1
|
Proteome of the Luminal Surface of the Blood-Brain Barrier. Proteomes 2021; 9:proteomes9040045. [PMID: 34842825 PMCID: PMC8629012 DOI: 10.3390/proteomes9040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Interrogation of the molecular makeup of the blood–brain barrier (BBB) using proteomic techniques has contributed to the cataloguing and functional understanding of the proteins uniquely organized at this specialized interface. The majority of proteomic studies have focused on cellular components of the BBB, including cultured brain endothelial cells (BEC). Detailed proteome mapping of polarized BEC membranes and their intracellular endosomal compartments has led to an improved understanding of the processes leading to internalization and transport of various classes of molecules across the BBB. Quantitative proteomic methods have further enabled absolute and comparative quantification of key BBB transporters and receptors in isolated BEC and microvessels from various species. However, translational studies further require in vivo/in situ analyses of the proteins exposed on the luminal surface of BEC in vessels under various disease and treatment conditions. In vivo proteomics approaches, both profiling and quantitative, usually rely on ‘capturing’ luminally-exposed proteins after perfusion with chemical labeling reagents, followed by analysis with various mass spectrometry-based approaches. This manuscript reviews recent advances in proteomic analyses of luminal membranes of BEC in vitro and in vivo and their applications in translational studies focused on developing novel delivery methods across the BBB.
Collapse
|
2
|
Koziol JA, Li Y, Schnitzer JE. Known Knowns, Known Unknowns, and Unknown Unknowns: Coverage in MS Experiments. Proteomics 2018; 18:e1800124. [PMID: 30033555 DOI: 10.1002/pmic.201800124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/04/2018] [Indexed: 11/11/2022]
Abstract
A mathematical model from ecology, namely, the capture-recapture model with a closed population and time-varying and heterogeneous individual probabilities of capture, is implemented to model the number of protein identifications across the various cycles of a mass spectroscopy experiment. Rcapture, a package available in the R computing environment, can easily provide estimates of the cardinality of the proteome from such experiments. Alternatively, model fitting can be undertaken in other software platforms, such as Matlab, that can accommodate general linear models. It has not escaped our notice that capture-recapture models can be more broadly applied to other settings, so as to estimate the number of missing observations in an experiment.
Collapse
Affiliation(s)
- James A Koziol
- Molecular and Experimental Medicine (MEM), The Scripps Research Institute,, 92037, La Jolla, CA, USA
| | - Yan Li
- Proteogenomics Research Institute for Systems Medicine, 92037, La Jolla, CA, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, 92037, La Jolla, CA, USA
| |
Collapse
|
3
|
Systems biology of ion channels and transporters in tumor angiogenesis: An omics view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2647-56. [DOI: 10.1016/j.bbamem.2014.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 01/19/2023]
|
4
|
Sobczynski DJ, Fish MB, Fromen CA, Carasco-Teja M, Coleman RM, Eniola-Adefeso O. Drug carrier interaction with blood: a critical aspect for high-efficient vascular-targeted drug delivery systems. Ther Deliv 2015; 6:915-34. [PMID: 26272334 PMCID: PMC4618056 DOI: 10.4155/tde.15.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular wall endothelial cells control several physiological processes and are implicated in many diseases, making them an attractive candidate for drug targeting. Vascular-targeted drug carriers (VTCs) offer potential for reduced side effects and improved therapeutic efficacy, however, only limited therapeutic success has been achieved to date. This is perhaps due to complex interactions of VTCs with blood components, which dictate VTC transport and adhesion to endothelial cells. This review focuses on VTC interaction with blood as well as novel 'bio-inspired' designs to mimic and exploit features of blood in VTC development. Advanced approaches for enhancing VTCs are discussed along with applications in regenerative medicine, an area of massive potential growth and expansion of VTC utility in the near future.
Collapse
Affiliation(s)
- Daniel J Sobczynski
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Margaret B Fish
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Catherine A Fromen
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Mariana Carasco-Teja
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Rhima M Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
5
|
Quantification of XRCC and DNA-PK proteins in cancer cell lines and human tumors by LC-MS/MS. Bioanalysis 2015; 6:2969-83. [PMID: 24785829 DOI: 10.4155/bio.14.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The x-ray repair cross-complementing (XRCC) proteins and a catalytic subunit of nuclear DNA-dependent serine/threonine protein kinase (DNA-PK) play important roles in cancer biology. Understanding the protein expression levels allows us to reconstruct in vivo functionality and to qualify protein biomarkers. METHODS & RESULTS XRCC and DNA-PK proteins in human cancer cells and tumor tissues have been identified and quantified by selected peptides using NanoLC and high-resolution mass spectrometry. The stable isotope-labeled full-length protein XRCC4 ([(13)C6, (15)N4]-arginine and [(13)C6, (15)N2]-lysine) uses as the internal standard. CONCLUSION The assay range is 0.140-450 fmol (coefficient of variation: 25%) for XRCC4 in bovine serum albumen. The quantitative protein expression levels for XRCC and DNA-PK in HeLa, Ramos and HEK-293 cells and tumor tissues (lung and lymphoma) are reported.
Collapse
|
6
|
Myerson JW, Brenner JS, Greineder CF, Muzykantov VR. Systems approaches to design of targeted therapeutic delivery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:253-65. [PMID: 25946066 PMCID: PMC4713047 DOI: 10.1002/wsbm.1304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery aims to improve therapeutic effects and enable mechanisms that are not feasible for untargeted agents (e.g., due to impermeable biological barriers). To achieve targeting, a drug or its carrier should possess properties providing specific accumulation from circulation at the desired site. There are several examples of systems-inspired approaches that have been applied to achieve this goal. First, proteomics analysis of plasma membrane fraction of the vascular endothelium has identified a series of target molecules and their ligands (e.g., antibodies) that deliver conjugated cargoes to well-defined vascular cells and subcellular compartments. Second, selection of ligands binding to cells of interest using phage display libraries in vitro and in vivo has provided peptides and polypeptides that bind to normal and pathologically altered cells. Finally, large-scale high-throughput combinatorial synthesis and selection of lipid- and polymer-based nanocarriers varying their chemical components has yielded a series of carriers accumulating in diverse organs and delivering RNA interference agents to diverse cells. Together, these approaches offer a basis for systems-based design and selection of targets, targeting molecules, and targeting vehicles. Current studies focus on expanding the arsenal of these and alternative targeting strategies, devising drug delivery systems capitalizing on these strategies and evaluation of their benefit/risk ratio in adequate animal models of human diseases. These efforts, combined with better understanding of mechanisms and unintended consequences of these targeted interventions, need to be ultimately translated into industrial development and the clinical domain.
Collapse
Affiliation(s)
- Jacob W Myerson
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Pulmonary and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Oh P, Testa JE, Borgstrom P, Witkiewicz H, Li Y, Schnitzer JE. In vivo proteomic imaging analysis of caveolae reveals pumping system to penetrate solid tumors. Nat Med 2014; 20:1062-8. [PMID: 25129480 DOI: 10.1038/nm.3623] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 04/04/2014] [Indexed: 12/13/2022]
Abstract
Technologies are needed to map and image biological barriers in vivo that limit solid tumor delivery and, ultimately, the effectiveness of imaging and therapeutic agents. Here we integrate proteomic and imaging analyses of caveolae at the blood-tumor interface to discover an active transendothelial portal to infiltrate tumors. A post-translationally modified form of annexin A1 (AnnA1) is selectively concentrated in human and rodent tumor caveolae. To follow trafficking, we generated a specific AnnA1 antibody that targets caveolae in the tumor endothelium. Intravital microscopy of caveolae-immunotargeted fluorophores even at low intravenous doses showed rapid and robust pumping across the endothelium to enter mammary, prostate and lung tumors. Within 1 h, the fluorescence signal concentrated throughout tumors to exceed the peak levels in blood. This transvascular pumping required the expression of caveolin 1 and annexin A1. Tumor uptake with other antibodies were >100-fold less. This proteomic imaging strategy reveals a unique target, antibody and caveolae pumping system for solid tumor penetration.
Collapse
Affiliation(s)
- Phil Oh
- 1] Proteogenomics Research Institute for Systems Medicine, San Diego, California, USA. [2] Sidney Kimmel Cancer Center, San Diego, California, USA
| | - Jacqueline E Testa
- 1] Proteogenomics Research Institute for Systems Medicine, San Diego, California, USA. [2] Sidney Kimmel Cancer Center, San Diego, California, USA
| | - Per Borgstrom
- 1] Sidney Kimmel Cancer Center, San Diego, California, USA. [2]
| | - Halina Witkiewicz
- 1] Proteogenomics Research Institute for Systems Medicine, San Diego, California, USA. [2] Sidney Kimmel Cancer Center, San Diego, California, USA
| | - Yan Li
- 1] Proteogenomics Research Institute for Systems Medicine, San Diego, California, USA. [2] Sidney Kimmel Cancer Center, San Diego, California, USA
| | - Jan E Schnitzer
- 1] Proteogenomics Research Institute for Systems Medicine, San Diego, California, USA. [2] Sidney Kimmel Cancer Center, San Diego, California, USA
| |
Collapse
|
8
|
Abstract
Integral membrane proteins reside within the bilayer membranes that surround cells and organelles, playing critical roles in movement of molecules across them and the transduction of energy and signals. While their extreme amphipathicity presents technical challenges, biological mass spectrometry has been applied to all aspects of membrane protein chemistry and biology, including analysis of primary, secondary, tertiary, and quaternary structures as well as the dynamics that accompany functional cycles and catalysis.
Collapse
Affiliation(s)
- Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, California 90095, United States.
| |
Collapse
|
9
|
Koziol J, Griffin N, Long F, Li Y, Latterich M, Schnitzer J. On protein abundance distributions in complex mixtures. Proteome Sci 2013; 11:5. [PMID: 23360617 PMCID: PMC3599228 DOI: 10.1186/1477-5956-11-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 05/15/2012] [Indexed: 11/20/2022] Open
Abstract
Mass spectrometry, an analytical technique that measures the mass-to-charge ratio of ionized atoms or molecules, dates back more than 100 years, and has both qualitative and quantitative uses for determining chemical and structural information. Quantitative proteomic mass spectrometry on biological samples focuses on identifying the proteins present in the samples, and establishing the relative abundances of those proteins. Such protein inventories create the opportunity to discover novel biomarkers and disease targets. We have previously introduced a normalized, label-free method for quantification of protein abundances under a shotgun proteomics platform (Griffin et al., 2010). The introduction of this method for quantifying and comparing protein levels leads naturally to the issue of modeling protein abundances in individual samples. We here report that protein abundance levels from two recent proteomics experiments conducted by the authors can be adequately represented by Sichel distributions. Mathematically, Sichel distributions are mixtures of Poisson distributions with a rather complex mixing distribution, and have been previously and successfully applied to linguistics and species abundance data. The Sichel model can provide a direct measure of the heterogeneity of protein abundances, and can reveal protein abundance differences that simpler models fail to show.
Collapse
Affiliation(s)
- Ja Koziol
- The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Wang CI, Chien KY, Wang CL, Liu HP, Cheng CC, Chang YS, Yu JS, Yu CJ. Quantitative proteomics reveals regulation of karyopherin subunit alpha-2 (KPNA2) and its potential novel cargo proteins in nonsmall cell lung cancer. Mol Cell Proteomics 2012; 11:1105-22. [PMID: 22843992 DOI: 10.1074/mcp.m111.016592] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The process of nucleocytoplasmic shuttling is mediated by karyopherins. Dysregulated expression of karyopherins may trigger oncogenesis through aberrant distribution of cargo proteins. Karyopherin subunit alpha-2 (KPNA2) was previously identified as a potential biomarker for nonsmall cell lung cancer by integration of the cancer cell secretome and tissue transcriptome data sets. Knockdown of KPNA2 suppressed the proliferation and migration abilities of lung cancer cells. However, the precise molecular mechanisms underlying KPNA2 activity in cancer remain to be established. In the current study, we applied gene knockdown, subcellular fractionation, and stable isotope labeling by amino acids in cell culture-based quantitative proteomic strategies to systematically analyze the KPNA2-regulating protein profiles in an adenocarcinoma cell line. Interaction network analysis revealed that several KPNA2-regulating proteins are involved in the cell cycle, DNA metabolic process, cellular component movements and cell migration. Importantly, E2F1 was identified as a potential novel cargo of KPNA2 in the nuclear proteome. The mRNA levels of potential effectors of E2F1 measured using quantitative PCR indicated that E2F1 is one of the "master molecule" responses to KPNA2 knockdown. Immunofluorescence staining and immunoprecipitation assays disclosed co-localization and association between E2F1 and KPNA2. An in vitro protein binding assay further demonstrated that E2F1 interacts directly with KPNA2. Moreover, knockdown of KPNA2 led to subcellular redistribution of E2F1 in lung cancer cells. Our results collectively demonstrate the utility of quantitative proteomic approaches and provide a fundamental platform to further explore the biological roles of KPNA2 in nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Chun-I Wang
- Graduate Institute of Biomedical Sciences, Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, and Department of Thoracic Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vandré DD, Ackerman WE, Tewari A, Kniss DA, Robinson JM. A placental sub-proteome: the apical plasma membrane of the syncytiotrophoblast. Placenta 2012; 33:207-13. [PMID: 22222045 PMCID: PMC3277652 DOI: 10.1016/j.placenta.2011.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
As a highly vascularized tissue, the placenta mediates gas and solute exchange between maternal and fetal circulations. In the human placenta, the interface with maternal blood is a unique epithelial structure known as the syncytiotrophoblast. Previously we developed a colloidal-silica based method to generate highly enriched preparations of the apical plasma membrane of the syncytiotrophoblast. Using similar preparations, a proteomics assessment of this important sub-proteome has identified 340 proteins as part of this apical membrane fraction. The expression of 38 of these proteins was previously unknown in the human placental syncytiotrophoblast. Together with previous studies, the current proteomic database expands our knowledge of the proteome of the syncytiotrophoblast apical plasma membrane from normal placentas to include more than 500 proteins. This database is a valuable resource for future comparisons to diseased placentas. Additionally, this data set provides a basis for further experimental studies of placenta and trophoblast function.
Collapse
Affiliation(s)
- D D Vandré
- Department of Physiology and Cell Biology, Ohio State University, 304 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
12
|
Chen CY, Chi LM, Chi HC, Tsai MM, Tsai CY, Tseng YH, Lin YH, Chen WJ, Huang YH, Lin KH. Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics study of a thyroid hormone-regulated secretome in human hepatoma cells. Mol Cell Proteomics 2011; 11:M111.011270. [PMID: 22171322 DOI: 10.1074/mcp.m111.011270] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The thyroid hormone, 3, 3',5-triiodo-l-thyronine (T(3)), regulates cell growth, development, differentiation, and metabolism via interactions with thyroid hormone receptors (TRs). However, the secreted proteins that are regulated by T(3) are yet to be characterized. In this study, we used the quantitative proteomic approach of stable isotope labeling with amino acids in cell culture coupled with nano-liquid chromatography-tandem MS performed on a LTQ-Orbitrap instrument to identify and characterize the T(3)-regulated proteins secreted in human hepatocellular carcinoma cell lines overexpressing TRα1 (HepG2-TRα1). In total, 1742 and 1714 proteins were identified and quantified, respectively, in three independent experiments. Among these, 61 up-regulated twofold and 11 down-regulated twofold proteins were identified. Eight proteins displaying increased expression and one with decreased expression in conditioned media were validated using Western blotting. Real-time quantitative RT-PCR further disclosed induction of plasminogen activator inhibitor-1 (PAI-1), a T(3) target, in a time-course and dose-dependent manner. Serial deletions of the PAI-1 promoter region and subsequent chromatin immunoprecipitation assays revealed that the thyroid hormone response element on the promoter is localized at positions -327/-312. PAI-1 overexpression enhanced tumor growth and migration in a manner similar to what was seen when T(3) induced PAI-1 expression in J7-TRα1 cells, both in vitro and in vivo. An in vitro neutralizing assay further supported a crucial role of secreted PAI-1 in T(3)/TR-regulated cell migration. To our knowledge, these results demonstrate for the first time that proteins involved in the urokinase plasminogen activator system, including PAI-1, uPAR, and BSSP4, are augmented in the extra- and intracellular space of T(3)-treated HepG2-TRα1 cells. The T(3)-regulated secretome generated in the current study may provide an opportunity to establish the mechanisms underlying T(3)-associated tumor progression and prognosis.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan 333
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chun HB, Scott M, Niessen S, Hoover H, Baird A, Yates J, Torbett BE, Eliceiri BP. The proteome of mouse brain microvessel membranes and basal lamina. J Cereb Blood Flow Metab 2011; 31:2267-81. [PMID: 21792245 PMCID: PMC3323187 DOI: 10.1038/jcbfm.2011.104] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) is a multicellular vascular structure separating blood from the brain parenchyma that is composed of endothelial cells with tight intercellular junctions, surrounded by a basal lamina, astrocytes, and pericytes. Previous studies have generated detailed databases of the microvessel transcriptome; however, less information is available on the BBB at the protein level. In this study, we specifically focused on characterization of the membrane fraction of cells within the BBB to generate a more complete understanding of membrane transporters, tight junction proteins, and associated extracellular matrix proteins that are functional hallmarks of the BBB. We used Multidimensional Protein Identification Technology to identify a total of 1,143 proteins in mouse brain microvessels, of which 53% were determined to be membrane associated. Analyses of specific classes of BBB-associated proteins in the context of recent transcriptome reports provide a unique database to assess the relative contribution of genes at the level of both RNA and protein in the maintenance of normal BBB integrity.
Collapse
Affiliation(s)
- Hyun Bae Chun
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California 92103, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rucevic M, Hixson D, Josic D. Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis 2011; 32:1549-64. [PMID: 21706493 DOI: 10.1002/elps.201100212] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.
Collapse
Affiliation(s)
- Marijana Rucevic
- COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI, USA
| | | | | |
Collapse
|
15
|
Cyrus T, Wickline SA, Lanza GM. Nanotechnology in interventional cardiology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:82-95. [PMID: 21748858 DOI: 10.1002/wnan.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-grade atherosclerotic stenoses are reduced to zero or minimal residual stenosis grades by a single or a series of balloon angioplasties. Currently, stents are implanted to prevent immediate vascular recoil and elution of an antimitotic drug from the stent struts minimizes restenosis. An unwanted side-effect of this drug elution is delayed re-endothelialization which requires treatment with two anti-platelet drugs, in many cases for a minimum of 1 year to prevent acute in-stent thrombosis. Advances in stent design and drug elution technology, now in its fourth generation, have not abated this issue. Nanotechnology-based local drug delivery has the potential to achieve restenosis prevention while not impeding endothelial healing. Molecularly targeted drugs can be aimed to specifically bind to epitopes in the injured media and adventitia. Thus, endothelial healing may progress unhindered. To prevent restenosis, this technology may be used with bare metal or biodegradable stents. In this article novel nanoparticulate agents will be compared regarding their potential to deliver drugs to molecular targets within the vascular wall. Potential molecular targets, targeting mechanisms, drug-delivery propensities, and biocompatibility will be reviewed.
Collapse
Affiliation(s)
- Tillmann Cyrus
- Division of Cardiology, University of Missouri, One Hospital Drive, Columbia, MO, USA.
| | | | | |
Collapse
|
16
|
Mass spectrometry accelerates membrane protein analysis. Trends Biochem Sci 2011; 36:388-96. [PMID: 21616670 DOI: 10.1016/j.tibs.2011.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 12/25/2022]
Abstract
Cellular membranes are composed of proteins and glyco- and phospholipids and play an indispensible role in maintaining cellular integrity and homeostasis, by physically restricting biochemical processes within cells and providing protection. Membrane proteins perform many essential functions, which include operating as transporters, adhesion-anchors, receptors, and enzymes. Recent advancements in proteomic mass spectrometry have resulted in substantial progress towards the determination of the plasma membrane (PM) proteome, resolution of membrane protein topology, establishment of numerous receptor protein complexes, identification of ligand-receptor pairs, and the elucidation of signaling networks originating at the PM. Here, we discuss the recent accelerated success of discovery-based proteomic pipelines for the establishment of a complete membrane proteome.
Collapse
|
17
|
Li Y, Massey K, Witkiewicz H, Schnitzer JE. Systems analysis of endothelial cell plasma membrane proteome of rat lung microvasculature. Proteome Sci 2011; 9:15. [PMID: 21447187 PMCID: PMC3080792 DOI: 10.1186/1477-5956-9-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelial cells line all blood vessels to form the blood-tissue interface which is critical for maintaining organ homeostasis and facilitates molecular exchange. We recently used tissue subcellular fractionation combined with several multi-dimensional mass spectrometry-based techniques to enhance identification of lipid-embedded proteins for large-scale proteomic mapping of luminal endothelial cell plasma membranes isolated directly from rat lungs in vivo. The biological processes and functions of the proteins expressed at this important blood-tissue interface remain unexplored at a large scale. RESULTS We performed an unbiased systems analysis of the endothelial cell surface proteome containing over 1800 proteins to unravel the major functions and pathways apparent at this interface. As expected, many key functions of plasma membranes in general (i.e., cell surface signaling pathways, cytoskeletal organization, adhesion, membrane trafficking, metabolism, mechanotransduction, membrane fusion, and vesicle-mediated transport) and endothelial cells in particular (i.e., blood vessel development and maturation, angiogenesis, regulation of endothelial cell proliferation, protease activity, and endocytosis) were significantly overrepresented in this proteome. We found that endothelial cells express multiple proteins that mediate processes previously reported to be restricted to neuronal cells, such as neuronal survival and plasticity, axon growth and regeneration, synaptic vesicle trafficking and neurotransmitter metabolic process. Surprisingly, molecular machinery for protein synthesis was also detected as overrepresented, suggesting that endothelial cells, like neurons, can synthesize proteins locally at the cell surface. CONCLUSION Our unbiased systems analysis has led to the potential discovery of unexpected functions in normal endothelium. The discovery of the existence of protein synthesis at the plasma membrane in endothelial cells provides new insight into the blood-tissue interface and endothelial cell surface biology.
Collapse
Affiliation(s)
- Yan Li
- Proteogenomics Research Institute for Systems Medicine, 11107 Roselle Street, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
18
|
Liu Y, Zhuang D, Hou R, Li J, Xu G, Song T, Chen L, Yan G, Pang Q, Zhu J. Shotgun proteomic analysis of microdissected postmortem human pituitary using complementary two-dimensional liquid chromatography coupled with tandem mass spectrometer. Anal Chim Acta 2011; 688:183-90. [DOI: 10.1016/j.aca.2010.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 12/16/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
|
19
|
Renuse S, Chaerkady R, Pandey A. Proteogenomics. Proteomics 2011; 11:620-30. [DOI: 10.1002/pmic.201000615] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/14/2010] [Accepted: 11/16/2010] [Indexed: 12/13/2022]
|
20
|
Wiśniewski JR. Tools for phospho- and glycoproteomics of plasma membranes. Amino Acids 2010; 41:223-33. [DOI: 10.1007/s00726-010-0796-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/22/2010] [Indexed: 12/15/2022]
|
21
|
Griffin NM, Schnitzer JE. Overcoming key technological challenges in using mass spectrometry for mapping cell surfaces in tissues. Mol Cell Proteomics 2010; 10:R110.000935. [PMID: 20548103 DOI: 10.1074/mcp.r110.000935] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasma membranes form a critical biological interface between the inside of every cell and its external environment. Their roles in multiple key cellular functions make them important drug targets. However the protein composition of plasma membranes in general is poorly defined as the inherent properties of lipid embedded proteins, such as their hydrophobicity, low abundance, poor solubility and resistance to digestion and extraction makes them difficult to isolate, solubilize, and identify on a large scale by traditional mass spectrometry methods. Here we describe some of the significant advances that have occurred over the past ten years to address these challenges including: i) the development of new and improved membrane isolation techniques via either subfractionation or direct labeling and isolation of plasma membranes from cells and tissues; ii) modification of mass spectrometry methods to adapt to the hydrophobic nature of membrane proteins and peptides; iii) improvements to digestion protocols to compensate for the shortage of trypsin cleavage sites in lipid-embedded proteins, particularly multi-spanning proteins, and iv) the development of numerous bioinformatics tools which allow not only the identification and quantification of proteins, but also the prediction of membrane protein topology, membrane post-translational modifications and subcellular localization. This review emphasis the importance and difficulty of defining cells in proper patho- and physiological context to maintain the in vivo reality. We focus on how key technological challenges associated with the isolation and identification of cell surface proteins in tissues using mass spectrometry are being addressed in order to identify and quantify a comprehensive plasma membrane for drug and target discovery efforts.
Collapse
Affiliation(s)
- Noelle M Griffin
- Proteogenomics Research Institute for Systems Medicine, San Diego, California 92121, USA
| | | |
Collapse
|
22
|
Ryan CM, Souda P, Bassilian S, Ujwal R, Zhang J, Abramson J, Ping P, Durazo A, Bowie JU, Hasan SS, Baniulis D, Cramer WA, Faull KF, Whitelegge JP. Post-translational modifications of integral membrane proteins resolved by top-down Fourier transform mass spectrometry with collisionally activated dissociation. Mol Cell Proteomics 2010; 9:791-803. [PMID: 20093275 PMCID: PMC2871414 DOI: 10.1074/mcp.m900516-mcp200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/15/2010] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins remain a challenge to proteomics because they contain domains with physicochemical properties poorly suited to today's bottom-up protocols. These transmembrane regions may potentially contain post-translational modifications of functional significance, and thus development of protocols for improved coverage in these domains is important. One way to achieve this goal is by using top-down mass spectrometry whereby the intact protein is subjected to mass spectrometry and dissociation. Here we describe top-down high resolution Fourier transform mass spectrometry with collisionally activated dissociation to study post-translationally modified integral membrane proteins with polyhelix bundle and transmembrane porin motifs and molecular masses up to 35 kDa. On-line LC-MS analysis of the bacteriorhodopsin holoprotein yielded b- and y-ions that covered the full sequence of the protein and cleaved 79 of 247 peptide bonds (32%). The experiment proved that the mature sequence consists of residues 14-261, confirming N-terminal propeptide cleavage and conversion of N-terminal Gln-14 to pyrrolidone carboxylic acid (-17.02 Da) and C-terminal removal of Asp-262. Collisionally activated dissociation fragments localized the N(6)-(retinylidene) modification (266.20 Da) between residues 225-248 at Lys-229, the sole available amine in this stretch. Off-line nanospray of all eight subunits of the cytochrome b(6)f complex from the cyanobacterium Nostoc PCC 7120 defined various post-translational modifications, including covalently attached c-hemes (615.17 Da) on cytochromes f and b. Analysis of murine mitochondrial voltage-dependent anion channel established the amenability of the transmembrane beta-barrel to top-down MS and localized a modification site of the inhibitor Ro 68-3400 at Cys-232. Where neutral loss of the modification is a factor, only product ions that carry the modification should be used to assign its position. Although bond cleavage in some transmembrane alpha-helical domains was efficient, other regions were refractory such that their primary structure could only be inferred from the coincidence of genomic translation with precursor and product ions that spanned them.
Collapse
Affiliation(s)
- Christopher M. Ryan
- From ‡The Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Institute (NPI)-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
| | - Puneet Souda
- From ‡The Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Institute (NPI)-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
| | - Sara Bassilian
- From ‡The Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Institute (NPI)-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
| | - Rachna Ujwal
- §Department of Physiology, David Geffen School of Medicine
| | - Jun Zhang
- §Department of Physiology, David Geffen School of Medicine
| | - Jeff Abramson
- §Department of Physiology, David Geffen School of Medicine
| | - Peipei Ping
- §Department of Physiology, David Geffen School of Medicine
- ¶Cardiovascular Research Laboratory
| | | | - James U. Bowie
- ‖Department of Chemistry and Biochemistry, and
- **The Molecular Biology Institute
| | | | | | | | - Kym F. Faull
- From ‡The Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Institute (NPI)-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
- §§The Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, and
- **The Molecular Biology Institute
| | - Julian P. Whitelegge
- From ‡The Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Institute (NPI)-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
- §§The Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, and
- **The Molecular Biology Institute
| |
Collapse
|
23
|
Abstract
All blood vessels are lined by a layer of endothelial cells that help to control vascular permeability. The luminal surface of vascular endothelial cells is studded with transport vesicles called caveolae that are directly in contact with the blood and can transport molecules into and across the endothelium. The vasculature within distinct tissue types expresses a unique array of proteins that can be used to target intravenously injected antibodies directly to that tissue. When the tissue-specific proteins are concentrated in caveolae, the antibodies can be rapidly pumped out of the blood and into the tissue. Tumors appear to be a distinct tissue type with their own unique marker proteins. Targeting accessible proteins at the surface of tumor vasculature with radiolabeled antibodies destroys tumors and drastically increases animal survival. One day, it may be possible to specifically pump targeted molecules into tumors. This could increase therapeutic efficacy and decrease side effects because most of the drug would accumulate specifically in the tumor. Thus, targeting caveolae may provide a universal portal to pump drugs, imaging agents, and gene vectors out of the blood and into underlying tissue.
Collapse
|
24
|
Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 2009; 28:83-9. [PMID: 20010810 PMCID: PMC2805705 DOI: 10.1038/nbt.1592] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/16/2009] [Indexed: 01/26/2023]
|
25
|
Abstract
A major goal of molecular medicine is to target imaging agents or therapeutic compounds to a single organ. Targeting imaging agents to a single organ could facilitate the high-resolution, in vivo imaging of molecular events. In addition, genetic and acquired diseases primary to a single organ, such as cystic fibrosis, tuberculosis, lung cancer, pulmonary fibrosis, pulmonary hypertension, and acute respiratory distress syndrome, could be specifically targeted in the lung. By targeting and concentrating imaging agents or therapeutics to the lungs, deleterious side effects can be avoided with greater efficacy at much lower dosages. Pathologic changes can be identified earlier and followed over time. In addition, therapeutics that have been abandoned due to toxicities may find renewed utility when coupled with specific targeting agents such as antibodies. To achieve these goals, distinct molecular signatures must be found for each organ or disease-state.
Collapse
|