1
|
Shimazaki H, Uojima H, Yamasaki K, Obayashi T, Fuseya S, Sato T, Mizokami M, Kuno A. M2BPgs-HCC: An Automated Multilectin Bead Array Indicating Aberrant Glycosylation Signatures Toward Hepatitis C Virus-Associated Hepatocellular Carcinoma Prognosis. Molecules 2024; 29:5640. [PMID: 39683799 DOI: 10.3390/molecules29235640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Regular monitoring of patients with a history of hepatitis C virus (HCV) infection is critical for the detection and management of hepatocellular carcinoma (HCC). Mac-2 binding protein glycosylation isomer (M2BPGi) has been used to monitor fibrosis progression and predict HCC. However, HCC prediction based on M2BPGi has not been optimized. Here, we identified HCC risk-related glycan signatures of M2BP using a newly developed automated bead array with multiplexed lectins. Among 955 patients with HCV who achieved sustained virological response following direct-acting antiviral treatment, we compared M2BP glycosylation from sera of 42 patients diagnosed with HCC during follow-up and 43 without HCC (control) by the lectin microarray. At the HCC observation point, we found significant differences in 17 lectins. Using an automated bead array with 12 of 17 lectins, a principal component analysis (PCA) biplot differentiated HCC from control, along the PC1 axis, explaining 75.2% of variance. Based on PC1, we generated a scoring formula for an HCC-related glycosylation signature on M2BP (M2BPgs-HCC), showing good diagnostic performance for HCC (p = 2.92 × 10-8, AUC = 0.829). This automated multilectin bead array improved the ability of M2BP to detect HCC, providing a candidate test for HCC surveillance in combination with other HCC markers.
Collapse
Affiliation(s)
- Hiroko Shimazaki
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba 305-8565, Japan
- Precision System Science Co., Ltd., Matsudo 271-0064, Japan
| | - Haruki Uojima
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara 252-0375, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO National Hospital Organization Nagasaki Medical Center, Omura 856-0835, Japan
| | - Tomomi Obayashi
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba 305-8565, Japan
- Precision System Science Co., Ltd., Matsudo 271-0064, Japan
| | - Sayaka Fuseya
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba 305-8565, Japan
| | - Takashi Sato
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba 305-8565, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Atsushi Kuno
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba 305-8565, Japan
| |
Collapse
|
2
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Yamaguchi Y, Ishii K, Koizumi S, Sakaue H, Maruno T, Fukuhara M, Shibuya R, Tsunaka Y, Matsushita A, Bandoh K, Torisu T, Murata-Kishimoto C, Tomioka A, Mizukado S, Kaji H, Kashiwakura Y, Ohmori T, Kuno A, Uchiyama S. Glycosylation of recombinant adeno-associated virus serotype 6. Mol Ther Methods Clin Dev 2024; 32:101256. [PMID: 38774582 PMCID: PMC11107246 DOI: 10.1016/j.omtm.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Glycosylation of biopharmaceuticals can affect their safety and efficacy. Glycans can occur on recombinant adeno-associated viruses (rAAVs) that are used for gene therapy; however, the types of glycans that attach to rAAVs are controversial. Here, we conducted lectin microarray analyses on six rAAV serotype 6 (rAAV6) preparations that were produced differently. We demonstrate that O-glycans considered to be attached to rAAV6 were recognized by Agaricus bisporus agglutinin (ABA) and that N-glycans were detected in rAAV6 purified without affinity chromatography. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the N-glycans detected in rAAV6 were derived from host cell proteins. A combination of ABA-based fractionation and LC-MS/MS revealed that rAAV6 was O-glycosylated with the mucin-type glycans, O-GalNAc (Tn antigen), and mono- and di-sialylated Galβ1-3GalNAc (T antigen) at S156, T162, T194, and T201 in viral protein (VP) 2 and with O-GlcNAc at T242 in VP3. The mucin-type O-glycosylated rAAV6 particles were 0.1%-1% of total particles. Further physicochemical and biological analyses revealed that mucin-type O-glycosylated rAAV6 had a lower ratio of VP1 to VP2/VP3, resulting in a lower transduction efficiency both in vitro and in vivo compared with rAAV6 without mucin-type O-glycans. This report details conclusive evidence of rAAV glycosylation and its impact on rAAV-based therapeutics.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Ishii
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sachiko Koizumi
- GlycoTechnica Ltd., Yokohama, Japan
- Precision System Science Co. Ltd., 88 Kamihongo, Matsudo, Chiba 271-0064, Japan
| | - Hiroaki Sakaue
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Fukuhara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Risa Shibuya
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsunaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aoba Matsushita
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Karin Bandoh
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | - Azusa Tomioka
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Saho Mizukado
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Kaji
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yuji Kashiwakura
- Department of Biochemistry, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Center for Gene Therapy Research, Jichi Medical University, 3111-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Center for Gene Therapy Research, Jichi Medical University, 3111-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Yom A, Chiang A, Lewis NE. Boltzmann Model Predicts Glycan Structures from Lectin Binding. Anal Chem 2024; 96:8332-8341. [PMID: 38720429 PMCID: PMC11162346 DOI: 10.1021/acs.analchem.3c04992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Glycans are complex oligosaccharides that are involved in many diseases and biological processes. Unfortunately, current methods for determining glycan composition and structure (glycan sequencing) are laborious and require a high level of expertise. Here, we assess the feasibility of sequencing glycans based on their lectin binding fingerprints. By training a Boltzmann model on lectin binding data, we predict the approximate structures of 88 ± 7% of N-glycans and 87 ± 13% of O-glycans in our test set. We show that our model generalizes well to the pharmaceutically relevant case of Chinese hamster ovary (CHO) cell glycans. We also analyze the motif specificity of a wide array of lectins and identify the most and least predictive lectins and glycan features. These results could help streamline glycoprotein research and be of use to anyone using lectins for glycobiology.
Collapse
Affiliation(s)
- Aria Yom
- Department of Physics, University of California, San Diego, California 92093, United States
| | - Austin Chiang
- Department of Pediatrics, University of California, San Diego, California 92093, United States
- Immunology Center of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Medicine, Augusta University, Augusta, Georgia 30912, United States
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, California 92093, United States
- Department of Bioengineering, University of California, San Diego, California 92093, United States
| |
Collapse
|
5
|
Yom A, Chiang A, Lewis NE. A Boltzmann model predicts glycan structures from lectin binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.03.543532. [PMID: 37333412 PMCID: PMC10274649 DOI: 10.1101/2023.06.03.543532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Glycans are complex oligosaccharides involved in many diseases and biological processes. Unfortunately, current methods for determining glycan composition and structure (glycan sequencing) are laborious and require a high level of expertise. Here, we assess the feasibility of sequencing glycans based on their lectin binding fingerprints. By training a Boltzmann model on lectin binding data, we predict the approximate structures of 88 ± 7% of N-glycans and 87 ± 13% of O-glycans in our test set. We show that our model generalizes well to the pharmaceutically relevant case of Chinese Hamster Ovary (CHO) cell glycans. We also analyze the motif specificity of a wide array of lectins and identify the most and least predictive lectins and glycan features. These results could help streamline glycoprotein research and be of use to anyone using lectins for glycobiology.
Collapse
Affiliation(s)
- Aria Yom
- Department of Physics, University of California, San Diego. CA 92093, USA
| | - Austin Chiang
- Department of Pediatrics, University of California, San Diego. CA 92093, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego. CA 92093, USA
- Department of Pediatrics, University of California, San Diego. CA 92093, USA
| |
Collapse
|
6
|
Matsuda A, Boottanun P, Koizumi S, Nagai M, Kuno A. Differential Glycoform Analysis of MUC1 Derived from Biological Specimens Using an Antibody-Overlay Lectin Microarray. Methods Mol Biol 2024; 2763:223-236. [PMID: 38347414 DOI: 10.1007/978-1-0716-3670-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The association between altered glycosylation of MUC1 and various disease events has sparked significant interest. However, analytical technologies to investigate the disease-related glycoforms of endogenous MUC1 in blood and tissue specimens are limited. Therefore, we devised a reliable technique for differential analysis of endogenous MUC1 glycoforms based on an antibody-assisted lectin microarray. Its highly sensitive detection aids in analyzing soluble MUC1 from relatively small amounts of serum via a simple enrichment process. Micro-/macro-dissection of the MUC1-positive region is combined with glycoform analysis of the membrane-tethered MUC1. Thus, we have optimized the protocol for sample qualification using immunohistochemistry, sample pretreatment for tissue sections, protein extraction, purification via immunoprecipitation, and the antibody-overlay lectin microarray, which are sequentially essential for differential glycoform analysis of endogenous MUC1.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Sysmex Corporation, Reagent Engineering, Protein Technology Group, Hyogo, Japan
| | - Patcharaporn Boottanun
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Sachiko Koizumi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Misugi Nagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| |
Collapse
|
7
|
Fuseya S, Izumi H, Hamano A, Murakami Y, Suzuki R, Koiwai R, Hayashi T, Kuno A, Takahashi S, Kudo T. Reduction in disialyl-T antigen levels in mice deficient for both St6galnac3 and St6galnac4 results in blood filling of lymph nodes. Sci Rep 2023; 13:10582. [PMID: 37386100 PMCID: PMC10310836 DOI: 10.1038/s41598-023-37363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Sialic acid (SA) is present at the terminal ends of carbohydrate chains in glycoproteins and glycolipids and is involved in various biological phenomena. The biological function of the disialyl-T (SAα2-3Galβ1-3(SAα2-6)GalNAcα1-O-Ser/Thr) structure is largely unknown. To elucidate the role of disialyl-T structure and determine the key enzyme from the N-acetylgalactosaminide α2,6-sialyltransferase (St6galnac) family involved in its in vivo synthesis, we generated St6galnac3- and St6galnac4-deficient mice. Both single-knockout mice developed normally without any prominent phenotypic abnormalities. However, the St6galnac3::St6galnact4 double knockout (DKO) mice showed spontaneous hemorrhage of the lymph nodes (LN). To identify the cause of bleeding in the LN, we examined podoplanin, which modifies the disialyl-T structures. The protein expression of podoplanin in the LN of DKO mice was similar to that in wild-type mice. However, the reactivity of MALII lectin, which recognizes disialyl-T, in podoplanin immunoprecipitated from DKO LN was completely abolished. Moreover, the expression of vascular endothelial cadherin was reduced on the cell surface of high endothelial venule (HEV) in the LN, suggesting that hemorrhage was caused by the structural disruption of HEV. These results suggest that podoplanin possesses disialyl-T structure in mice LN and that both St6galnac3 and St6galnac4 are required for disialyl-T synthesis.
Collapse
Affiliation(s)
- Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Hiroyuki Izumi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ayane Hamano
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuka Murakami
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Rikako Koiwai
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
8
|
Development and Evaluation of a Robust Sandwich Immunoassay System Detecting Serum WFA-Reactive IgA1 for Diagnosis of IgA Nephropathy. Int J Mol Sci 2022; 23:ijms23095165. [PMID: 35563555 PMCID: PMC9104065 DOI: 10.3390/ijms23095165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Aberrant glycosylation of IgA1 is involved in the development of IgA nephropathy (IgAN). There are many reports of IgAN markers focusing on the glycoform of IgA1. None have been clinically applied as a routine test. In this study, we established an automated sandwich immunoassay system for detecting aberrant glycosylated IgA1, using Wisteria floribunda agglutinin (WFA) and anti-IgA1 monoclonal antibody. The diagnostic performance as an IgAN marker was evaluated. The usefulness of WFA for immunoassays was investigated by lectin microarray. A reliable standard for quantitative immunoassay measurements was designed by modifying a purified IgA1 substrate. A validation study using multiple serum specimens was performed using the established WFA-antibody sandwich automated immunoassay. Lectin microarray results showed that WFA specifically recognized N-glycans of agglutinated IgA1 in IgAN patients. The constructed IgA1 standard exhibited a wide dynamic range and high reactivity. In the validation study, serum WFA-reactive IgA1 (WFA+-IgA1) differed significantly between healthy control subjects and IgAN patients. The findings indicate that WFA is a suitable lectin that specifically targets abnormal agglutinated IgA1 in serum. We also describe an automated immunoassay system for detecting WFA+-IgA1, focusing on N-glycans.
Collapse
|
9
|
Nagai-Okatani C, Zou X, Matsuda A, Itakura Y, Toyoda M, Zhang Y, Kuno A. Tissue Glycome Mapping: Lectin Microarray-Based Differential Glycomic Analysis of Formalin-Fixed Paraffin-Embedded Tissue Sections. Methods Mol Biol 2022; 2460:161-180. [PMID: 34972936 DOI: 10.1007/978-1-0716-2148-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lectin microarray (LMA) is a high-sensitive glycan analysis technology used to obtain global glycomic profiles of both N- and O-glycans attached not only to purified glycoproteins but also to crude glycoprotein samples. Through additional use of laser microdissection (LMD) for tissue collection, we developed an LMA-based glycomic profiling technique for a specific type of cells in a tiny area of formalin-fixed paraffin-embedded (FFPE) tissue sections. This LMD-LMA method makes it possible to obtain reproducible tissue glycomic profiles that can be compared with each other, using a unified protocol for all procedures, including FFPE tissue preparation, tissue staining, protein extraction and labeling, and LMA analysis. Here, we describe the standardized LMD-LMA procedure for a "tissue glycome mapping" approach, which facilitates an in-depth understanding of region- and tissue-specific protein glycosylation. We also describe potential applications of the spatial tissue glycomic profiles, including histochemical analysis for evaluating distribution of lectin ligands and a fluorescence LMD-LMA method for cell type-selective glycomic profiling using a cell type-specific probe, composed of a lectin and an antibody. The protocols presented here will accelerate the effective utilization of FFPE tissue specimens by providing tissue glycome maps for the discovery of the biological roles and disease-related alterations of protein glycosylation.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | - Xia Zou
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Atsushi Matsuda
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | - Yoko Itakura
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masashi Toyoda
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yan Zhang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
10
|
Hiono T, Kuno A. Glycan Profiling of Viral Glycoproteins with the Lectin Microarray. Methods Mol Biol 2022; 2556:59-68. [PMID: 36175627 DOI: 10.1007/978-1-0716-2635-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, structural analyses on the glycans attached to viral surface proteins have been intensively conducted since previous studies demonstrated that glycoform of the viral glycoproteins is closely related to their immunogenicity as vaccine antigens. Although mass spectrometric approach is a gold standard for the glycoproteomic analysis of viral glycoproteins, lectin microarray (LMA) is regarded as an alternative method for analyzing glycan attached to viruses. The previous studies demonstrated that LMA provides highly sensitive and straightforward platforms for the glycoproteomic analyses of viral glycans. Here, two methods, antibody-overlay method, and direct-labeling method, for profiling glycoforms of viral glycoprotein using LMA are described.
Collapse
Affiliation(s)
- Takahiro Hiono
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Ibaraki, Japan.
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan.
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Ibaraki, Japan
| |
Collapse
|
11
|
Noro E, Matsuda A, Kyoutou T, Sato T, Tomioka A, Nagai M, Sogabe M, Tsuruno C, Takahama Y, Kuno A, Tanaka Y, Kaji H, Narimatsu H. N-glycan structures of Wisteria floribunda agglutinin-positive Mac2 binding protein in the serum of patients with liver fibrosis†. Glycobiology 2021; 31:1268-1278. [PMID: 34192302 DOI: 10.1093/glycob/cwab060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
The extent of liver fibrosis predicts prognosis and is important for determining treatment strategies for chronic hepatitis. During the fibrosis progression, serum levels of Mac2 binding protein (M2BP) increase and the N-glycan structure changes to enable binding to Wisteria floribunda agglutinin (WFA) lectin. As a novel diagnostic marker, glycosylation isomer of M2BP (M2BPGi) has been developed. However, its glycan structures recognized by WFA are unclear. In this study, we analyzed site-specific N-glycan structures of serum M2BP using Glyco-RIDGE (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile) method. We evaluated five sample types: (1) M2BP immunoprecipitated from normal healthy sera (NHS-IP(+)), (2) M2BP immunoprecipitated from sera of patients with liver cirrhosis (stage 4; F4-IP(+)), (3) M2BP captured with WFA from serum of patients with liver cirrhosis (stage 4; F4-WFA(+)), (4) recombinant M2BP produced by HEK293 cells (rM2BP) and (5) WFA-captured rM2BP (rM2BP-WFA(+)). In NHS-IP(+) M2BP, bi-antennary N-glycan was the main structure, and LacNAc extended to its branches. In F4-IP(+) M2BP, many branched structures, including tri-antennary and tetra-antennary N-glycans, were found. F4-WFA(+) showed a remarkable increase in branched structures relative to the quantity before enrichment. In recombinant M2BP, both no sialylated-LacdiNAc and -branched LacNAc structures were emerged. The LacdiNAc structure was not found in serum M2BP. Glycosidase-assisted HISCL assays suggest that reactivity with WFA of both serum and recombinant M2BP depends on unsialylated and branched LacNAc and in part of recombinant depends on LacdiNAc. On M2BPGi, the highly branched LacNAc, probably dense cluster of LacNAc, would be recognized by WFA.
Collapse
Affiliation(s)
- Erika Noro
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Life Innovation Business Headquarters, Yokogawa Electric Corporation, Musashino, Tokyo 180-8750, Japan
| | - Atsushi Matsuda
- Department of Biochemistry, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Engineering 1, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Takuya Kyoutou
- Engineering 1, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Takashi Sato
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Azusa Tomioka
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Misugi Nagai
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Maki Sogabe
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | | | - Yoichi Takahama
- Engineering 1, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroyuki Kaji
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Hisashi Narimatsu
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
12
|
Wang YS, Ren SF, Jiang W, Lu JQ, Zhang XY, Li XP, Cao R, Xu CJ. CA125-Tn ELISA assay improves specificity of pre-operative diagnosis of ovarian cancer among patients with elevated serum CA125 levels. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:788. [PMID: 34268401 PMCID: PMC8246179 DOI: 10.21037/atm-20-8053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022]
Abstract
Background CA125 is the most widely used serum marker for preoperative diagnosis of ovarian cancer. However, CA125 elevation is not specific to ovarian cancer. More than 60% of patients who have elevated CA125 levels do not have ovarian cancer. To overcome the low specificity of CA125, we identified a CA125 glycoform that was specifically elevated in ovarian cancer and that may help in the further triage of patients with elevated serum CA125 levels. Methods We used antibody-lectin ELISA to detect various CA125 glycoforms. Among 21 lectins tested, VVA, a plant lectin that preferentially binds Tn antigen, showed significantly stronger binding with ovarian cancer-derived CA125 than benign condition-derived CA125. CA125-Tn levels were tested among patients with elevated CA125 levels (n=328, including 68 ovarian cancer, 15 ovarian borderline tumors, and 245 benign conditions). The efficacy of CA125-Tn in diagnosing ovarian cancer was evaluated using ROC analysis. Results Medians and 25th to 75th quartiles of CA125-Tn levels were 0.31 (0.18–0.65) in ovarian cancer, 0.07 (0.02–0.12) in ovarian borderline tumor, and 0.07 (0.01–0.12) in benign conditions. AUC of the ROC curve was 0.890 (95% CI: 0.845, 0.935) for CA125-Tn to discriminate ovarian cancer cases from nonmalignant cases (borderline tumors and benign conditions). Its performance was even better among patients older than 45 y (AUC: 0.905, 95% CI: 0.841, 0.969). Specificity was improved from 35.1% for CA125 to 75.7% for CA125-Tn among patients older than 45 y when sensitivity was fixed at 90%. Conclusions CA125-Tn ELISA assay can improve specificity of the preoperative diagnosis of ovarian cancer and serve as a further triage strategy for patients with elevated CA125 levels.
Collapse
Affiliation(s)
- Yi-Sheng Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shi-Fang Ren
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Jiang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jia-Qi Lu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiao-Yan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiao-Ping Li
- Peking University People's Hospital, Beijing, China
| | - Rui Cao
- Dalian Obstetrics & Gynecology Hospital, Liaoning, China
| | - Cong-Jian Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
13
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Fujihira H, Takakura D, Matsuda A, Abe M, Miyazaki M, Nakagawa T, Kajino K, Denda-Nagai K, Noji M, Hino O, Irimura T. Bisecting-GlcNAc on Asn388 is characteristic to ERC/mesothelin expressed on epithelioid mesothelioma cells. J Biochem 2021; 170:317-326. [PMID: 33792699 PMCID: PMC8510291 DOI: 10.1093/jb/mvab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mesothelioma is a highly aggressive tumour associated with asbestos exposure and is histologically classified into three types: epithelioid-type, sarcomatoid-type and biphasic-type. The prognosis of mesothelioma patients is poor and there is no effective molecular-targeting therapy as yet. ERC/mesothelin is a glycoprotein that is highly expressed on several types of cancers including epithelioid mesothelioma, but also expressed on normal mesothelial cells. This is a predicted reason why there is no clinically approved therapeutic antibody targeting ERC/mesothelin. In the present study, we focussed on the differential glycosylation between ERC/mesothelin present on epithelioid mesothelioma and that on normal mesothelial cells and aimed to reveal a distinct feature of epithelioid mesothelioma cells. Lectin microarray analysis of ERC/mesothelin using cells and patient specimens showed significantly stronger binding of PHA-E4 lectin, which recognizes complex-type N-glycans having a so-called bisecting-GlcNAc structure, to ERC/mesothelin from epithelioid mesothelioma cells than that from normal mesothelial cells. Further, liquid chromatography/mass spectrometry analysis on ERC/mesothelin from epithelioid mesothelioma cells confirmed the presence of a bisecting-GlcNAc attached to Asn388 of ERC/mesothelin. These results suggest that this glycoproteome could serve as a potential target for the generation of a highly selective and safe therapeutic antibody for epithelioid mesothelioma.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Glycometabolic Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan
| | - Daisuke Takakura
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| | - Atsushi Matsuda
- Department of Biochemistry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Masaaki Abe
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Michiyo Miyazaki
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan
| | - Tomomi Nakagawa
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan
| | - Kazunori Kajino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan.,Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Kaori Denda-Nagai
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Miki Noji
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Tatsuro Irimura
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
15
|
Hiono T, Kuno A. C-Terminally tagged NA in replication-competent influenza A viruses reveals differences in glycan profiles between NA and HA. Analyst 2020; 145:5845-5853. [PMID: 32830838 DOI: 10.1039/d0an00770f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycans attached to the viruses regulate their pathogenicity, immunogenicity, and antigenicity. We have previously shown that lectin microarray provided an easy and highly sensitive platform for analyzing glycan profiles of hemagglutinin (HA) of influenza A viruses in culture supernatants. On the other hand, the system is not applicable for neuraminidase (NA), the other viral glycoprotein of influenza A viruses, due to the limited availability of specific antibodies used to detect NA in the lectin microarray. Accordingly, we established replication-competent viruses harboring the short peptide-tag sequence at the C-terminus of NA in this study. The generated viruses underwent normal proliferation cycles and showed similar properties to the wild-type viruses. Lectin microarray analyses of the tagged NA enriched from the viral particles showed that glycan profiles of NA were mostly occupied by mannose-type glycans. Interestingly, the profiles were distinct from those of HA separated from the same particle preparation, in which core-fucosylated complex-type N-glycans terminating with non-sialylated N-acetyllactosamine were dominant. Collectively, this study provides novel platforms for the analyses of the distinction between the glycan profiles of NA and HA, and contributes to a better understanding of later stages of the viral life cycles through analyzing the glycans attached to NA.
Collapse
Affiliation(s)
- Takahiro Hiono
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
16
|
Wagatsuma T, Nagai-Okatani C, Matsuda A, Masugi Y, Imaoka M, Yamazaki K, Sakamoto M, Kuno A. Discovery of Pancreatic Ductal Adenocarcinoma-Related Aberrant Glycosylations: A Multilateral Approach of Lectin Microarray-Based Tissue Glycomic Profiling With Public Transcriptomic Datasets. Front Oncol 2020; 10:338. [PMID: 32232009 PMCID: PMC7082313 DOI: 10.3389/fonc.2020.00338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Aberrant protein glycosylation is one of the most notable features in cancerous tissues, and thereby glycoproteins with disease-relevant glycosylation alterations are fascinating targets for the development of biomarkers and therapeutic agents. For this purpose, a reliable strategy is needed for the analysis of glycosylation alterations occurring on specific glycoproteins during the progression of cancer. Here, we propose a bilateral approach combining lectin microarray-based tissue glycomic profiling and database-derived transcriptomic datasets. First, lectin microarray was used to perform differential glycomic profiling of crude extracts derived from non-tumor and tumor regions of frozen tissue sections from pancreatic ductal adenocarcinoma (PDAC). This analysis revealed two notable tissue glycome alterations in PDAC samples: increases in sialylated glycans and bisecting N-acetylglucosamine and a decrease in ABO blood group antigens. To examine aberrations in the glycosylation machinery related to these glycomic alterations, we next employed public datasets of gene expression profiles in cancerous and normal pancreases provided by The Cancer Genome Atlas and the Genotype-Tissue Expression projects, respectively. In this analysis, glycosyltransferases responsible for the glycosylation alterations showed aberrant gene expression in the cancerous tissues, consistent with the tissue glycomic profiles. The correlated alterations in glycosyltransferase expression and tissue glycomics were then evaluated by differential glycan profiling of a membrane N-glycoprotein, basigin, expressed in tumor and non-tumor pancreatic cells. The focused differential glycomic profiling for endogenous basigin derived from non-tumor and cancerous regions of PDAC tissue sections demonstrated that PDAC-relevant glycan alterations of basigin closely reflected the notable features in the disease-specific alterations in the tissue glycomes. In conclusion, the present multi-omics strategy using public transcriptomic datasets and experimental glycomic profiling using a tiny amount of clinical specimens successfully demonstrated that basigin is a representative N-glycoprotein that reflects PDAC-related aberrant glycosylations. This study indicates the usefulness of large public data sets such as the gene expression profiles of glycosylation-related genes for evaluation of the highly sensitive tissue glycomic profiling results. This strategy is expected to be useful for the discovery of novel glyco-biomarkers and glyco-therapeutic targets.
Collapse
Affiliation(s)
- Takanori Wagatsuma
- Project for Utilizing Glycans in the Development of Innovative Drug Discovery Technologies, Japan Bioindustry Association (JBA), Tokyo, Japan.,Center for Integrated Medical Research, Keio University School of Medicine, Tokyo, Japan.,Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Chiaki Nagai-Okatani
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Atsushi Matsuda
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masako Imaoka
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
17
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
18
|
Abstract
Cancer has high incidence and it will continue to increase over the next decades. Detection and quantification of cancer-associated biomarkers is frequently carried out for diagnosis, prognosis and treatment monitoring at various disease stages. It is well-known that glycosylation profiles change significantly during oncogenesis. Aberrant glycans produced during tumorigenesis are, therefore, valuable molecules for detection and characterization of cancer, and for therapeutic design and monitoring. Although glycoproteomics has benefited from the development of analytical tools such as high performance liquid chromatography, two-dimensional gel and capillary electrophoresis and mass spectrometry, these approaches are not well suited for rapid point-of-care (POC) testing easily performed by medical staff. Lectins are biomolecules found in nature with specific affinities toward particular glycan structures and bind them thus forming a relatively strong complex. Because of this characteristic, lectins have been used in analytical techniques for the selective capture or separation of certain glycans in complex samples, namely, in lectin affinity chromatography, or to characterize glycosylation profiles in diverse clinical situations, using lectin microarrays. Lectin-based biosensors have been developed for the detection of specific aberrant and cancer-associated glycostructures to aid diagnosis, prognosis and treatment assessment of these patients. The attractive features of biosensors, such as portability and simple use make them highly suitable for POC testing. Recent developments in lectin biosensors, as well as their potential and pitfalls in cancer glycan biomarker detection, are presented in this chapter.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Pachuca, Hidalgo, México.
| |
Collapse
|
19
|
Shimazaki H, Saito K, Matsuda A, Sawakami K, Kariya M, Segawa O, Miyashita Y, Ueda T, Koizuka M, Nakamura K, Kaji H, Tajima H, Kuno A. Lectin Bead Array in a Single Tip Facilitates Fully Automatic Glycoprotein Profiling. Anal Chem 2019; 91:11162-11169. [DOI: 10.1021/acs.analchem.9b01876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroko Shimazaki
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Kozue Saito
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Atsushi Matsuda
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Kazumi Sawakami
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Minoru Kariya
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Osamu Segawa
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Yukiko Miyashita
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Tetsuya Ueda
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Michinori Koizuka
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Kazuhiro Nakamura
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Hiroyuki Kaji
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Hideji Tajima
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
20
|
Nagai-Okatani C, Nagai M, Sato T, Kuno A. An Improved Method for Cell Type-Selective Glycomic Analysis of Tissue Sections Assisted by Fluorescence Laser Microdissection. Int J Mol Sci 2019; 20:ijms20030700. [PMID: 30736315 PMCID: PMC6387264 DOI: 10.3390/ijms20030700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Lectin microarray (LMA) is a highly sensitive technology used to obtain the global glycomic profiles of endogenous glycoproteins in biological samples including formalin-fixed paraffin-embedded tissue sections. Here, we describe an effective method for cell type-selective glycomic profiling of tissue fragments collected by laser microdissection (LMD) under fluorescent histochemical visualization. We optimized each step of histochemical staining and confirmed the reliability and validity of glycomic profiling. Using the optimized procedure, glycomic profiles were obtained with 0.5 mm² of stained thymic sections (5-μm-thick) from 8-week-old C57BL/6J male mice. The glycomic profiles of Ulex europaeus agglutinin-I (UEA-I)-stained medullary regions showed higher UEA-I signals than those of the morphologically determined medulla regions, indicating the utility of this method for UEA-I(+) cell-selective analysis. To further evaluate this method, tissue fragments was serially collected from stained and unstained areas of medullary epithelial cell probes (UEA-I and anti-cytokeratin 5 antibody) and a cortex-staining probe (peanut agglutinin). The medullary regions assigned by the three probes showed significantly different glycomic profiles, highlighting the difference in subpopulation recognition among the three probes, which was consistent with previous reports. In conclusion, our fluorescence LMD-LMA method enabled cell type-selective tissue glycomic analysis of pathological specimens and animal models, especially for glyco-biomarker discovery.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| | - Misugi Nagai
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| | - Takashi Sato
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
21
|
Lectin microarray analyses reveal host cell-specific glycan profiles of the hemagglutinins of influenza A viruses. Virology 2019; 527:132-140. [DOI: 10.1016/j.virol.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/11/2023]
|
22
|
Identification of mesothelioma-specific sialylated epitope recognized with monoclonal antibody SKM9-2 in a mucin-like membrane protein HEG1. Sci Rep 2018; 8:14251. [PMID: 30250045 PMCID: PMC6155162 DOI: 10.1038/s41598-018-32534-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022] Open
Abstract
The anti-mesothelioma mAb SKM9-2 recognizes the sialylated protein HEG homolog 1 (HEG1). HEG1 is a 400 kDa mucin-like membrane protein found on mesothelioma. SKM9-2 can detect mesothelioma more specifically and sensitively than other antibodies against current mesothelioma markers; therefore, SKM9-2 would be likely useful for the precise detection and diagnosis of malignant mesothelioma. In the present study, we investigated the epitope of SKM9-2. We analyzed the binding of SKM9-2 to truncated HEG1 and candidate epitope-fused glycosylphosphatidylinositol-anchor proteins. The epitope of SKM9-2 was identified as an O-glycosylated region, 893-SKSPSLVSLPT-903, in HEG1. An alanine scanning assay of the epitope showed that SKM9-2 bound to a simple epitope in HEG1, and the SKxPSxVS sequence within the epitope was essential for SKM9-2 recognition. Mass spectrometry analysis and lectin binding analysis of soluble epitope peptides indicated that the SKM9-2 epitope, in which Ser897 was not glycosylated, contained two disialylated core 1 O-linked glycan-modified serine residues, Ser893 and Ser900. Neuraminidase treatment analysis also confirmed that the epitope in mesothelioma cells contained a similar glycan modification. The specific detection of mesothelioma with SKM9-2 can thus be performed by the recognition of sialylated glycan modification in the specific region of HEG1.
Collapse
|
23
|
Wagatsuma T, Kuno A, Angata K, Tajiri K, Takahashi J, Korenaga M, Mizokami M, Narimatsu H. Highly Sensitive Glycan Profiling of Hepatitis B Viral Particles and a Simple Method for Dane Particle Enrichment. Anal Chem 2018; 90:10196-10203. [PMID: 30074767 DOI: 10.1021/acs.analchem.8b01030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) is a double-stranded DNA virus composed of three types of viral particles. The virions are called Dane particles and the others are noninfectious subviral particles (SVPs). In blood, SVPs are detected in abundance, about 1000-10000 fold higher than Dane particles. Dane particles are hazardous because of their strong infectivity, unlike SVPs. Dane particles are covered with an envelope of glycoprotein called HBV surface antigen (HBsAg). HBsAg glycosylation is involved in viral particle formation and secretion. In this study, we established a novel and highly sensitive method for viral glycan profiling of HBsAg using small aliquots of patient serum. Our lectin microarray system could sensitively profile the glycans exposed on HBV while retaining the intact viral particle structure under nonreducing conditions. Several typical lectins were chosen from the lectin microarray results. Specifically, jacalin, which recognizes O-glycan, showed specific and strong reactivity to the M-HBsAg required for Dane particle secretion. Employing the lectin-fractionation method using jacalin, HBV particles were fractionated into jacalin-bound and unbound fractions from patient serum. We measured HBsAg titer and viral DNA load in each fraction using clinical tests. Interestingly, the jacalin-bound fraction contained a major fraction of the HBV viral DNA load. Thus, in this study we have presented a glycan profiling method for HBsAg on the intact HBV particle and an easy and simple method to enrich Dane particles from patient serum by jacalin fractionation.
Collapse
Affiliation(s)
- Takanori Wagatsuma
- Research Center for Medical Glycoscience (RCMG) , National Institute of Advanced Industrial Science and Technology , AIST Tsukuba Central 2, 1-1-1, Umezono , Tsukuba , Ibaraki 305-8568 , Japan
- The Research Center for Hepatitis and Immunology , National Center for Global Health and Medicine , 1-7-1, Kohnodai , Ichikawa , Chiba 272-8516 , Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience (RCMG) , National Institute of Advanced Industrial Science and Technology , AIST Tsukuba Central 2, 1-1-1, Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Kiyohiko Angata
- Research Center for Medical Glycoscience (RCMG) , National Institute of Advanced Industrial Science and Technology , AIST Tsukuba Central 2, 1-1-1, Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Kazuto Tajiri
- The Third Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science , University of Toyama , 2630, Sugitani , Toyama , Toyama 930-0194 , Japan
| | - Junko Takahashi
- Japanese Red Cross Kinki Block Blood Center , Japanese Red Cross Society , 7-5-17, Saitoasagi , Ibaraki-city , Osaka 567-0085 , Japan
| | - Masaaki Korenaga
- The Research Center for Hepatitis and Immunology , National Center for Global Health and Medicine , 1-7-1, Kohnodai , Ichikawa , Chiba 272-8516 , Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology , National Center for Global Health and Medicine , 1-7-1, Kohnodai , Ichikawa , Chiba 272-8516 , Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG) , National Institute of Advanced Industrial Science and Technology , AIST Tsukuba Central 2, 1-1-1, Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| |
Collapse
|
24
|
Shang Y, Zeng Y. Focused Glycomic Profiling With an Integrated Microfluidic Lectin Barcode System. Methods Enzymol 2018; 598:169-196. [PMID: 29306434 DOI: 10.1016/bs.mie.2017.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges associated with the analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and the speed of lectin microarrays. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, the CA125 protein purified from ovarian cancer cell lines, and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated "sample-to-answer" microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glycobiomarker development.
Collapse
Affiliation(s)
- Yuqin Shang
- University of Kansas, Lawrence, KS, United States
| | - Yong Zeng
- University of Kansas, Lawrence, KS, United States; The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
25
|
Togayachi A, Iwaki J, Kaji H, Matsuzaki H, Kuno A, Hirao Y, Nomura M, Noguchi M, Ikehara Y, Narimatsu H. Glycobiomarker, Fucosylated Short-Form Secretogranin III Levels Are Increased in Serum of Patients with Small Cell Lung Carcinoma. J Proteome Res 2017; 16:4495-4505. [DOI: 10.1021/acs.jproteome.7b00484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | | | | | - Masaharu Nomura
- Department
of Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Masayuki Noguchi
- Department
of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
26
|
Matsuda A, Higashi M, Nakagawa T, Yokoyama S, Kuno A, Yonezawa S, Narimatsu H. Assessment of tumor characteristics based on glycoform analysis of membrane-tethered MUC1. J Transl Med 2017; 97:1103-1113. [PMID: 28581490 DOI: 10.1038/labinvest.2017.53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022] Open
Abstract
Clinical tissue specimens are useful for pathological diagnosis, which is, in some cases, supported by visualization of biomolecule localization. In general, diagnostic specificity in molecular pathology is increased by the acquisition of a probe to distinguish the modification of isomers. Although glycosylation is one of the candidate modifications in a protein, comparative glycan analysis of disease-associated proteins derived from a single tissue section is still challenging because of the lack of analytical sensitivity. Here we demonstrate a possible method for differential glycoform analysis of an endogenous tumor-associated glycoprotein MUC1 by an antibody-overlay lectin microarray. Tissue sections (5 μm thick) of patients with cholangiocarcinoma (CCA; n=21) and pancreatic ductal adenocarcinoma (PDAC; n=50) were stained with an anti-MUC1 antibody MY.1E12 that was established as a monoclonal antibody recognizing an MUC1 glycosylation isoform with a sialyl-core 1 structure (NeuAcα2-3galactosyl β1-3-N-acetylgalactosamine). MY.1E12-positive tissue areas (2.5 mm2) were selectively dissected with a laser capture microdissection procedure. The membrane MUC1 was enriched by immunoprecipitation with MY.1E12 and subjected to lectin microarray analysis. Even though the reactivities of MY.1E12 between CCA and PDAC were similar, the lectin-binding patterns varied. We found Maackia amurensis leukoagglutinin and pokeweed lectin distinguished MY.1E12-reactive MUC1 of CCA from that of PDAC. Moreover, MUC1 with M. amurensis hemagglutinin (MAH) reactivity potentially reflected the degree of malignancy. These results were confirmed with MAH-MY.1E12 double fluorescent immunostaining. These glycan changes on MUC1 were detected with high sensitivity owing to the cluster effect of immobilized lectins on a tandem repeat peptide antigen covered with highly dense glycosylation such as mucin. Our approach provides the information to investigate novel glycodynamics in biology, for example, glycoalteration, as well as diseases related to not only MUC1 but also other membrane proteins.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Michiyo Higashi
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Tomomi Nakagawa
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Seiya Yokoyama
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Atsushi Kuno
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Suguru Yonezawa
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Protein Array-based Approaches for Biomarker Discovery in Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:73-81. [PMID: 28392481 PMCID: PMC5414965 DOI: 10.1016/j.gpb.2017.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 01/15/2023]
Abstract
Biomarkers are deemed to be potential tools in early diagnosis, therapeutic monitoring, and prognosis evaluation for cancer, with simplicity as well as economic advantages compared with computed tomography and biopsy. However, most of the current cancer biomarkers present insufficient sensitivity as well as specificity. Therefore, there is urgent requirement for the discovery of biomarkers for cancer. As one of the most exciting emerging technologies, protein array provides a versatile and robust platform in cancer proteomics research because it shows tremendous advantages of miniaturized features, high throughput, and sensitive detections in last decades. Here, we will present a relatively complete picture on the characteristics and advance of different types of protein arrays in application for biomarker discovery in cancer, and give the future perspectives in this area of research.
Collapse
|
28
|
Kaneko MK, Yamada S, Nakamura T, Abe S, Nishioka Y, Kunita A, Fukayama M, Fujii Y, Ogasawara S, Kato Y. Antitumor activity of chLpMab-2, a human-mouse chimeric cancer-specific antihuman podoplanin antibody, via antibody-dependent cellular cytotoxicity. Cancer Med 2017; 6:768-777. [PMID: 28332312 PMCID: PMC5387135 DOI: 10.1002/cam4.1049] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 01/02/2023] Open
Abstract
Human podoplanin (hPDPN), a platelet aggregation‐inducing transmembrane glycoprotein, is expressed in different types of tumors, and it binds to C‐type lectin‐like receptor 2 (CLEC‐2). The overexpression of hPDPN is involved in invasion and metastasis. Anti‐hPDPN monoclonal antibodies (mAbs) such as NZ‐1 have shown antitumor and antimetastatic activities by binding to the platelet aggregation‐stimulating (PLAG) domain of hPDPN. Recently, we developed a novel mouse anti‐hPDPN mAb, LpMab‐2, using the cancer‐specific mAb (CasMab) technology. In this study we developed chLpMab‐2, a human–mouse chimeric anti‐hPDPN antibody, derived from LpMab‐2. chLpMab‐2 was produced using fucosyltransferase 8‐knockout (KO) Chinese hamster ovary (CHO)‐S cell lines. By flow cytometry, chLpMab‐2 reacted with hPDPN‐expressing cancer cell lines including glioblastomas, mesotheliomas, and lung cancers. However, it showed low reaction with normal cell lines such as lymphatic endothelial and renal epithelial cells. Moreover, chLpMab‐2 exhibited high antibody‐dependent cellular cytotoxicity (ADCC) against PDPN‐expressing cells, despite its low complement‐dependent cytotoxicity. Furthermore, treatment with chLpMab‐2 abolished tumor growth in xenograft models of CHO/hPDPN, indicating that chLpMab‐2 suppressed tumor development via ADCC. In conclusion, chLpMab‐2 could be useful as a novel antibody‐based therapy against hPDPN‐expressing tumors.
Collapse
Affiliation(s)
- Mika K Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shinji Yamada
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takuro Nakamura
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shinji Abe
- Department of Clinical Pharmacy Practice Pedagogy, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan.,Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Fujii
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Project of Antibody Drug Development, New Industry Creation Hatchery Center, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
29
|
Kaneko MK, Nakamura T, Honma R, Ogasawara S, Fujii Y, Abe S, Takagi M, Harada H, Suzuki H, Nishioka Y, Kato Y. Development and characterization of anti-glycopeptide monoclonal antibodies against human podoplanin, using glycan-deficient cell lines generated by CRISPR/Cas9 and TALEN. Cancer Med 2017; 6:382-396. [PMID: 28101903 PMCID: PMC5313638 DOI: 10.1002/cam4.954] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/05/2016] [Accepted: 10/09/2016] [Indexed: 01/02/2023] Open
Abstract
Human podoplanin (hPDPN), which binds to C-type lectin-like receptor-2 (CLEC-2), is involved in platelet aggregation and cancer metastasis. The expression of hPDPN in cancer cells or cancer-associated fibroblasts indicates poor prognosis. Human lymphatic endothelial cells, lung-type I alveolar cells, and renal glomerular epithelial cells express hPDPN. Although numerous monoclonal antibodies (mAbs) against hPDPN are available, they recognize peptide epitopes of hPDPN. Here, we generated a novel anti-hPDPN mAb, LpMab-21. To characterize the hPDPN epitope recognized by the LpMab-21, we established glycan-deficient CHO-S and HEK-293T cell lines, using the CRISPR/Cas9 or TALEN. Flow cytometric analysis revealed that the minimum hPDPN epitope, in which sialic acid is linked to Thr76, recognized by LpMab-21 is Thr76-Arg79. LpMab-21 detected hPDPN expression in glioblastoma, oral squamous carcinoma, and seminoma cells as well as in normal lymphatic endothelial cells. However, LpMab-21 did not react with renal glomerular epithelial cells or lung type I alveolar cells, indicating that sialylation of hPDPN Thr76 is cell-type-specific. LpMab-21 combined with other anti-hPDPN antibodies that recognize different epitopes may therefore be useful for determining the physiological function of sialylated hPDPN.
Collapse
Affiliation(s)
- Mika K. Kaneko
- Department of Regional InnovationTohoku University Graduate School of Medicine2‐1 Seiryo‐machi, Aoba‐kuSendaiMiyagi980‐8575Japan
| | - Takuro Nakamura
- Department of Regional InnovationTohoku University Graduate School of Medicine2‐1 Seiryo‐machi, Aoba‐kuSendaiMiyagi980‐8575Japan
| | - Ryusuke Honma
- Department of Regional InnovationTohoku University Graduate School of Medicine2‐1 Seiryo‐machi, Aoba‐kuSendaiMiyagi980‐8575Japan
- Department of Orthopaedic SurgeryYamagata University Faculty of Medicine2‐2‐2 Iida‐nishiYamagata990‐9585Japan
| | - Satoshi Ogasawara
- Department of Regional InnovationTohoku University Graduate School of Medicine2‐1 Seiryo‐machi, Aoba‐kuSendaiMiyagi980‐8575Japan
| | - Yuki Fujii
- Department of Regional InnovationTohoku University Graduate School of Medicine2‐1 Seiryo‐machi, Aoba‐kuSendaiMiyagi980‐8575Japan
| | - Shinji Abe
- Department of Clinical Pharmacy Practice PedagogyGraduate School of Biomedical SciencesTokushima University1‐78‐1 Sho‐machiTokushima770‐8505Japan
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical SciencesTokushima University3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Michiaki Takagi
- Department of Orthopaedic SurgeryYamagata University Faculty of Medicine2‐2‐2 Iida‐nishiYamagata990‐9585Japan
| | - Hiroyuki Harada
- Oral and Maxillofacial SurgeryGraduate School of Medical and Dental SciencesTokyo Medical and Dental University1‐5‐45, YushimaBunkyo‐kuTokyo113‐8510Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory MedicineSendai Medical Center2‐8‐8, Miyagino, Miyagino‐kuSendaiMiyagi983‐0045Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical SciencesTokushima University3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Yukinari Kato
- Department of Regional InnovationTohoku University Graduate School of Medicine2‐1 Seiryo‐machi, Aoba‐kuSendaiMiyagi980‐8575Japan
| |
Collapse
|
30
|
Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem 2017; 409:395-410. [PMID: 27590322 PMCID: PMC5203967 DOI: 10.1007/s00216-016-9880-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
Abstract
Protein glycosylation and other post-translational modifications are involved in potentially all aspects of human growth and development. Defective glycosylation has adverse effects on human physiological conditions and accompanies many chronic and infectious diseases. Altered glycosylation can occur at the onset and/or during tumor progression. Identifying these changes at early disease stages may aid in making decisions regarding treatments, as early intervention can greatly enhance survival. This review highlights some of the efforts being made to identify N- and O-glycosylation profile shifts in cancer using mass spectrometry. The analysis of single or panels of potential glycoprotein cancer markers are covered. Other emerging technologies such as global glycan release and site-specific glycosylation analysis and quantitation are also discussed. Graphical Abstract Steps involved in the biomarker discovery.
Collapse
Affiliation(s)
- Muchena J Kailemia
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
31
|
Kato Y, Kunita A, Abe S, Ogasawara S, Fujii Y, Oki H, Fukayama M, Nishioka Y, Kaneko MK. The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity. Oncotarget 2016; 6:36003-18. [PMID: 26416352 PMCID: PMC4742157 DOI: 10.18632/oncotarget.5339] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022] Open
Abstract
Podoplanin (PDPN/Aggrus/T1α) binds to C-type lectin-like receptor-2 (CLEC-2) and induces platelet aggregation. PDPN is associated with malignant progression, tumor metastasis, and poor prognosis in several types of cancer. Although many anti-human PDPN (hPDPN) monoclonal antibodies (mAbs), such as D2-40 and NZ-1, have been established, these epitopes are limited to the platelet aggregation-stimulating (PLAG) domain (amino acids 29-54) of hPDPN. Recently, we developed a novel mouse anti-hPDPN mAb, LpMab-7, which is more sensitive than D2-40 and NZ-1, using the Cancer-specific mAb (CasMab) method. The epitope of LpMab-7 was shown to be entirely different from that of NZ-1, a neutralizing mAb against the PLAG domain according to an inhibition assay and lectin microarray analysis. In the present study, we produced a mouse-human chimeric anti-hPDPN mAb, chLpMab-7. ChLpMab-7 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, chLpMab-7 inhibited the growth of hPDPN-expressing tumors in vivo. Although chLpMab-7 recognizes a non-PLAG domain of hPDPN, it suppressed the hematogenous metastasis of hPDPN-expressing tumors. These results indicated that chLpMab-7 suppressed tumor development and hematogenous metastasis in a neutralization-independent manner. In conclusion, hPDPN shows promise as a target in the development of a novel antibody-based therapy.
Collapse
Affiliation(s)
- Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinji Abe
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Shou-machi, Tokushima 770-8505, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuki Fujii
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hiroharu Oki
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Shou-machi, Tokushima 770-8503, Japan
| | - Mika K Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
32
|
Takeshita M, Kuno A, Suzuki K, Matsuda A, Shimazaki H, Nakagawa T, Otomo Y, Kabe Y, Suematsu M, Narimatsu H, Takeuchi T. Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis. Arthritis Res Ther 2016; 18:112. [PMID: 27209430 PMCID: PMC4875599 DOI: 10.1186/s13075-016-1013-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/04/2016] [Indexed: 12/29/2022] Open
Abstract
Background Nearly all secreted proteins are glycosylated, and serum glycoproteins that exhibit disease-associated glycosylation changes have potential to be biomarkers. In rheumatoid arthritis (RA), C-reactive protein (CRP), and matrix metalloproteinase-3 (MMP-3) are widely used as serologic biomarkers, but they lack sufficient specificity or precision. We performed comparative glycosylation profiling of MMP-3 using a recently developed antibody-overlay lectin microarray technology that allows semicomprehensive and quantitative analysis of specific protein glycosylation to develop an RA-specific disease activity biomarker. Methods Serum was taken from patients with RA (n = 24) whose disease activity was scored using composite measures, and MMP-3 was immunoprecipitated and subjected to lectin microarray analysis. A disease activity index (DAI) based on lectin signal was developed and validated using another cohort (n = 60). Synovial fluid MMP-3 in patients with RA and patients with osteoarthritis (OA) was also analyzed. Results Intense signals were observed on a sialic acid-binding lectin (Agrocybe cylindracea galectin [ACG]) and O-glycan-binding lectins (Jacalin, Agaricus bisporus agglutinin [ABA], and Amaranthus caudatus agglutinin [ACA]) by applying subnanogram levels of serum MMP-3. ACG, ABA, and ACA revealed differences in MMP-3 quantity, and Jacalin revealed differences in MMP-3 quality. The resultant index, ACG/Jacalin, correlated well with disease activity. Further validation using another cohort confirmed that this index correlated well with several DAIs and their components, and reflected DAI changes following RA treatment, with correlations greater than those for MMP-3 and CRP. Furthermore, MMP-3, which generated a high ACG/Jacalin score, accumulated in synovial fluid of patients with RA but not in that of patients with OA. Sialidase digestion revealed that the difference in quality was derived from O-glycan α-2,6-sialylation. Conclusions This is the first report of a glycoprotein biomarker using glycan change at a local lesion to assess disease activity in autoimmune diseases. Differences in the degree of serum MMP-3 α-2,6-sialylation may be a useful index for estimating disease activity.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.,Center for Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsushi Matsuda
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.,Center for Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroko Shimazaki
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Tomomi Nakagawa
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Otomo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
33
|
Shang Y, Zeng Y, Zeng Y. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling. Sci Rep 2016; 6:20297. [PMID: 26831207 PMCID: PMC4735825 DOI: 10.1038/srep20297] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022] Open
Abstract
Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated "sample-to-answer" microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development.
Collapse
Affiliation(s)
- Yuqin Shang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| | - Yun Zeng
- College of Water Resource and Hydropower, Sichuan Agricultural University, Ya’an, Sichuan 625014, P.R. China
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
- University of Kansas Cancer Center, Kansas City, KS 66160
| |
Collapse
|
34
|
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst 2015; 141:1044-51. [PMID: 26647853 DOI: 10.1039/c5an02322j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study presents a proof-of-concept for the development of an impedimetric biosensor for ultra-sensitive glycoprofiling of prostate specific antigen (PSA). The biosensor exhibits three unique characteristics: (1) analysis of PSA with limit of detection (LOD) down to 4 aM; (2) analysis of the glycan part of PSA with LOD down to 4 aM level and; (3) both assays (i.e., PSA quantification and PSA glycoprofiling) can be performed on the same interface due to label-free analysis.
Collapse
Affiliation(s)
- D Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic.
| | | | | | | | | |
Collapse
|
35
|
Jiang K, Shang S, Li W, Guo K, Qin X, Zhang S, Liu Y. Multiple lectin assays for detecting glyco-alteration of serum GP73 in liver diseases. Glycoconj J 2015; 32:657-664. [PMID: 26342810 DOI: 10.1007/s10719-015-9614-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Serum GP73 is a functional resident Golgi type II membrane protein with three potential N-glycosylation sites. In this study, we used multiple lectin assays to analyze glycan patterns of serum GP73 and evaluated its diagnostic value for distinguishing hepatocellular carcinoma (HCC) from liver cirrhosis (LC). Firstly, Antibody overlay lectin microarray and lectin blot were performed to observe altered glycans of GP73. Fucosylated structures were found to increase significantly in LC compared with HCC patients. Then, AAL ELISA assay using ELISA Index was utilized to measure fucosylation level of GP73 on its protein level (Fuc-GP73). ELISA Indices of 54 LC and 54 HCC patients was obtained and the area under the ROC curve (AUC) was 0.807 with a sensitivity of 85.2% and a specificity of 63.0% (cutoff of 3.182). In addition, combining Fuc-GP73 and AFP-L3 greatly improved the diagnostic accuracy (AUC = 0.953) and the diagnostic values were 94.4% sensitivity at 88.9% specificity. These data indicated that multiple lectin assays could contribute to pre-clinical evaluation of focused glycoprotein and Fuc-GP73 could act as a potential glycobiomarker complementary to AFP-L3 for discrimination of HCC from LC patients.
Collapse
Affiliation(s)
- Kai Jiang
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuxin Shang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wei Li
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
36
|
Kaneko MK, Oki H, Hozumi Y, Liu X, Ogasawara S, Takagi M, Goto K, Kato Y. Monoclonal Antibody LpMab-9 Recognizes O-glycosylated N-Terminus of Human Podoplanin. Monoclon Antib Immunodiagn Immunother 2015; 34:310-7. [DOI: 10.1089/mab.2015.0022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mika K. Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroharu Oki
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yasukazu Hozumi
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Xing Liu
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
37
|
Narimatsu H. Development of M2BPGi: a novel fibrosis serum glyco-biomarker for chronic hepatitis/cirrhosis diagnostics. Expert Rev Proteomics 2015; 12:683-93. [PMID: 26394846 DOI: 10.1586/14789450.2015.1084874] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many proteins in the living body are glycoproteins, which present glycans linked on their surface. Glycan structures reflect the degree of cell differentiation or canceration and are cell specific. These characteristics are advantageous in the development of various disease biomarkers. Glycoprotein-based biomarkers (glyco-biomarkers) are developed by utilizing the specific changes in the glycan structure on a glycoprotein secreted from the diseased cells of interest. Therefore, quantification of the altered glycan structures is the key to developing a new glyco-biomarker. Glycoscience is a relatively new area of molecular science, and recent advancement of glycotechnologies is remarkable. In the author's institute, new glycoscience technologies have been designed to be efficiently utilized for the development of new diagnostic agents. This paper introduces a strategy for glyco-biomarker development, which was successfully applied in the development of Wisteria floribunda agglutinin-positive Mac-2 binding protein M2BPGi, a liver fibrosis marker now commercially available for clinical use.
Collapse
Affiliation(s)
- Hisashi Narimatsu
- a Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| |
Collapse
|
38
|
Hu B, Niu X, Cheng L, Yang LN, Li Q, Wang Y, Tao SC, Zhou SM. Discovering cancer biomarkers from clinical samples by protein microarrays. Proteomics Clin Appl 2015; 9:98-110. [PMID: 25523829 DOI: 10.1002/prca.201400094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
Abstract
Cancer biomarkers are of potential use in early cancer diagnosis, anticancer therapy development, and monitoring the responses to treatments. Protein-based cancer biomarkers are major forms in use, as they are much easier to be monitored in body fluids or tissues. For cancer biomarker discovery, high-throughput techniques such as protein microarrays hold great promises, because they are capable of global unbiased monitoring but with a miniaturized format. In doing so, novel and cancer type specific biomarkers can be systematically discovered at an affordable cost. In this review, we give a relatively complete picture on protein microarrays applied to clinical samples for cancer biomarker discovery, and conclude this review with the future perspectives.
Collapse
Affiliation(s)
- Bin Hu
- Institute for Microsurgery of Limbs, Shanghai Sixth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cook MC, Kaldas SJ, Muradia G, Rosu-Myles M, Kunkel JP. Comparison of orthogonal chromatographic and lectin-affinity microarray methods for glycan profiling of a therapeutic monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:162-78. [DOI: 10.1016/j.jchromb.2015.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
40
|
Silva MLS. Cancer serum biomarkers based on aberrant post-translational modifications of glycoproteins: Clinical value and discovery strategies. Biochim Biophys Acta Rev Cancer 2015; 1856:165-77. [PMID: 26232626 DOI: 10.1016/j.bbcan.2015.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Due to the increase in life expectancy in the last decades, as well as changes in lifestyle, cancer has become one of the most common diseases both in developed and developing countries. Early detection remains the most promising approach to improve long-term survival of cancer patients and this may be achieved by efficient screening of biomarkers in biological fluids. Great efforts have been made to identify specific alterations during oncogenesis. Changes at the cellular glycosylation profiles are among such alterations. The "glycosylation machinery" of cells is affected by malignant transformation due to the altered expression of glycogens, leading to changes in glycan biosynthesis and diversity. Alterations in the post-translational modifications of proteins that occur in cancer result in the expression of antigenically distinct glycoproteins. Therefore, these aberrant and cancer-specific glycoproteins and the autoantibodies that are produced in response to their presence constitute targets for cancer biomarkers' search. Different strategies have been implemented for the discovery of cancer glycobiomarkers and are herein reviewed, along with their potentialities and limitations. Practical issues related with serum analysis are also addressed, as well as the challenges that this area faces in the near future.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo km 4.5, 42184 Mineral de la Reforma, Hidalgo, México.
| |
Collapse
|
41
|
Matsuda A, Kuno A, Nakagawa T, Ikehara Y, Irimura T, Yamamoto M, Nakanuma Y, Miyoshi E, Nakamori S, Nakanishi H, Viwatthanasittiphong C, Srivatanakul P, Miwa M, Shoda J, Narimatsu H. Lectin Microarray-Based Sero-Biomarker Verification Targeting Aberrant O-Linked Glycosylation on Mucin 1. Anal Chem 2015; 87:7274-7281. [PMID: 26091356 DOI: 10.1021/acs.analchem.5b01329] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycoform of mucin 1 (MUC1) in cancerous cells changes markedly with cell differentiation, and thus, qualitative detection and verification of the MUC1 glycosylation changes have potential diagnostic value. We have developed an ultrasensitive method to detect the changes in cholangiocarcinoma (CC), which produces MUC1, and applied it in the diagnostics development. The focused glycan analysis using 43-lectin-immobilized microarray could obtain the glycan profiles of sialylated MUC1 in 5 μL of sera. The high-throughput analysis detected disease-specific alterations of glycosylation, and the statistical analysis confirmed that use of Wisteria floribunda agglutinin (WFA) alone produced a diagnostic score sufficient for discriminating 33 CC cases from 40 hepatolithiasis patients and 48 normal controls (p < 0.0001). The CC-related glycosylation change was verified by the lectin-antibody sandwich ELISA with WFA in two cohorts: (1) 78 Opisthorchis viverrini infected patients without CC and 78 with CC, (2) 33 CC patients and 40 hepatolithiasis patients (the same cohort used for the above lectin microarray). The WFA positivity distinguished patients with CC (opisthorchiasis: p < 0.0001, odds ratio = 1.047; hepatolithiasis: p = 0.0002, odds ratio = 1.018). Sensitive detection of qualitative alterations of sialylated MUC1 glycosylation is indispensable for the development of our glycodiagnostic test for CC.
Collapse
Affiliation(s)
- Atsushi Matsuda
- †Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Atsushi Kuno
- †Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Tomomi Nakagawa
- †Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Yuzuru Ikehara
- †Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Tatsuro Irimura
- ‡Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Masakazu Yamamoto
- §Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yasuni Nakanuma
- ∥Department of Human Pathology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Eiji Miyoshi
- ⊥Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Shoji Nakamori
- #National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka 540-0006, Japan
| | - Hayao Nakanishi
- ¶Division of Oncological Pathology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | | | - Petcharin Srivatanakul
- ▲National Cancer Institute of Thailand, 268/1 Rama VI, Ratchathewi, Bangkok 10400, Thailand
| | - Masanao Miwa
- ∇Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829 Japan
| | - Junichi Shoda
- ⬟Field of Basic Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| | - Hisashi Narimatsu
- †Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
42
|
Tang H, Hsueh P, Kletter D, Bern M, Haab B. The detection and discovery of glycan motifs in biological samples using lectins and antibodies: new methods and opportunities. Adv Cancer Res 2015; 126:167-202. [PMID: 25727148 DOI: 10.1016/bs.acr.2014.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent research has uncovered unexpected ways that glycans contribute to biology, as well as new strategies for combatting disease using approaches involving glycans. To make full use of glycans for clinical applications, we need more detailed information on the location, nature, and dynamics of glycan expression in vivo. Such studies require the use of specimens acquired directly from patients. Effective studies of clinical specimens require low-volume assays, high precision measurements, and the ability to process many samples. Assays using affinity reagents-lectins and glycan-binding antibodies-can meet these requirements, but further developments are needed to make the methods routine and effective. Recent advances in the use of glycan-binding proteins involve improved determination of specificity using glycan arrays; the availability of databases for mining and analyzing glycan array data; lectin engineering methods; and the ability to quantitatively interpret lectin measurements. Here, we describe many of the challenges and opportunities involved in the application of these new approaches to the study of biological samples. The new tools hold promise for developing methods to improve the outcomes of patients afflicted with diseases characterized by aberrant glycan expression.
Collapse
Affiliation(s)
- Huiyuan Tang
- Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peter Hsueh
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | - Brian Haab
- Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
43
|
Pihíková D, Kasák P, Tkac J. Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors. OPEN CHEM 2015; 13:636-655. [PMID: 27275016 PMCID: PMC4892350 DOI: 10.1515/chem-2015-0082] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycosylation of biomolecules is one of the most prevalent post- and co-translational modification in a human body, with more than half of all human proteins being glycosylated. Malignant transformation of cells influences glycosylation machinery resulting in subtle changes of the glycosylation pattern within the cell populations as a result of cancer. Thus, an altered terminal glycan motif on glycoproteins could provide a warning signal about disease development and progression and could be applied as a reliable biomarker in cancer diagnostics. Among all highly effective glycoprofiling tools, label-free electrochemical impedance spectroscopy (EIS)-based biosensors have emerged as especially suitable tool for point-of-care early-stage cancer detection. Herein, we highlight the current challenges in glycoprofiling of various cancer biomarkers by ultrasensitive impedimetric-based biosensors with low sample consumption, low cost fabrication and simple miniaturization. Additionally, this review provides a short introduction to the field of glycomics and lectinomics and gives a brief overview of glycan alterations in different types of cancer.
Collapse
Affiliation(s)
- Dominika Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak
Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava,
Slovakia
| | - Peter Kasák
- Center for Advanced Materials, Qatar University, P.O.Box 2713 Doha,
Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak
Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava,
Slovakia
| |
Collapse
|
44
|
Hirao Y, Matsuzaki H, Iwaki J, Kuno A, Kaji H, Ohkura T, Togayachi A, Abe M, Nomura M, Noguchi M, Ikehara Y, Narimatsu H. Glycoproteomics Approach for Identifying Glycobiomarker Candidate Molecules for Tissue Type Classification of Non-small Cell Lung Carcinoma. J Proteome Res 2014; 13:4705-16. [DOI: 10.1021/pr5006668] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yoshitoshi Hirao
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hideki Matsuzaki
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Jun Iwaki
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Atsushi Kuno
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hiroyuki Kaji
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Takashi Ohkura
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Akira Togayachi
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Minako Abe
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Masaharu Nomura
- Department
of Surgery I, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Masayuki Noguchi
- Department
of Pathology, Institute of Basic Medical Science, Graduated School
of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuzuru Ikehara
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hisashi Narimatsu
- Research
Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
45
|
Badr HA, Alsadek DMM, Darwish AA, Elsayed AI, Bekmanov BO, Khussainova EM, Zhang X, Cho WCS, Djansugurova LB, Li CZ. Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. Expert Rev Proteomics 2014; 11:227-236. [PMID: 24611567 DOI: 10.1586/14789450.2014.897611] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The nine FDA-approved protein biomarkers for the diagnosis and management of cancer are approaching maturity, but their different glycosylation compositions relevant to early diagnosis still remain practically unexplored at the sub-glycoproteome scale. Lectins generally exhibit strong binding to specific sub-glycoproteome components and this property has been quite poorly addressed as the basis for the early diagnosis methods. Here, we discuss some glycoproteome issues that make tackling the glycoproteome particularly challenging in the cancer biomarkers field and include a brief view for next generation technologies.
Collapse
Affiliation(s)
- Haitham A Badr
- Laboratory of Molecular Genetics, Institute of General Genetics and Cytology, Almaty 050060, Kazakhstan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Narimatsu Y, Kuno A, Ito H, Kaji H, Kaneko S, Usui J, Yamagata K, Narimatsu H. IgA nephropathy caused by unusual polymerization of IgA1 with aberrant N-glycosylation in a patient with monoclonal immunoglobulin deposition disease. PLoS One 2014; 9:e91079. [PMID: 24651839 PMCID: PMC3961232 DOI: 10.1371/journal.pone.0091079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a form of chronic glomerulonephritis characterized by the deposition of IgA immune complexes in the glomerular region. The cause of IgAN is unknown, but multiple mechanisms have been suggested. We previously reported a rare case of mesangioproliferative glomerulonephritis in a patient with monoclonal immunoglobulin deposition disease associated with monoclonal IgA1. In this study, we performed the detailed analyses of serum IgA1 from this patient in comparison with those from patients with mIgA plasma cell disorder without renal involvement and healthy volunteers. We found unusual polymerization of IgA1 with additional N-glycosylation distinctive in this patient, which was different from known etiologies. Glycan profiling of IgA1 by the lectin microarray revealed an intense signal for Wisteria floribunda agglutinin (WFA). This signal was reduced by disrupting the native conformation of IgA1, suggesting that the distinct glycan profile was reflecting the conformational alteration of IgA1, including the glycan conformation detected as additional N-glycans on both the heavy and light chains. This unusually polymerized state of IgA1 would cause an increase of the binding avidity for lectins. WFA specifically recognized highly polymerized and glycosylated IgA1. Our results of analysis in the rare case of a patient with monoclonal immunoglobulin deposition disease suggest that the formation of unusually polymerized IgA1 is caused by divergent mechanisms including multiple structural alterations of glycans, which contributes to IgA1 deposition and mesangium proliferation.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiromi Ito
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Biochemistry, Life Sciences and Social Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Kaji
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Syuzo Kaneko
- Department of Nephrology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Joichi Usui
- Department of Nephrology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
47
|
Xin AJ, Cheng L, Diao H, Wang P, Gu YH, Wu B, Wu YC, Chen GW, Zhou SM, Guo SJ, Shi HJ, Tao SC. Comprehensive profiling of accessible surface glycans of mammalian sperm using a lectin microarray. Clin Proteomics 2014; 11:10. [PMID: 24629138 PMCID: PMC4003823 DOI: 10.1186/1559-0275-11-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
It is well known that cell surface glycans or glycocalyx play important roles in sperm motility, maturation and fertilization. A comprehensive profile of the sperm surface glycans will greatly facilitate both basic research (sperm glycobiology) and clinical studies, such as diagnostics of infertility. As a group of natural glycan binders, lectin is an ideal tool for cell surface glycan profiling. However, because of the lack of effective technology, only a few lectins have been tested for lectin-sperm binding profiles. To address this challenge, we have developed a procedure for high-throughput probing of mammalian sperm with 91 lectins on lectin microarrays. Normal sperm from human, boar, bull, goat and rabbit were collected and analyzed on the lectin microarrays. Positive bindings of a set of ~50 lectins were observed for all the sperm of 5 species, which indicated a wide range of glycans are on the surface of mammalian sperm. Species specific lectin bindings were also observed. Clustering analysis revealed that the distances of the five species according to the lectin binding profiles are consistent with that of the genome sequence based phylogenetic tree except for rabbit. The procedure that we established in this study could be generally applicable for sperm from other species or defect sperm from the same species. We believe the lectin binding profiles of the mammalian sperm that we established in this study are valuable for both basic research and clinical studies.
Collapse
Affiliation(s)
- Ai-Jie Xin
- Shanghai Jiai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 20037, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Diao
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Peng Wang
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Yi-Hua Gu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Bin Wu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Yan-Cheng Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 20037, China
| | - Guo-Wu Chen
- Shanghai Jiai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Shu-Min Zhou
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Juan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
48
|
Ocho M, Togayachi A, Iio E, Kaji H, Kuno A, Sogabe M, Korenaga M, Gotoh M, Tanaka Y, Ikehara Y, Mizokami M, Narimatsu H. Application of a glycoproteomics-based biomarker development method: alteration in glycan structure on colony stimulating factor 1 receptor as a possible glycobiomarker candidate for evaluation of liver cirrhosis. J Proteome Res 2014; 13:1428-1437. [PMID: 24422531 DOI: 10.1021/pr400986t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The importance of diagnosis and therapies for liver cirrhosis (LC) is indisputable. Thus, a reliable method for monitoring the progression of liver fibrosis and resultant LC is urgently needed. Previously, using a lectin-assisted glycoproteomic method, we identified 26 serum glycoproteins as promising glycobiomarker candidates for monitoring the progression of liver diseases. In this study, we identified colony stimulating factor 1 receptor (CSF1R) as a promising LC marker candidate and then established Wisteria floribunda agglutinin (WFA)-reactive CSF1R (WFA(+)-CSF1R) as a novel possible glycobiomarker candidate by utilizing a glycoproteomics-based strategy. The serum level of WFA(+)-CSF1R in patients with hepatitis C virus (HCV)-infected liver disease was measured by an antibody-lectin sandwich ELISA. In a proof-of-concept experiment of the strategy preceding to future clinical studies, LC patients showed a high serum WFA(+)-CSF1R level in selected samples (P = 1.3 × 10(-17)). This result suggests WFA(+)-CSF1R is a possible biomarker candidate for evaluation of LC. Our results verified feasibility of this strategy for glycobiomarker development.
Collapse
Affiliation(s)
- Makoto Ocho
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hua S, Saunders M, Dimapasoc LM, Jeong SH, Kim BJ, Kim S, So M, Lee KS, Kim JH, Lam KS, Lebrilla CB, An HJ. Differentiation of cancer cell origin and molecular subtype by plasma membrane N-glycan profiling. J Proteome Res 2014; 13:961-8. [PMID: 24303873 DOI: 10.1021/pr400987f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In clinical settings, biopsies are routinely used to determine cancer type and grade based on tumor cell morphology, as determined via histochemical or immunohistochemical staining. Unfortunately, in a significant number of cases, traditional biopsy results are either inconclusive or do not provide full subtype differentiation, possibly leading to inefficient or ineffective treatment. Glycomic profiling of the cell membrane offers an alternate route toward cancer diagnosis. In this study, isomer-sensitive nano-LC/MS was used to directly obtain detailed profiles of the different N-glycan structures present on cancer cell membranes. Membrane N-glycans were extracted from cells representing various subtypes of breast, lung, cervical, ovarian, and lymphatic cancer. Chip-based porous graphitized carbon nano-LC/MS was used to separate, identify, and quantify the native N-glycans. Structure-sensitive N-glycan profiling identified hundreds of glycan peaks per cell line, including multiple isomers for most compositions. Hierarchical clusterings based on Pearson correlation coefficients were used to quickly compare and separate each cell line according to originating organ and disease subtype. Based simply on the relative abundances of broad glycan classes (e.g., high mannose, complex/hybrid fucosylated, complex/hybrid sialylated, etc.), most cell lines were readily differentiated. More closely related cell lines were differentiated based on several-fold differences in the abundances of individual glycans. Based on characteristic N-glycan profiles, primary cancer origins and molecular subtypes could be distinguished. These results demonstrate that stark differences in cancer cell membrane glycosylation can be exploited to create an MS-based biopsy, with potential applications toward cancer diagnosis and direction of treatment.
Collapse
Affiliation(s)
- Serenus Hua
- Cancer Research Institute, ‡Graduate School of Analytical Science and Technology, and §Department of Food Nutrition, Chungnam National University , Daejeon 305-764, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kuno A, Matsuda A, Unno S, Tan B, Hirabayashi J, Narimatsu H. Differential glycan analysis of an endogenous glycoprotein: toward clinical implementation--from sample pretreatment to data standardization. Methods Mol Biol 2014; 1200:265-285. [PMID: 25117242 DOI: 10.1007/978-1-4939-1292-6_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There are huge numbers of clinical specimens being stored that contain potential diagnostic marker molecules buried by the coexistence of high-abundance proteins. To utilize such valuable stocks efficiently, we must develop appropriate techniques to verify the molecules. Glycoproteins with disease-related glycosylation changes are a group of useful molecules that have long been recognized, but their application is not fully implemented. The technology for comparative analysis of such glycoproteins in biological specimens has tended to be left behind, which often leads to loss of useful information without it being recognized. In this chapter, we feature antibody-assisted lectin profiling employing antibody-overlay lectin microarray, the most suitable technology for comparative glycoanalysis of a trace amount of glycoproteins contained in biological specimens. We believe that sharing this detailed protocol will accelerate the glycoproteomics-based discovery of glyco-biomarkers that has attracted recent attention; simultaneously, it will increase the value of clinical specimens as a gold mine of information that has yet to be exploited.
Collapse
Affiliation(s)
- Atsushi Kuno
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan,
| | | | | | | | | | | |
Collapse
|