
Affiliation(s)
- Xin Zhou
- Department of the First Clinical Medical College of Lanzhou University, Lanzhou, China Department of Oncology, the First Affiliated Hospital, Beilun Branch of Zhejiang University, Ningbo, Zhejiang, China Xin Zhou and Kun Yao contributed equally to this article
| | - Kun Yao
- Department of the First Clinical Medical College of Lanzhou University, Lanzhou, China Department of Obstetrics and Gynecology, Gansu Provincial People's Hospital, Lanzhou, China Xin Zhou and Kun Yao contributed equally to this article
| | - Lang Zhang
- Institute of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ying Zhang
- Institute of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yin Han
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hui-Ling Liu
- Department of Obstetrics and Gynecology, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Wen Liu
- Institute of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- Department of Obstetrics and Gynecology, Gansu Provincial People's Hospital, Lanzhou, China Institute of Genetics, School of Basic Medical, Lanzhou University, Lanzhou, China
| | - Wen-Zhen Yuan
- Department of Surgical Oncology, the First Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Dong Wei
- Department of Obstetrics and Gynecology, Gansu Provincial People's Hospital, Lanzhou, China
| | - Quan-Lin Guan
- Department of Surgical Oncology, the First Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Bing-Dong Zhu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Companioni O, Sanz-Anquela JM, Pardo ML, Puigdecanet E, Nonell L, García N, Parra Blanco V, López C, Andreu V, Cuatrecasas M, Garmendia M, Gisbert JP, Gonzalez CA, Sala N. Gene expression study and pathway analysis of histological subtypes of intestinal metaplasia that progress to gastric cancer. PLoS One 2017; 12:e0176043. [PMID: 28441455 PMCID: PMC5404762 DOI: 10.1371/journal.pone.0176043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Background Intestinal metaplasia (IM) is a precursor lesion that precedes gastric cancer (GC). There are two IM histological subtypes, complete (CIM) and incomplete (IIM), the latter having higher progression rates to GC. This study was aimed at analysing gene expression and molecular processes involved in the progression from normal mucosa to IM, and also from IM subtypes to GC. Methodology We used expression data to compare the transcriptome of healthy gastric mucosa to that of IM not progressing to GC, and the transcriptome of IM subtypes that had progressed to GC to those that did not progress. Some deregulated genes were validated and pathway analyses were performed. Results Comparison of IM subtypes that had progressed to GC with those that did not progress showed smaller differences in the expression profiles than the comparison of IM that did not progress with healthy mucosa. New transcripts identified in IM not progressing to GC included TRIM, TMEM, homeobox and transporter genes and SNORD116. Comparison to normal mucosa identified non tumoral Warburg effect and melatonin degradation as previously unreported processes involved in IM. Overexpressed antigen processing is common to both IM-subtypes progressing to GC, but IIM showed more over-expressed oncogenic genes and molecular processes than CIM. Conclusions There are greater differences in gene expression and molecular processes involved in the progression from normal healthy mucosa to IM than from IM to gastric cancer. While antigen processing is common in both IM-subtypes progressing to GC, more oncogenic processes are observed in the progression of IIM.
Collapse
Affiliation(s)
- Osmel Companioni
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Institut Català d’Oncologia, Barcelona, Spain
- * E-mail: (NS); (OC)
| | - José Miguel Sanz-Anquela
- Cancer Registry and Pathology Department, Hospital Universitario Príncipe de Asturias and Department of Medicine and Medical Specialties, Faculty of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | - Eulàlia Puigdecanet
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Lara Nonell
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Nadia García
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Institut Català d’Oncologia, Barcelona, Spain
| | - Verónica Parra Blanco
- Department of Histopathology, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Consuelo López
- Department of Pathology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Victoria Andreu
- Department of Gastroenterology, Hospital de Viladecans, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Hospital Clínic de Barcelona, Universitat de Barcelona, Biobanc Clinic IDIBAPS, Barcelona, Spain
| | - Maddi Garmendia
- Department of Pathology, and Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Universidad del País Vasco (UPV/EHU), CIBEREHD, San Sebastián, Spain
| | - Javier P. Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Carlos A. Gonzalez
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Institut Català d’Oncologia, Barcelona, Spain
| | - Núria Sala
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Institut Català d’Oncologia, Barcelona, Spain
- * E-mail: (NS); (OC)
| |
Collapse
|
15
|
Hercbergs A, Davis PJ, Lin HY, Mousa SA. Possible contributions of thyroid hormone replacement to specific behaviors of cancer. Biomed Pharmacother 2016; 84:655-659. [DOI: 10.1016/j.biopha.2016.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
|
16
|
Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death. Sci Rep 2016; 6:31408. [PMID: 27506466 PMCID: PMC4979008 DOI: 10.1038/srep31408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 07/21/2016] [Indexed: 02/05/2023] Open
Abstract
Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause.
Collapse
|
17
|
Leal MF, Wisnieski F, de Oliveira Gigek C, do Santos LC, Calcagno DQ, Burbano RR, Smith MC. What gastric cancer proteomic studies show about gastric carcinogenesis? Tumour Biol 2016; 37:9991-10010. [PMID: 27126070 DOI: 10.1007/s13277-016-5043-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, São Paulo, Brazil. .,Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil.
| | - Fernanda Wisnieski
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Carolina de Oliveira Gigek
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Leonardo Caires do Santos
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, 66073-000, Belém, Pará, Brazil
| | - Rommel Rodriguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
| | - Marilia Cardoso Smith
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| |
Collapse
|
18
|
Hypothyroidism in Pancreatic Cancer: Role of Exogenous Thyroid Hormone in Tumor Invasion-Preliminary Observations. J Thyroid Res 2016; 2016:2454989. [PMID: 27123358 PMCID: PMC4830736 DOI: 10.1155/2016/2454989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
According to the epidemiological studies, about 4.4% of American general elderly population has a pronounced hypothyroidism and relies on thyroid hormone supplements daily. The prevalence of hypothyroidism in our patients with pancreatic cancer was much higher, 14.1%. A retrospective analysis was performed on patients who underwent pancreaticoduodenectomy (Whipple procedure) or distal pancreatectomy and splenectomy (DPS) at Thomas Jefferson University Hospital, Philadelphia, from 2005 to 2012. The diagnosis of hypothyroidism was correlated with clinicopathologic parameters including tumor stage, grade, and survival. To further understand how thyroid hormone affects pancreatic cancer behavior, functional studies including wound-induced cell migration, proliferation, and invasion were performed on pancreatic cancer cell lines, MiaPaCa-2 and AsPC-1. We found that hypothyroid patients taking exogenous thyroid hormone were more than three times likely to have perineural invasion, and about twice as likely to have higher T stage, nodal spread, and overall poorer prognostic stage (P < 0.05). Pancreatic cancer cell line studies demonstrated that exogenous thyroid hormone treatment increased cell proliferation, migration, and invasion (P < 0.05). We conclude that exogenous thyroid hormone may contribute to the progression of pancreatic cancer.
Collapse
|
19
|
Davis PJ, Sudha T, Lin HY, Mousa SA. Thyroid Hormone, Hormone Analogs, and Angiogenesis. Compr Physiol 2015; 6:353-62. [PMID: 26756636 DOI: 10.1002/cphy.c150011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation by thyroid hormone and hormone analogs of angiogenesis in the heart after experimental infarction, and in other organs, has been appreciated for decades. Description of a plasma membrane receptor for thyroid hormone on the extracellular domain of integrin αvβ3 on endothelial cells has revealed the complexity of the nongenomic regulation of angiogenesis by the hormone. From αvβ3, the hormone directs transcription of specific vascular growth factor genes, regulates growth factor receptor/growth factor interactions and stimulates endothelial cell migration to a vitronectin cue; these actions are implicated experimentally in tumor-relevant angiogenesis and angioproliferative pulmonary hypertension. Derived from L-thyroxine (T4), tetraiodothyroacetic acid (tetrac) can be covalently bound to a polymer and as Nanotetrac acts exclusively at the hormone receptor on αvβ3 to block actions of T4 and 3,5,3'-triiodo-L-thyronine (T3) on angiogenesis. Other antiangiogenic actions of Nanotetrac include disruption of crosstalk between integrin αvβ3 and adjacent cell surface vascular growth factor receptors, resulting in disordered vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF; FGF2) actions at their respective plasma membrane receptors. From αvβ3, Nanotetrac also downregulates expression of VEGFA and epidermal growth factor receptor (EGFR) genes, upregulates transcription of the angiogenesis suppressor gene, thrombospondin 1 (THBS1; TSP1) and decreases cellular abundance of Ang-2 protein and matrix metalloproteinase-9. Existence of this receptor provides new insights into the multiple mechanisms by which thyroid hormone and hormone analogs may regulate angiogenesis at the molecular level. The receptor also offers pharmacological opportunities for interruption of pathological angiogenesis via integrin αvβ3.
Collapse
Affiliation(s)
- Paul J Davis
- Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA.,Institute of Cancer Biology and Drug Discovery, School of Medical Technology, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
20
|
Auraptene, a Major Compound of Supercritical Fluid Extract of Phalsak (Citrus Hassaku Hort ex Tanaka), Induces Apoptosis through the Suppression of mTOR Pathways in Human Gastric Cancer SNU-1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:402385. [PMID: 26351512 PMCID: PMC4550746 DOI: 10.1155/2015/402385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/21/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022]
Abstract
The supercritical extraction method is a widely used process to obtain volatile and nonvolatile compounds by avoiding thermal degradation and solvent residue in the extracts. In search of phytochemicals with potential therapeutic application in gastric cancer, the supercritical fluid extract (SFE) of phalsak (Citrus hassaku Hort ex Tanaka) fruits was analyzed by gas chromatography-mass spectrometry (GC-MS). Compositional analysis in comparison with the antiproliferative activities of peel and flesh suggested auraptene as the most prominent anticancer compound against gastric cancer cells. SNU-1 cells were the most susceptible to auraptene-induced toxicity among the tested gastric cancer cell lines. Auraptene induced the death of SNU-1 cells through apoptosis, as evidenced by the increased cell population in the sub-G1 phase, the appearance of fragmented nuclei, the proteolytic cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP) protein, and depolarization of the mitochondrial membrane. Interestingly, auraptene induces an increase in the phosphorylation of Akt, which is reminiscent of the effect of rapamycin, the mTOR inhibitor that triggers a negative feedback loop on Akt/mTOR pathway. Taken together, these findings provide valuable insights into the anticancer effects of the SFE of the phalsak peel by revealing that auraptene, the major compound of it, induced apoptosis in accompanied with the inhibition of mTOR in SNU-1 cells.
Collapse
|
21
|
Lu Y, Zhu M, Chen W, Yin L, Zhu J, Chen N, Chen W. Oleanolic acid induces apoptosis of MKN28 cells via AKT and JNK signaling pathways. PHARMACEUTICAL BIOLOGY 2014; 52:789-795. [PMID: 24824325 DOI: 10.3109/13880209.2013.864683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Oleanolic acid (OA) belongs to the triterpenoid compound group existing widely in food, medicinal herbs and other plants. Its effects on gastric cancer cells and the mechanisms involved have not been investigated. OBJECTIVE This study aimed to substantiate whether OA induces apoptosis of gastric cancer cell line (MKN28) and to elucidate the molecular mechanism involved. MATERIALS AND METHODS Cell viability was assessed by MTT assay within the range of 0-160 μg/mL. The effects of OA (5, 10 and 20 μg/mL) on apoptosis of MKN28 cells were evaluated by flow cytometry, DNA fragmentation and mitochondrial membrane potential assays. Western blot and FQRT-PCR assays were used to investigate the mechanism of cell apoptosis induced by OA (5 and 10 μg/mL). RESULTS OA evidently inhibited cell viability with IC50 of 44.8 and 15.9 μg/mL at 12 and 24 h, respectively. Furthermore, OA increased JNK phosphorylation, decreased AKT phosphorylation, but did not affect p38 and ERK phosphorylation in MKN28 cells. In contrast, OA also significantly enhanced the mRNA expression levels of caspase 3, caspase 9 and Apaf-1 in MKN28 cells. CONCLUSION OA induces apoptosis of MKN28 cells via the mitochondrial pathway regulated by AKT and JNK signaling pathways.
Collapse
Affiliation(s)
- Yunmin Lu
- Department of Gastroenterology, Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| | | | | | | | | | | | | |
Collapse
|
22
|
Identifying gastric cancer related genes using the shortest path algorithm and protein-protein interaction network. BIOMED RESEARCH INTERNATIONAL 2014; 2014:371397. [PMID: 24729971 PMCID: PMC3963223 DOI: 10.1155/2014/371397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/03/2014] [Indexed: 01/07/2023]
Abstract
Gastric cancer, as one of the leading causes of cancer related deaths worldwide, causes about 800,000 deaths per year. Up to now, the mechanism underlying this disease is still not totally uncovered. Identification of related genes of this disease is an important step which can help to understand the mechanism underlying this disease, thereby designing effective treatments. In this study, some novel gastric cancer related genes were discovered based on the knowledge of known gastric cancer related ones. These genes were searched by applying the shortest path algorithm in protein-protein interaction network. The analysis results suggest that some of them are indeed involved in the biological process of gastric cancer, which indicates that they are the actual gastric cancer related genes with high probability. It is hopeful that the findings in this study may help promote the study of this disease and the methods can provide new insights to study various diseases.
Collapse
|
23
|
Zamani-Ahmadmahmudi M, Nassiri SM, Rahbarghazi R. Serological proteome analysis of dogs with breast cancer unveils common serum biomarkers with human counterparts. Electrophoresis 2014; 35:901-10. [PMID: 24338489 DOI: 10.1002/elps.201300461] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 12/17/2022]
Abstract
Canine mammary tumor is being touted as a model for investigating the human breast cancer. Breast cancer of the both species has similar biological behavior, histopathologic characteristics, and metastatic pattern. In this study, we used the serological proteome analysis to detect autoantigens that elicit a humoral response in dogs with mammary tumor in order to identify serum biomarkers with potential usefulness as diagnostic markers and to better understand molecular mechanisms underlying canine breast cancer development. Protein extract from a cell line was subject to 2DE followed by Western blotting using sera from 15 dogs with mammary tumor and sera from 15 healthy control dogs. Immunoreactive autoantigens were subsequently identified by the MALDI-TOF MS. Four autoantigens, including manganese-superoxide dismutase, triose phosphate isomerase, alpha-enolase, and phosphoglycerate mutase1, with significantly higher immunoreactivity in the tumor samples than in the normal samples were identified as biomarker candidates. Immunohistochemistry and Western blotting revealed higher expression of these biomarkers in the malignant tumors than in the normal or benign tumors. The autoantigens found in this study have been reported to elicit autoantibody response in the human breast cancer, indicating the similarity of breast cancer proteome profile in dogs with that in human beings.
Collapse
Affiliation(s)
- Mohamad Zamani-Ahmadmahmudi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | |
Collapse
|
24
|
Liu R, Wang K, Yuan K, Wei Y, Huang C. Integrative oncoproteomics strategies for anticancer drug discovery. Expert Rev Proteomics 2014; 7:411-29. [DOI: 10.1586/epr.10.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Kočevar N, Grazio SF, Komel R. Two-dimensional gel electrophoresis of gastric tissue in an alkaline pH range. Proteomics 2014; 14:311-21. [PMID: 24293252 DOI: 10.1002/pmic.201200574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 10/09/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
2DE in combination with MS has facilitated the discovery of several proteins with altered abundance in gastric cancer. While acidic and wide pH ranges have been widely investigated, analysis in the alkaline pH range has not been specifically performed in gastric cancer to date. In the present study, we initially optimized the 2DE in alkaline pH range (pH 7-11) for gastric tissue samples. Using a modified lysis buffer, we analyzed pooled nontumor and tumor samples for proteins with altered abundance in gastric adenocarcinoma. We successfully identified 38 silver-stained spots as 24 different proteins. Four of these were chosen for investigation with immunoblotting on individual paired samples to determine whether the changes seen in 2DE represent the overall abundance of the protein or possibly only a single form. While mitochondrial trifunctional protein (MTP) subunits were decreased in 2DE gels, immunoblotting identified their overall abundance as being differently dysregulated: in the gastric tumor samples, the MTP-α subunit was decreased, and the MTP-β subunit was increased. On the other hand, heterogenous nuclear ribonucleoprotein M and galectin-4 were increased in the gastric tumor samples in both 2DE and immunoblotting.
Collapse
Affiliation(s)
- Nina Kočevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
26
|
Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells. Food Chem Toxicol 2013; 63:195-204. [PMID: 24239894 DOI: 10.1016/j.fct.2013.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 01/03/2023]
Abstract
Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed.
Collapse
|
27
|
Lv X, Ai J, Li M, Wang H, Chen T, Fang Y, Liu Y, Zhou P, Chen M, Tan R, Liu Y, Yang Y, Zhou Q. Comparative proteomics and correlated signaling network of kidney in ApoE
deficient mouse. Proteomics Clin Appl 2013; 7:829-38. [PMID: 23687078 DOI: 10.1002/prca.201200112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaoyan Lv
- Department of Dermatology, West China Hospital, West China Medical School; Sichuan University; Chengdu P. R. China
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Jianzhong Ai
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Mi Li
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Honglian Wang
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Tielin Chen
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Yin Fang
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Yunhong Liu
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Puhui Zhou
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Mianzhi Chen
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Ruizhi Tan
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Yuhang Liu
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Yang Yang
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Qin Zhou
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| |
Collapse
|
28
|
Gong F, Peng X, Luo C, Shen G, Zhao C, Zou L, Li L, Sang Y, Zhao Y, Zhao X. Cathepsin B as a potential prognostic and therapeutic marker for human lung squamous cell carcinoma. Mol Cancer 2013; 12:125. [PMID: 24139065 PMCID: PMC3834881 DOI: 10.1186/1476-4598-12-125] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/14/2013] [Indexed: 02/05/2023] Open
Abstract
Background The lung squamous cell carcinoma survival rate is very poor despite multimodal treatment. It is urgent to discover novel candidate biomarkers for prognostic assessment and therapeutic targets to lung squamous cell carcinoma (SCC). Results Herein a two-dimensional gel electrophoresis and ESI-Q-TOF MS/MS-based proteomic approach was used to identify differentially expressed proteins between lung SCC and adjacent normal tissues. 31 proteins with significant alteration were identified. These proteins were mainly involved in metabolism, calcium ion binding, signal transduction and so on. Cathepsin B (CTSB) was one of the most significantly altered proteins and was confirmed by western blotting. Immunohistochemistry showed the correlation between higher CTSB expression and lower survival rate. No statistically significant difference between CTSB-shRNA treated group and the controls was observed in tumor volume, tumor weight, proliferation and apoptosis. However, the CTSB-shRNA significantly inhibited tumor metastases and prolonged survival in LL/2 metastatic model. Moreover, CTSB, Shh and Ptch were up-regulated in patients with metastatic lung SCC, suggesting that hedgehog signaling might be activated in metastatic lung SCC which could affect the expression of CTSB that influence the invasive activity of lung SCC. Conclusions These data suggested that CTSB might serve as a prognostic and therapeutic marker for lung SCC.
Collapse
Affiliation(s)
| | - Xingchen Peng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu J, Xie N, Xie K, Zeng J, Cheng L, Lei Y, Liu Y, Song L, Dong D, Chen Y, Zeng R, Nice EC, Huang C, Wei Y. GPR48, a poor prognostic factor, promotes tumor metastasis and activates β-catenin/TCF signaling in colorectal cancer. Carcinogenesis 2013; 34:2861-9. [PMID: 23803691 DOI: 10.1093/carcin/bgt229] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
G-protein-coupled receptor 48 (GPR48) is an orphan receptor belonging to the G-protein-coupled receptors family, which plays an important role in the development of various organs and cancer development and progression such as gastric cancer and colorectal cancer (CRC). However, the prognostic value of GPR48 expression in patients with CRC has not been reported. In this study, we observed that GPR48 was overexpressed in primary CRC and metastatic lymph nodes and closely correlated with tumor invasion and metastasis. Multivariate analysis indicated that high GPR48 expression was a poor prognostic factor for overall survival in CRC patients. In vitro and in vivo assays demonstrated that enforced expression of GPR48 contributed to enhance migration and invasion of cancer cells and tumor metastasis. In addition, we found that GPR48 increased nuclear β-catenin accumulation, T-cell factor 4 (TCF4) transcription activity, and expression of its target genes including Cyclin D1 and c-Myc in CRC cells. Correlation analysis showed that GPR48 expression in CRC tissues was positively associated with β-catenin expression. Upregulation of GPR48 resulted in increased phosphorylation of glycogen synthase kinase 3β, Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) in CRC cells, while inhibition of PI3K/Akt and mitogen-activated protein kinase /ERK1/2 pathways was sufficient to abolish the effect of GPR48 on β-catenin/TCF signaling. Taken together, GPR48 could serve as both a prognostic biomarker and a therapeutic target for resectable CRC patients.
Collapse
Affiliation(s)
- Jinhua Wu
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Deng L, Lei Y, Liu R, Li J, Yuan K, Li Y, Chen Y, Liu Y, Lu Y, Edwards CK, Huang C, Wei Y. Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death Dis 2013; 4:e614. [PMID: 23640456 PMCID: PMC3674351 DOI: 10.1038/cddis.2013.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-𝒟-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Longfei Deng
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1029] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
32
|
Chen CY, Tsai MM, Chi HC, Lin KH. Biological significance of a thyroid hormone-regulated secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2271-84. [PMID: 23429180 DOI: 10.1016/j.bbapap.2013.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 01/18/2023]
Abstract
The thyroid hormone, 3,3,5-triiodo-L-thyronine (T3), modulates several physiological processes, including cellular growth, differentiation, metabolism and proliferation, via interactions with thyroid hormone response elements (TREs) in the regulatory regions of target genes. Several intracellular and extracellular protein candidates are regulated by T3. Moreover, T3-regulated secreted proteins participate in physiological processes or cellular transformation. T3 has been employed as a marker in several disorders, such as cardiovascular disorder in chronic kidney disease, as well as diseases of the liver, immune system, endocrine hormone metabolism and coronary artery. Our group subsequently showed that T3 regulates several tumor-related secretory proteins, leading to cancer progression via alterations in extracellular matrix proteases and tumor-associated signaling pathways in hepatocellular carcinomas. Therefore, elucidation of T3/thyroid hormone receptor-regulated secretory proteins and their underlying mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a detailed summary on the known secretory proteins regulated by T3 and their physiological significance. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | | | | | | |
Collapse
|
33
|
Zeng J, Yang X, Cheng L, Liu R, Lei Y, Dong D, Li F, Lau QC, Deng L, Nice EC, Xie K, Huang C. Chemokine CXCL14 is associated with prognosis in patients with colorectal carcinoma after curative resection. J Transl Med 2013; 11:6. [PMID: 23294544 PMCID: PMC3551837 DOI: 10.1186/1479-5876-11-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/21/2012] [Indexed: 02/05/2023] Open
Abstract
Background The chemokine CXCL14 has been reported to play an important role in the progression of many malignancies such as breast cancer and papillary thyroid carcinoma, but the role of CXCL14 in colorectal carcinoma (CRC) remains to be established. The purpose of this study was to investigate the expression pattern and significance of CXCL14 in CRC progression. Method 265 colorectal carcinoma specimens and 129 matched adjacent normal colorectal mucosa specimens were collected. Expression of CXCL14 in clinical samples was examined by immunostaining. The effect of CXCL14 on colorectal carcinoma cell proliferation was measured by MTT assay, BrdU incorporation assay and colony formation assay. The impact of CXCL14 on migration and invasion of colorectal carcinoma cells was determined by transwell assay and Matrigel invasion assay, respectively. Results CXCL14 expression was significantly up-regulated in tumor tissues compared with adjacent nontumorous mucosa tissues (P < 0.001). Tumoral CXCL14 expression levels were significantly correlated with TNM (Tumor-node-metastasis) stage, histodifferentiation, and tumor size. In multivariate Cox regression analysis, high CXCL14 expression in tumor specimens (n = 91) from stage I/II patients was associated with increased risk for disease recurrence (risk ratio, 2.92; 95% CI, 1.15-7.40; P = 0.024). Elevated CXCL14 expression in tumor specimens (n = 135) from stage III/IV patients correlated with worse overall survival (risk ratio, 3.087; 95% CI, 1.866-5.107; P < 0.001). Functional studies demonstrated that enforced expression of CXCL14 in SW620 colorectal carcinoma cells resulted in more aggressive phenotypes. In contrast, knockdown of CXCL14 expression could mitigate the proliferative, migratory and invasive potential of HCT116 colorectal carcinoma cells. Conclusion Taken together, CXCL14 might be a potential novel prognostic factor to predict the disease recurrence and overall survival and could be a potential target of postoperative adjuvant therapy in CRC patients.
Collapse
Affiliation(s)
- Jun Zeng
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhou S, Liu R, Yuan K, Yi T, Zhao X, Huang C, Wei Y. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis. MASS SPECTROMETRY REVIEWS 2012; 32:267-311. [PMID: 23165949 DOI: 10.1002/mas.21362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 02/05/2023]
Abstract
Tumorigenesis is always concomitant with microenvironmental alterations. The tumor microenvironment is a heterogeneous and complex milieu, which exerts a variety of stresses on tumor cells for proliferation, survival, or death. Recently, accumulated evidence revealed that metabolic and oxidative stresses both play significant roles in tumor development and progression that converge on a common autophagic pathway. Tumor cells display increased metabolic autonomy, and the hallmark is the exploitation of aerobic glycolysis (termed Warburg effect), which increased glucose consumption and decreased oxidative phosphorylation to support growth and proliferation. This characteristic renders cancer cells more aggressive; they devour tremendous amounts of nutrients from microenvironment to result in an ever-growing appetite for new tumor vessel formation and the release of more "waste," including key determinants of cell fate like lactate and reactive oxygen species (ROS). The intracellular ROS level of cancer cells can also be modulated by a variety of stimuli in the tumor microenvironment, such as pro-growth and pro-inflammatory factors. The intracellular redox state serves as a double-edged sword in tumor development and progression: ROS overproduction results in cytotoxic effects and might lead to apoptotic cell death, whereas certain level of ROS can act as a second-messenger for regulation of such cellular processes as cell survival, proliferation, and metastasis. The molecular mechanisms for cancer cell responses to metabolic and oxidative stresses are complex and are likely to involve multiple molecules or signaling pathways. In addition, the expression and modification of these proteins after metabolic or oxidative stress challenge are diverse in different cancer cells and endow them with different functions. Therefore, MS-based high-throughput platforms, such as proteomics, are indispensable in the global analysis of cancer cell responses to metabolic and oxidative stress. Herein, we highlight recent advances in the understanding of the metabolic and oxidative stresses associated with tumor progression with proteomics-based systems biology approaches.
Collapse
Affiliation(s)
- Shengtao Zhou
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Helicobacter pylori disrupts host cell membranes, initiating a repair response and cell proliferation. Int J Mol Sci 2012. [PMID: 22949854 DOI: 10.3390/ijms13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori), the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+), single mutant (ΔvacA or ΔcagA) or double mutant (ΔvacA/ΔcagA) strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca(2+) influx. Ca(2+)-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.
Collapse
|
36
|
Helicobacter pylori disrupts host cell membranes, initiating a repair response and cell proliferation. Int J Mol Sci 2012; 13:10176-10192. [PMID: 22949854 PMCID: PMC3431852 DOI: 10.3390/ijms130810176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori (H. pylori), the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+), single mutant (ΔvacA or ΔcagA) or double mutant (ΔvacA/ΔcagA) strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.
Collapse
|
37
|
Huang HQ, Tang J, Zhou ST, Yi T, Peng HL, Shen GB, Xie N, Huang K, Yang T, Wu JH, Huang CH, Wei YQ, Zhao X. Orlistat, a novel potent antitumor agent for ovarian cancer: proteomic analysis of ovarian cancer cells treated with Orlistat. Int J Oncol 2012; 41:523-32. [PMID: 22581080 DOI: 10.3892/ijo.2012.1465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/19/2012] [Indexed: 11/06/2022] Open
Abstract
Orlistat is an orally administered anti-obesity drug that has shown significant antitumor activity in a variety of tumor cells. To identify the proteins involved in its antitumor activity, we employed a proteomic approach to reveal protein expression changes in the human ovarian cancer cell line SKOV3, following Orlistat treatment. Protein expression profiles were analyzed by 2-dimensional polyacrylamide gel electrophoresis (2-DE) and protein identification was performed on a MALDI-Q-TOF MS/MS instrument. More than 110 differentially expressed proteins were visualized by 2-DE and Coomassie brilliant blue staining. Furthermore, 71 proteins differentially expressed proteins were positively identified via mass spectrometry (MS)/MS analysis. In particular, PKM1/2, a key enzyme involved in tumorigenesis, was found to be significantly downregulated in SKOV3 cells following treatment with Orlistat. Moreover, PKM1/2 was proved to be downregulated in SKOV3 cells by western blot analysis after treatment with Orlistat. Taken together, using proteomic tools, we identified several differentially expressed proteins that underwent Orlistat-induced apoptosis, particularly PKM2. These changes confirmed our hypothesis that Orlistat is a potential inhibitor of ovarian cancer and can be used as a novel adjuvant antitumor agent.
Collapse
Affiliation(s)
- Hui-Qiong Huang
- Department of Gynecology and Obstetrics, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang F, Zhang B, Zhou S, Zhao X, Bian C, Wei Y. Chemical proteomics: terra incognita for novel drug target profiling. CHINESE JOURNAL OF CANCER 2012; 31:507-18. [PMID: 22640626 PMCID: PMC3777519 DOI: 10.5732/cjc.011.10377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growing demand for new therapeutic strategies in the medical and pharmaceutic fields has resulted in a pressing need for novel druggable targets. Paradoxically, however, the targets of certain drugs that are already widely used in clinical practice have largely not been annotated. Because the pharmacologic effects of a drug can only be appreciated when its interactions with cellular components are clearly delineated, an integrated deconvolution of drug-target interactions for each drug is necessary. The emerging field of chemical proteomics represents a powerful mass spectrometry (MS)-based affinity chromatography approach for identifying proteome-wide small molecule-protein interactions and mapping these interactions to signaling and metabolic pathways. This technique could comprehensively characterize drug targets, profile the toxicity of known drugs, and identify possible off-target activities. With the use of this technique, candidate drug molecules could be optimized, and predictable side effects might consequently be avoided. Herein, we provide a holistic overview of the major chemical proteomic approaches and highlight recent advances in this area as well as its potential applications in drug discovery.
Collapse
Affiliation(s)
- Fuqiang Huang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | | | | | | | | | | |
Collapse
|
39
|
Zhou S, Yi T, Liu R, Bian C, Qi X, He X, Wang K, Li J, Zhao X, Huang C, Wei Y. Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Mol Cell Proteomics 2012; 11:M112.017988. [PMID: 22493182 DOI: 10.1074/mcp.m112.017988] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adenomyosis is a common estrogen-dependent disorder of females characterized by a downward extension of the endometrium into the uterine myometrium and neovascularization in ectopic lesions. It accounts for chronic pelvic pain, dysmenorrhea, menorrhagia, and infertility in 8.8-61.5% women worldwide. However, the molecular mechanisms for adenomyosis development remain poorly elucidated. Here, we utilized a two-dimensional polyacrylamide gel electrophoresis/MS-based proteomics analysis to compare and identify differentially expressed proteins in matched ectopic and eutopic endometrium of adenomyosis patients. A total of 93 significantly altered proteins were identified by tandem MS analysis. Further cluster analysis revealed a group of estrogen-responsive proteins as dysregulated in adenomyosis, among which annexin A2, a member of annexin family proteins, was found up-regulated most significantly in the ectopic endometrium of adenomyosis compared with its eutopic counterpart. Overexpression of ANXA2 was validated in ectopic lesions of human adenomyosis and was found to be tightly correlated with markers of epithelial to mesenchymal transition and dysmenorrhea severity of adenomyosis patients. Functional analysis demonstrated that estrogen could remarkably up-regulate ANXA2 and induce epithelial to mesenchymal transition in an in vitro adenomyosis model. Enforced expression of ANXA2 could mediate phenotypic mesenchymal-like cellular changes, with structural and functional alterations in a β-catenin/T-cell factor (Tcf) signaling-associated manner, which could be reversed by inhibition of ANXA2 expression. We also proved that enforced expression of ANXA2 enhanced the proangiogenic capacity of adenomyotic endometrial cells through HIF-1α/VEGF-A pathway. In vivo, we demonstrated that ANXA2 inhibition abrogated endometrial tissue growth, metastasis, and angiogenesis in an adenomyosis nude mice model and significantly alleviated hyperalgesia. Taken together, our data unraveled a dual role for ANXA2 in the pathogenesis of human adenomyosis through conferring endometrial cells both metastatic potential and proangiogenic capacity, which could serve as a potential therapeutic target for the treatment of adenomyosis patients.
Collapse
Affiliation(s)
- Shengtao Zhou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin LL, Huang HC, Juan HF. Discovery of biomarkers for gastric cancer: a proteomics approach. J Proteomics 2012; 75:3081-97. [PMID: 22498886 DOI: 10.1016/j.jprot.2012.03.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/10/2012] [Accepted: 03/25/2012] [Indexed: 01/06/2023]
Abstract
Gastric cancer is the second leading cause of cancer-related deaths worldwide. Although many treatment options exist for patients with gastric tumors, the incidence and mortality rate of gastric cancer are on the rise. The early stages of gastric cancer are non-symptomatic, and the treatment response is unpredictable. This situation is further aggravated by a lack of diagnostic biomarkers that can aid in the early detection and prognosis of gastric cancer and in the prediction of chemoresistance. Moreover, clinical surgical specimens are rarely obtained, and traditional biomarkers of gastric cancer are not very effective. Many studies in the field of proteomics have contributed to the discovery and establishment of powerful diagnostic tools (e.g., ProteinChip array) in the management of cancer. The evolution in proteomic technologies has not only enabled the screening of a large number of samples but also enabled the identification of pathologically significant proteins, such as phosphoproteins, and the quantitation of difference in protein expression under different conditions. Multiplexed assays are used widely to accurately fractionate various complex samples such as blood, tissue, cells, and Helicobacter pylori-infected specimens to identify differentially expressed proteins. Biomarker detection studies have substantially contributed to the areas of secretome, metabolome, and phosphoproteome. Here, we review the development of potential biomarkers in the natural history of gastric cancer, with specific emphasis on the characteristics of target protein convergence.
Collapse
Affiliation(s)
- Li-Ling Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
41
|
Kočevar N, Odreman F, Vindigni A, Grazio SF, Komel R. Proteomic analysis of gastric cancer and immunoblot validation of potential biomarkers. World J Gastroenterol 2012; 18:1216-28. [PMID: 22468085 PMCID: PMC3309911 DOI: 10.3748/wjg.v18.i11.1216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/26/2011] [Accepted: 06/03/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To search for and validate differentially expressed proteins in patients with gastric adenocarcinoma.
METHODS: We used two-dimensional gel electrophoresis and mass spectrometry to search for differentially expressed proteins in patients with gastric adenocarcinoma. A set of proteins was validated with immunoblotting.
RESULTS: We identified 30 different proteins involved in various biological processes: metabolism, development, death, response to stress, cell cycle, cell communication, transport, and cell motility. Eight proteins were chosen for further validation by immunoblotting. Our results show that gastrokine-1, 39S ribosomal protein L12 (mitochondrial precursor), plasma cell-induced resident endoplasmic reticulum protein, and glutathione S-transferase mu 3 were significantly underexpressed in gastric adenocarcinoma relative to adjacent non-tumor tissue samples. On the other hand, septin-2, ubiquitin-conjugating enzyme E2 N, and transaldolase were significantly overexpressed. Translationally controlled tumor protein was shown to be differentially expressed only in patients with cancer of the gastric cardia/esophageal border.
CONCLUSION: This work presents a set of possible diagnostic biomarkers, validated for the first time. It might contribute to the efforts of understanding gastric cancer carcinogenesis.
Collapse
|
42
|
Mitochondrial proteomic approaches for new potential diagnostic and prognostic biomarkers in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:423-40. [PMID: 22399434 DOI: 10.1007/978-94-007-2869-1_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction and mutations in mitochondrial DNA have been implicated in a wide variety of human diseases, including cancer. In recent years, considerable advances in genomic, proteomic and bioinformatic technologies have made it possible the analysis of mitochondrial proteome, leading to the identification of over 1,000 proteins which have been assigned unambiguously to mitochondria. Defining the mitochondrial proteome is a fundamental step for fully understanding the organelle functions as well as mechanisms underlying mitochondrial pathology. In fact, besides giving information on mitochondrial physiology, by characterizing all the components of this subcellular organelle, the application of proteomic technologies permitted now to study the proteins involved in many crucial properties in cell signaling, cell differentiation and cell death and, in particular, to identify mitochondrial proteins that are aberrantly expressed in cancer cells. An improved understanding of the mitochondrial proteome could be essential to shed light on the connection between mitochondrial dysfunction, deregulation of apoptosis and tumorigenesis and to discovery new therapeutic targets for mitochondria-related diseases.
Collapse
|
43
|
Lei Y, Huang K, Gao C, Lau QC, Pan H, Xie K, Li J, Liu R, Zhang T, Xie N, Nai HS, Wu H, Dong Q, Zhao X, Nice EC, Huang C, Wei Y. Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Mol Cell Proteomics 2011; 10:M110.005397. [PMID: 21622897 PMCID: PMC3205852 DOI: 10.1074/mcp.m110.005397] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 05/26/2011] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40-50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H(2)O(2)-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependent on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.
Collapse
Affiliation(s)
- Yunlong Lei
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Kai Huang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Cong Gao
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Quek Choon Lau
- ¶School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic. 535 Clementi Road, Republic of Singapore
| | - Hua Pan
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Ke Xie
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Jingyi Li
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Rui Liu
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Zhang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Na Xie
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Huey Shan Nai
- ¶School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic. 535 Clementi Road, Republic of Singapore
| | - Hong Wu
- ‖Department of Urology and General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Qiang Dong
- ‖Department of Urology and General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xia Zhao
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Edouard C. Nice
- **Monash University, Department of Biochemistry and Molecular Biology, Clayton, Victoria 3800, Australia
| | - Canhua Huang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuquan Wei
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
44
|
Hu H, Deng C, Yang T, Dong Q, Chen Y, Nice EC, Huang C, Wei Y. Proteomics revisits the cancer metabolome. Expert Rev Proteomics 2011; 8:505-533. [DOI: 10.1586/epr.11.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
45
|
Zhou S, Liu R, Zhao X, Huang C, Wei Y. Viral proteomics: the emerging cutting-edge of virus research. SCIENCE CHINA-LIFE SCIENCES 2011; 54:502-12. [PMID: 21706410 PMCID: PMC7089374 DOI: 10.1007/s11427-011-4177-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 12/03/2010] [Indexed: 11/21/2022]
Abstract
Viruses replicate and proliferate in host cells while continuously adjusting to and modulating the host environment. They encode a wide spectrum of multifunctional proteins, which interplay with and modify proteins in host cells. Viral genomes were chronologically the first to be sequenced. However, the corresponding viral proteomes, the alterations of host proteomes upon viral infection, and the dynamic nature of proteins, such as post-translational modifications, enzymatic cleavage, and activation or destruction by proteolysis, remain largely unknown. Emerging high-throughput techniques, in particular quantitative or semi-quantitative mass spectrometry-based proteomics analysis of viral and cellular proteomes, have been applied to define viruses and their interactions with their hosts. Here, we review the major areas of viral proteomics, including virion proteomics, structural proteomics, viral protein interactomics, and changes to the host cell proteome upon viral infection.
Collapse
Affiliation(s)
- ShengTao Zhou
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
46
|
Burrows N, Babur M, Resch J, Williams KJ, Brabant G. Hypoxia-inducible factor in thyroid carcinoma. J Thyroid Res 2011; 2011:762905. [PMID: 21765994 PMCID: PMC3134378 DOI: 10.4061/2011/762905] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/20/2011] [Indexed: 12/19/2022] Open
Abstract
Intratumoural hypoxia (low oxygen tension) is associated with aggressive disease and poor prognosis. Hypoxia-inducible factor-1 is a transcription factor activated by hypoxia that regulates the expression of genes that promote tumour cell survival, progression, metastasis, and resistance to chemo/radiotherapy. In addition to hypoxia, HIF-1 can be activated by growth factor-signalling pathways such as the mitogen-activated protein kinases- (MAPK-) and phosphatidylinositol-3-OH kinases- (PI3K-) signalling cascades. Mutations in these pathways are common in thyroid carcinoma and lead to enhanced HIF-1 expression and activity. Here, we summarise current data that highlights the potential role of both hypoxia and MAPK/PI3K-induced HIF-1 signalling in thyroid carcinoma progression, metastatic characteristics, and the potential role of HIF-1 in thyroid carcinoma response to radiotherapy. Direct or indirect targeting of HIF-1 using an MAPK or PI3K inhibitor in combination with radiotherapy may be a new potential therapeutic target to improve the therapeutic response of thyroid carcinoma to radiotherapy and reduce metastatic burden.
Collapse
Affiliation(s)
- Natalie Burrows
- Hypoxia and Therapeutics Group, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
47
|
Proteomic Analyses of Gastric Cancer Cells Treated with Vesicular Stomatitis Virus Matrix Protein. Protein J 2011; 30:308-17. [DOI: 10.1007/s10930-011-9331-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Ai J, Huang H, Lv X, Tang Z, Chen M, Chen T, Duan W, Sun H, Li Q, Tan R, Liu Y, Duan J, Yang Y, Wei Y, Li Y, Zhou Q. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell Physiol Biochem 2011; 27:207-16. [PMID: 21471709 DOI: 10.1159/000327946] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) is one of the most deadly diseases; metastasis and recurrence are the most important factors that affect the therapy of HCC chronically. Until now, the prognosis for the metastasis of HCC had not improved. Recently, several proteins that are related to metastasis and invasion of HCC were identified, but the effective markers still remain to be elucidated. METHODS In this study, comparative proteomics was used to study the differentially expressed proteins in two HCC cell lines MHCC97L and HCCLM9, which have low and high metastatic potentials, respectively. RESULTS Our findings indicated that filamin A (FLNA) and phosphoglycerate kinase 1 (PGK1) were two significantly differentially expressed proteins, with high expression in HCCLM9 cells, and may influence the metastasis of HCC cells. CONCLUSION Taken together with the confirmation of expression on the mRNA level, we propose the use of FLNA and PGK1 as potential markers for the progression of HCC.
Collapse
Affiliation(s)
- Jianzhong Ai
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cui J, Chen Y, Chou WC, Sun L, Chen L, Suo J, Ni Z, Zhang M, Kong X, Hoffman LL, Kang J, Su Y, Olman V, Johnson D, Tench DW, Amster IJ, Orlando R, Puett D, Li F, Xu Y. An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res 2010; 39:1197-207. [PMID: 20965966 PMCID: PMC3045610 DOI: 10.1093/nar/gkq960] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This report describes an integrated study on identification of potential markers for gastric cancer in patients’ cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supported by experimental validation. Our findings show that: (i) 715 and 150 genes exhibit significantly differential expressions in all cancers and early-stage cancers versus reference tissues, respectively; and a substantial percentage of the alteration is found to be influenced by age and/or by gender; (ii) 21 co-expressed gene clusters have been identified, some of which are specific to certain subtypes or stages of the cancer; (iii) the top-ranked gene signatures give better than 94% classification accuracy between cancer and the reference tissues, some of which are gender-specific; and (iv) 136 of the differentially expressed genes were predicted to have their proteins secreted into blood, 81 of which were detected experimentally in the sera of 13 validation samples and 29 found to have differential abundances in the sera of cancer patients versus controls. Overall, the novel information obtained in this study has led to identification of promising diagnostic markers for gastric cancer and can benefit further analyses of the key (early) abnormalities during its development.
Collapse
Affiliation(s)
- Juan Cui
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The metabolic switch and its regulation in cancer cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:942-58. [PMID: 20821293 DOI: 10.1007/s11427-010-4041-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/07/2010] [Indexed: 02/05/2023]
Abstract
The primary features of cancer are maintained via intrinsically modified metabolic activity, which is characterized by enhanced nutrient supply, energy production, and biosynthetic activity to synthesize a variety of macromolecular components during each passage through the cell cycle. This metabolic shift in transformed cells, as compared with non-proliferating cells, involves aberrant activation of aerobic glycolysis, de novo lipid biosynthesis and glutamine-dependent anaplerosis to fuel robust cell growth and proliferation. Here, we discuss the unique metabolic characteristics of cancer, the constitutive regulation of metabolism through a variety of signal transduction pathways and/or enzymes involved in metabolic reprogramming in cancer cells, and their implications in cancer diagnosis and therapy.
Collapse
|