1
|
Matuszewska M, Wilkaniec A, Cieślik M, Strawski M, Czapski GA. The Inhibition of Bromodomain and Extraterminal Domain (BET) Proteins Protects Against Microglia-Mediated Neuronal Loss In Vitro. Biomolecules 2025; 15:528. [PMID: 40305227 PMCID: PMC12025334 DOI: 10.3390/biom15040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Neuroinflammation is a key feature of all neurodegenerative disorders, including Alzheimer's disease, and is tightly regulated by epigenetic mechanisms. Among them, bromodomain and extraterminal domain (BET) proteins play a crucial role by recognizing acetylated histones and acting as transcriptional co-regulators to modulate gene expression. This study investigates the potential of inhibiting BET proteins in preventing microglia-mediated neuronal damage in vitro. Murine BV2 microglial cells were exposed to lipopolysaccharide (LPS) or amyloid-β (Aβ) to induce an inflammatory response, and the subsequent effects on murine HT22 neuronal cells were examined. Among the BET proteins tested, only Brd4 was significantly upregulated in BV2 cells upon pro-inflammatory stimulation. JQ1, a potent pan-inhibitor of BET proteins, suppressed LPS-induced upregulation of pro-inflammatory cytokine mRNA levels, including Il1b, Il6, and Tnf, in BV2 microglia. Pre-treatment with JQ1 attenuated the cytotoxicity of LPS-activated BV2 cells toward neurons. Additionally, conditioned media from Aβ fibril-stimulated BV2 cells induced neuronal cell death, which was partially prevented by pre-treatment with JQ1. Co-culture assays further demonstrated the beneficial effect of BET inhibition. Our findings suggest that targeting BET proteins may offer a neuroprotective strategy by modulating microglial activation, potentially providing therapeutic benefits in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Matuszewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Department of Cellular Signalling, ul. Pawińskiego 5, 02-106 Warsaw, Poland; (M.M.); (A.W.); (M.C.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Department of Cellular Signalling, ul. Pawińskiego 5, 02-106 Warsaw, Poland; (M.M.); (A.W.); (M.C.)
| | - Magdalena Cieślik
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Department of Cellular Signalling, ul. Pawińskiego 5, 02-106 Warsaw, Poland; (M.M.); (A.W.); (M.C.)
| | - Marcin Strawski
- University of Warsaw, Faculty of Chemistry, ul. Pasteura 1, 02-093 Warsaw, Poland;
| | - Grzegorz A. Czapski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Department of Cellular Signalling, ul. Pawińskiego 5, 02-106 Warsaw, Poland; (M.M.); (A.W.); (M.C.)
| |
Collapse
|
2
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. Sci Rep 2023; 13:16731. [PMID: 37794081 PMCID: PMC10550974 DOI: 10.1038/s41598-023-43969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo. We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo.
Collapse
Affiliation(s)
- Kaitlin S Radmall
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Prakash K Shukla
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Andrew M Leng
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
- Huntsman Cancer Institute, University of Utah School of Medicine, 2000, Circle of Hope, Room 3715, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545485. [PMID: 37873190 PMCID: PMC10592830 DOI: 10.1101/2023.06.18.545485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo . We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo .
Collapse
|
4
|
Nickel GA, Diehl KL. Chemical Biology Approaches to Identify and Profile Interactors of Chromatin Modifications. ACS Chem Biol 2023; 18:1014-1026. [PMID: 35238546 PMCID: PMC9440160 DOI: 10.1021/acschembio.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In eukaryotes, DNA is packaged with histone proteins in a complex known as chromatin. Both the DNA and histone components of chromatin can be chemically modified in a wide variety of ways, resulting in a complex landscape often referred to as the "epigenetic code". These modifications are recognized by effector proteins that remodel chromatin and modulate transcription, translation, and repair of the underlying DNA. In this Review, we examine the development of methods for characterizing proteins that interact with these histone and DNA modifications. "Mark first" approaches utilize chemical, peptide, nucleosome, or oligonucleotide probes to discover interactors of a specific modification. "Reader first" approaches employ arrays of peptides, nucleosomes, or oligonucleotides to profile the binding preferences of interactors. These complementary strategies have greatly enhanced our understanding of how chromatin modifications effect changes in genomic regulation, bringing us ever closer to deciphering this complex language.
Collapse
Affiliation(s)
- Garrison A. Nickel
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Katharine L. Diehl
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
5
|
Chacin E, Bansal P, Reusswig KU, Diaz-Santin LM, Ortega P, Vizjak P, Gómez-González B, Müller-Planitz F, Aguilera A, Pfander B, Cheung ACM, Kurat CF. A CDK-regulated chromatin segregase promoting chromosome replication. Nat Commun 2021; 12:5224. [PMID: 34471130 PMCID: PMC8410769 DOI: 10.1038/s41467-021-25424-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
The replication of chromosomes during S phase is critical for cellular and organismal function. Replicative stress can result in genome instability, which is a major driver of cancer. Yet how chromatin is made accessible during eukaryotic DNA synthesis is poorly understood. Here, we report the characterization of a chromatin remodeling enzyme-Yta7-entirely distinct from classical SNF2-ATPase family remodelers. Yta7 is a AAA+ -ATPase that assembles into ~1 MDa hexameric complexes capable of segregating histones from DNA. The Yta7 chromatin segregase promotes chromosome replication both in vivo and in vitro. Biochemical reconstitution experiments using purified proteins revealed that the enzymatic activity of Yta7 is regulated by S phase-forms of Cyclin-Dependent Kinase (S-CDK). S-CDK phosphorylation stimulates ATP hydrolysis by Yta7, promoting nucleosome disassembly and chromatin replication. Our results present a mechanism for how cells orchestrate chromatin dynamics in co-ordination with the cell cycle machinery to promote genome duplication during S phase.
Collapse
Affiliation(s)
- Erika Chacin
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Priyanka Bansal
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Karl-Uwe Reusswig
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Planegg-Martinsried, Germany
| | - Luis M Diaz-Santin
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, UK
| | - Pedro Ortega
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Petra Vizjak
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Belen Gómez-González
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Felix Müller-Planitz
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany.,Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrés Aguilera
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Planegg-Martinsried, Germany
| | - Alan C M Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Christoph F Kurat
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
van Mierlo G, Vermeulen M. Chromatin Proteomics to Study Epigenetics - Challenges and Opportunities. Mol Cell Proteomics 2021; 20:100056. [PMID: 33556626 PMCID: PMC7973309 DOI: 10.1074/mcp.r120.002208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulation of gene expression is essential for the functioning of all eukaryotic organisms. Understanding gene expression regulation requires determining which proteins interact with regulatory elements in chromatin. MS-based analysis of chromatin has emerged as a powerful tool to identify proteins associated with gene regulation, as it allows studying protein function and protein complex formation in their in vivo chromatin-bound context. Total chromatin isolated from cells can be directly analyzed using MS or further fractionated into transcriptionally active and inactive chromatin prior to MS-based analysis. Newly formed chromatin that is assembled during DNA replication can also be specifically isolated and analyzed. Furthermore, capturing specific chromatin domains facilitates the identification of previously unknown transcription factors interacting with these domains. Finally, in recent years, advances have been made toward identifying proteins that interact with a single genomic locus of interest. In this review, we highlight the power of chromatin proteomics approaches and how these provide complementary alternatives compared with conventional affinity purification methods. Furthermore, we discuss the biochemical challenges that should be addressed to consolidate and expand the role of chromatin proteomics as a key technology in the context of gene expression regulation and epigenetics research in health and disease. An overview of proteomics methods to study chromatin and gene regulation. Strength and limitations of the different approaches are highlighted. An outlook on the outstanding challenges for chromatin proteomics. Future directions for chromatin proteomics are discussed.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Nicosia L, Bonaldi T. Native Chromatin Proteomics (N-ChroP) to Characterize Histone Post-translational Modification (PTM) Combinatorics at Distinct Genomic Regions. Methods Mol Biol 2021; 2351:251-274. [PMID: 34382194 DOI: 10.1007/978-1-0716-1597-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this chapter, we describe the proteomic approach named "Native Chromatin Proteomics" (N-ChroP) that couples a modified Chromatin ImmunoPrecipitation (ChIP) protocol with the mass spectrometry (MS) analysis of immunoprecipitated proteins to study the combinatorial enrichment or exclusion of histone post-translational modifications (PTMs) at specific genomic regions, such as promoters or enhancers. We describe the protocol steps from the digestion of chromatin and nucleosome immunoprecipitation to histone digestion and peptide enrichment prior to MS analysis, up to the MS raw data analysis. We also discuss current challenges and offer suggestions based on the direct hands-on experience acquired during the method setup.
Collapse
Affiliation(s)
- Luciano Nicosia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
8
|
Kougnassoukou Tchara PE, Filippakopoulos P, Lambert JP. Emerging tools to investigate bromodomain functions. Methods 2020; 184:40-52. [DOI: 10.1016/j.ymeth.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
|
9
|
Sequeira VM, Vermeulen M. Identifying Readers for (hydroxy)methylated DNA Using Quantitative Interaction Proteomics: Advances and Challenges Ahead. J Mol Biol 2020:S0022-2836(19)30714-4. [DOI: 10.1016/j.jmb.2019.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023]
|
10
|
Cuevas-Bermúdez A, Garrido-Godino AI, Gutiérrez-Santiago F, Navarro F. A Yeast Chromatin-enriched Fractions Purification Approach, yChEFs, from Saccharomyces cerevisiae. Bio Protoc 2020; 10:e3471. [PMID: 33654706 DOI: 10.21769/bioprotoc.3471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/02/2022] Open
Abstract
We have adapted a previous procedure and improved an approach that we named yChEFs (yeast Chromatin Enriched Fractions) for purifying chromatin fractions. This methodology allows the easy, reproducible and scalable recovery of proteins associated with chromatin. By using yChEFs, we bypass subcellular fractionation requirements involved when using zymolyase to obtain the spheroplast, which is employed in many other procedures. Employing small amount of culture cells and small volumes of solutions during the yChEFs procedure is very useful to allow many samples to be handled at the same time, and also reduces costs and efforts. The purified proteins associated with chromatin fractions obtained by yChEFs can be analyzed by Western blot (Figure 1) or combined with mass spectrometry for proteomic analyses.
Collapse
Affiliation(s)
- Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | | | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar. Universidad de Jaén, Paraje de las Lagunillas, s/n, E23071, Jaén, Spain
| |
Collapse
|
11
|
Function of the MYND Domain and C-Terminal Region in Regulating the Subcellular Localization and Catalytic Activity of the SMYD Family Lysine Methyltransferase Set5. Mol Cell Biol 2020; 40:MCB.00341-19. [PMID: 31685550 DOI: 10.1128/mcb.00341-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022] Open
Abstract
SMYD lysine methyltransferases target histones and nonhistone proteins for methylation and are critical regulators of muscle development and implicated in neoplastic transformation. They are characterized by a split catalytic SET domain and an intervening MYND zinc finger domain, as well as an extended C-terminal domain. Saccharomyces cerevisiae contains two SMYD proteins, Set5 and Set6, which share structural elements with the mammalian SMYD enzymes. Set5 is a histone H4 lysine 5, 8, and 12 methyltransferase, implicated in the regulation of stress responses and genome stability. While the SMYD proteins have diverse roles in cells, there are many gaps in our understanding of how these enzymes are regulated. Here, we performed mutational analysis of Set5, combined with phosphoproteomics, to identify regulatory mechanisms for its enzymatic activity and subcellular localization. Our results indicate that the MYND domain promotes Set5 chromatin association in cells and is required for its role in repressing subtelomeric genes. Phosphoproteomics revealed extensive phosphorylation of Set5, and phosphomimetic mutations enhance Set5 catalytic activity but diminish its ability to interact with chromatin in cells. These studies uncover multiple regions within Set5 that regulate its localization and activity and highlight potential avenues for understanding mechanisms controlling the diverse roles of SMYD enzymes.
Collapse
|
12
|
Cuevas-Bermúdez A, Garrido-Godino AI, Navarro F. A novel yeast chromatin-enriched fractions purification approach, yChEFs, for the chromatin-associated protein analysis used for chromatin-associated and RNA-dependent chromatin-associated proteome studies from Saccharomyces cerevisiae. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Wu R, Amin A, Wang Z, Huang Y, Man-Hei Cheung M, Yu Z, Yang W, Liang C. The interaction networks of the budding yeast and human DNA replication-initiation proteins. Cell Cycle 2019; 18:723-741. [PMID: 30890025 DOI: 10.1080/15384101.2019.1586509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
DNA replication is a stringently regulated cellular process. In proliferating cells, DNA replication-initiation proteins (RIPs) are sequentially loaded onto replication origins during the M-to-G1 transition to form the pre-replicative complex (pre-RC), a process known as replication licensing. Subsequently, additional RIPs are recruited to form the pre-initiation complex (pre-IC). RIPs and their regulators ensure that chromosomal DNA is replicated exactly once per cell cycle. Origin recognition complex (ORC) binds to, and marks replication origins throughout the cell cycle and recruits other RIPs including Noc3p, Ipi1-3p, Cdt1p, Cdc6p and Mcm2-7p to form the pre-RC. The detailed mechanisms and regulation of the pre-RC and its exact architecture still remain unclear. In this study, pairwise protein-protein interactions among 23 budding yeast and 16 human RIPs were systematically and comprehensively examined by yeast two-hybrid analysis. This study tested 470 pairs of yeast and 196 pairs of human RIPs, from which 113 and 96 positive interactions, respectively, were identified. While many of these interactions were previously reported, some were novel, including various ORC and MCM subunit interactions, ORC self-interactions, and the interactions of IPI3 and NOC3 with several pre-RC and pre-IC proteins. Ten of the novel interactions were further confirmed by co-immunoprecipitation assays. Furthermore, we identified the conserved interaction networks between the yeast and human RIPs. This study provides a foundation and framework for further understanding the architectures, interactions and functions of the yeast and human pre-RC and pre-IC.
Collapse
Affiliation(s)
- Rentian Wu
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China
| | - Aftab Amin
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,c School of Chinese Medicine , Hong Kong Baptist University , Guangzhou , China
| | - Ziyi Wang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Yining Huang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Marco Man-Hei Cheung
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China
| | - Zhiling Yu
- c School of Chinese Medicine , Hong Kong Baptist University , Guangzhou , China
| | - Wei Yang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,d Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd , Hong Kong , China
| | - Chun Liang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,e ntelgen Limited , Hong Kong-Guangzhou-Foshan , China
| |
Collapse
|
14
|
Mauger F, Deleuze JF. Technological advances in studying epigenetics biomarkers of prognostic potential for clinical research. PROGNOSTIC EPIGENETICS 2019:45-83. [DOI: 10.1016/b978-0-12-814259-2.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Martin BJE, Chruscicki AT, Howe LJ. Transcription Promotes the Interaction of the FAcilitates Chromatin Transactions (FACT) Complex with Nucleosomes in Saccharomyces cerevisiae. Genetics 2018; 210:869-881. [PMID: 30237209 PMCID: PMC6218215 DOI: 10.1534/genetics.118.301349] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
The FACT (FAcilitates Chromatin Transactions) complex is a conserved complex that maintains chromatin structure on transcriptionally active genes. Consistent with this, FACT is enriched on highly expressed genes, but how it is targeted to these regions is unknown. In vitro, FACT binds destabilized nucleosomes, supporting the hypothesis that FACT is targeted to transcribed chromatin through recognition of RNA polymerase (RNAP)-disrupted nucleosomes. In this study, we used high-resolution analysis of FACT occupancy in Saccharomyces cerevisiae to test this hypothesis. We demonstrate that FACT interacts with nucleosomes in vivo and that its interaction with chromatin is dependent on transcription by any of the three RNAPs. Deep sequencing of micrococcal nuclease-resistant fragments shows that FACT-bound nucleosomes exhibit differing nuclease sensitivity compared to bulk chromatin, consistent with a modified nucleosome structure being the preferred ligand for this complex. Interestingly, a subset of FACT-bound nucleosomes may be "overlapping dinucleosomes," in which one histone octamer invades the ∼147-bp territory normally occupied by the adjacent nucleosome. While the differing nuclease sensitivity of FACT-bound nucleosomes could also be explained by the demonstrated ability of FACT to alter nucleosome structure, transcription inhibition restores nuclease resistance, suggesting that it is not due to FACT interaction alone. Collectively, these results are consistent with a model in which FACT is targeted to transcribed genes through preferential interaction with RNAP-disrupted nucleosomes.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adam T Chruscicki
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
16
|
Modulating transcription factor activity: Interfering with protein-protein interaction networks. Semin Cell Dev Biol 2018; 99:12-19. [PMID: 30172762 DOI: 10.1016/j.semcdb.2018.07.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/16/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022]
Abstract
Biophysical parameters that govern transcription factors activity are binding locations across the genome, dwelling time at these regulatory elements and specific protein-protein interactions. Most molecular strategies used to develop small compounds that block transcription factors activity have been based on biochemistry and cell biology methods that that do not take into consideration these key biophysical features. Here, we review the advance in the field of transcription factor biology and describe how their interactome and transcriptional regulation on a genome wide scale have been deciphered. We suggest that this new knowledge has the potential to be used to implement innovative research drug discovery program.
Collapse
|
17
|
Kuznetsov VI, Haws SA, Fox CA, Denu JM. General method for rapid purification of native chromatin fragments. J Biol Chem 2018; 293:12271-12282. [PMID: 29794135 PMCID: PMC6078465 DOI: 10.1074/jbc.ra118.002984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Indexed: 11/06/2022] Open
Abstract
Biochemical, proteomic, and epigenetic studies of chromatin rely on the ability to efficiently isolate native nucleosomes in high yield and purity. However, isolation of native chromatin suitable for many downstream experiments remains a challenging task. This is especially true for the budding yeast Saccharomyces cerevisiae, which continues to serve as an important model organism for the study of chromatin structure and function. Here, we developed a time- and cost-efficient universal protocol for isolation of native chromatin fragments from yeast, insect, and mammalian cells. The resulting protocol preserves histone posttranslational modification in the native chromatin state and is applicable for both parallel multisample spin-column purification and large-scale isolation. This protocol is based on the efficient and stable purification of polynucleosomes and features a combination of optimized cell lysis and purification conditions, three options for chromatin fragmentation, and a novel ion-exchange chromatographic purification strategy. The procedure will aid chromatin researchers interested in isolating native chromatin material for biochemical studies and serve as a mild, acid- and detergent-free sample preparation method for MS analysis.
Collapse
Affiliation(s)
- Vyacheslav I Kuznetsov
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53715; Wisconsin Institute for Discovery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53715
| | - Spencer A Haws
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53715; Wisconsin Institute for Discovery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53715
| | - Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53715.
| | - John M Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53715; Wisconsin Institute for Discovery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53715; Morgridge Institute for Research, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53715.
| |
Collapse
|
18
|
Guillen-Ahlers H, Rao PK, Perumalla DS, Montoya MJ, Jadhav AYL, Shortreed MR, Smith LM, Olivier M. Adaptation of Hybridization Capture of Chromatin-associated Proteins for Proteomics to Mammalian Cells. J Vis Exp 2018. [PMID: 29912191 DOI: 10.3791/57140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The hybridization capture of chromatin-associated proteins for proteomics (HyCCAPP) technology was initially developed to uncover novel DNA-protein interactions in yeast. It allows analysis of a target region of interest without the need for prior knowledge about likely proteins bound to the target region. This, in theory, allows HyCCAPP to be used to analyze any genomic region of interest, and it provides sufficient flexibility to work in different cell systems. This method is not meant to study binding sites of known transcription factors, a task better suited for Chromatin Immunoprecipitation (ChIP) and ChIP-like methods. The strength of HyCCAPP lies in its ability to explore DNA regions for which there is limited or no knowledge about the proteins bound to it. It can also be a convenient method to avoid biases (present in ChIP-like methods) introduced by protein-based chromatin enrichment using antibodies. Potentially, HyCCAPP can be a powerful tool to uncover truly novel DNA-protein interactions. To date, the technology has been predominantly applied to yeast cells or to high copy repeat sequences in mammalian cells. In order to become the powerful tool we envision, HyCCAPP approaches need to be optimized to efficiently capture single-copy loci in mammalian cells. Here, we present our adaptation of the initial yeast HyCCAPP capture protocol to human cell lines, and show that single-copy chromatin regions can be efficiently isolated with this modified protocol.
Collapse
Affiliation(s)
- Hector Guillen-Ahlers
- Department of Genetics, Texas Biomedical Research Institute; Department of Internal Medicine-Molecular Medicine, Wake Forest University School of Medicine
| | - Prahlad K Rao
- Department of Genetics, Texas Biomedical Research Institute
| | | | | | | | | | | | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute; Department of Internal Medicine-Molecular Medicine, Wake Forest University School of Medicine;
| |
Collapse
|
19
|
Eubanks CG, Dayebgadoh G, Liu X, Washburn MP. Unravelling the biology of chromatin in health and cancer using proteomic approaches. Expert Rev Proteomics 2017; 14:905-915. [PMID: 28895440 DOI: 10.1080/14789450.2017.1374860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chromatin remodeling complexes play important roles in the control of genome regulation in both normal and diseased states, and are therefore critical components for the regulation of epigenetic states in cells. Given the role epigenetics plays in cancer, for example, chromatin remodeling complexes are routinely targeted for therapeutic intervention. Areas covered: Protein mass spectrometry and proteomics are powerful technologies used to study and understand chromatin remodeling. While impressive progress has been made in this area, there remain significant challenges in the application of proteomic technologies to the study of chromatin remodeling. As parts of large multi-subunit complexes that can be heavily modified with dynamic post-translational modifications, challenges in the study of chromatin remodeling complexes include defining the content, determining the regulation, and studying the dynamics of the complexes under different cellular states. Expert commentary: Impwortant considerations in the study of chromatin remodeling complexes include the complexity of sample preparation, the choice of proteomic methods for the analysis of samples, and data analysis challenges. Continued research in these three areas promise to yield even greater insights into the biology of chromatin remodeling and epigenetics and the dynamics of these systems in human health and cancer.
Collapse
Affiliation(s)
| | | | - Xingyu Liu
- a Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Michael P Washburn
- a Stowers Institute for Medical Research , Kansas City , MO , USA.,b Departments of Pathology & Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
20
|
Groehler A, Degner A, Tretyakova NY. Mass Spectrometry-Based Tools to Characterize DNA-Protein Cross-Linking by Bis-Electrophiles. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:63-77. [PMID: 28032943 DOI: 10.1111/bcpt.12751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that form in cells as a result of exposure to endogenous and exogenous agents including reactive oxygen species, ultraviolet light, ionizing radiation, environmental agents (e.g. transition metals, formaldehyde, 1,2-dibromoethane, 1,3-butadiene) and common chemotherapeutic agents. Covalent DPCs are cytotoxic and mutagenic due to their ability to interfere with faithful DNA replication and to prevent accurate gene expression. Key to our understanding of the biological significance of DPC formation is identifying the proteins most susceptible to forming these unusually bulky and complex lesions and quantifying the extent of DNA-protein cross-linking in cells and tissues. Recent advances in bottom-up mass spectrometry-based proteomics have allowed for an unbiased assessment of the whole protein DPC adductome after in vitro and in vivo exposures to cross-linking agents. This MiniReview summarizes current and emerging methods for DPC isolation and analysis by mass spectrometry-based proteomics. We also highlight several examples of successful applications of these novel methodologies to studies of DPC lesions induced by bis-electrophiles such as formaldehyde, 1,2,3,4-diepoxybutane, nitrogen mustards and cisplatin.
Collapse
Affiliation(s)
- Arnold Groehler
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Degner
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Lysine acetyltransferase NuA4 and acetyl-CoA regulate glucose-deprived stress granule formation in Saccharomyces cerevisiae. PLoS Genet 2017; 13:e1006626. [PMID: 28231279 PMCID: PMC5344529 DOI: 10.1371/journal.pgen.1006626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/09/2017] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules.
Collapse
|
22
|
Kappei D, Scheibe M, Paszkowski-Rogacz M, Bluhm A, Gossmann TI, Dietz S, Dejung M, Herlyn H, Buchholz F, Mann M, Butter F. Phylointeractomics reconstructs functional evolution of protein binding. Nat Commun 2017; 8:14334. [PMID: 28176777 PMCID: PMC5309834 DOI: 10.1038/ncomms14334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022] Open
Abstract
Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships.
Collapse
Affiliation(s)
- Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.,Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany
| | - Marion Scheibe
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany
| | - Alina Bluhm
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Toni Ingolf Gossmann
- Department of Animal &Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sabrina Dietz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Holger Herlyn
- Institute of Anthropology, University of Mainz, Anselm-Franz-von-Bentzel-Weg 7, Mainz D-55099, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden D-01307, Germany.,German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK) partner site, Fetscherstr. 74, 01307 Dresden Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden D-01307, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| |
Collapse
|
23
|
Abstract
Characterizing the composition of protein complexes bound to different genomic loci is essential for advancing our mechanistic understanding of transcriptional regulation. In their recent study, Krijgsveld and colleagues (Rafiee et al, 2016) report ChIP‐SICAP, a powerful tool for deciphering the chromatin proteome by combining chromatin immunoprecipitation, selective isolation of chromatin‐associated proteins and mass spectrometry.
Collapse
Affiliation(s)
- Dalila Bensaddek
- Laboratory of Quantitative Proteomics, Centre for Gene Regulation and Expression, School of Life Sciences University of Dundee Discovery Centre, Dundee, UK
| | - Angus I Lamond
- Laboratory of Quantitative Proteomics, Centre for Gene Regulation and Expression, School of Life Sciences University of Dundee Discovery Centre, Dundee, UK
| |
Collapse
|
24
|
Rafiee MR, Girardot C, Sigismondo G, Krijgsveld J. Expanding the Circuitry of Pluripotency by Selective Isolation of Chromatin-Associated Proteins. Mol Cell 2016; 64:624-635. [PMID: 27773674 PMCID: PMC5101186 DOI: 10.1016/j.molcel.2016.09.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/11/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022]
Abstract
Maintenance of pluripotency is regulated by a network of transcription factors coordinated by Oct4, Sox2, and Nanog (OSN), yet a systematic investigation of the composition and dynamics of the OSN protein network specifically on chromatin is still missing. Here we have developed a method combining ChIP with selective isolation of chromatin-associated proteins (SICAP) followed by mass spectrometry to identify chromatin-bound partners of a protein of interest. ChIP-SICAP in mouse embryonic stem cells (ESCs) identified over 400 proteins associating with OSN, including several whose interaction depends on the pluripotent state. Trim24, a previously unrecognized protein in the network, converges with OSN on multiple enhancers and suppresses the expression of developmental genes while activating cell cycle genes. Consistently, Trim24 significantly improved efficiency of cellular reprogramming, demonstrating its direct functionality in establishing pluripotency. Collectively, ChIP-SICAP provides a powerful tool to decode chromatin protein composition, further enhanced by its integrative capacity to perform ChIP-seq. ChIP-SICAP isolates and identifies proteins that colocalize on chromatin Chromatin composition around Oct4, Sox2, and Nanog depends on the pluripotent state Trim24 is part of the pluripotency network and promotes reprogramming ChIP-SICAP allows recovery of DNA for sequencing with ChIP-seq quality
Collapse
Affiliation(s)
- Mahmoud-Reza Rafiee
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gianluca Sigismondo
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
25
|
Wierer M, Mann M. Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Hum Mol Genet 2016; 25:R106-R114. [PMID: 27402878 PMCID: PMC5036873 DOI: 10.1093/hmg/ddw208] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/24/2016] [Indexed: 01/30/2023] Open
Abstract
High-resolution mass spectrometry (MS)-based proteomics is a powerful method for the identification of soluble protein complexes and large-scale affinity purification screens can decode entire protein interaction networks. In contrast, protein complexes residing on chromatin have been much more challenging, because they are difficult to purify and often of very low abundance. However, this is changing due to recent methodological and technological advances in proteomics. Proteins interacting with chromatin marks can directly be identified by pulldowns with synthesized histone tails containing posttranslational modifications (PTMs). Similarly, pulldowns with DNA baits harbouring single nucleotide polymorphisms or DNA modifications reveal the impact of those DNA alterations on the recruitment of transcription factors. Accurate quantitation – either isotope-based or label free – unambiguously pinpoints proteins that are significantly enriched over control pulldowns. In addition, protocols that combine classical chromatin immunoprecipitation (ChIP) methods with mass spectrometry (ChIP-MS) target gene regulatory complexes in their in-vivo context. Similar to classical ChIP, cells are crosslinked with formaldehyde and chromatin sheared by sonication or nuclease digested. ChIP-MS baits can be proteins in tagged or endogenous form, histone PTMs, or lncRNAs. Locus-specific ChIP-MS methods would allow direct purification of a single genomic locus and the proteins associated with it. There, loci can be targeted either by artificial DNA-binding sites and corresponding binding proteins or via proteins with sequence specificity such as TAL or nuclease deficient Cas9 in combination with a specific guide RNA. We predict that advances in MS technology will soon make such approaches generally applicable tools in epigenetics.
Collapse
Affiliation(s)
- Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
26
|
Berry LK, Ólafsson G, Ledesma-Fernández E, Thorpe PH. Synthetic protein interactions reveal a functional map of the cell. eLife 2016; 5:e13053. [PMID: 27098839 PMCID: PMC4841780 DOI: 10.7554/elife.13053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/17/2016] [Indexed: 11/13/2022] Open
Abstract
To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations - a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells.
Collapse
Affiliation(s)
- Lisa K Berry
- Mitotic Control Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Guðjón Ólafsson
- Mitotic Control Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Elena Ledesma-Fernández
- Mitotic Control Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Peter H Thorpe
- Mitotic Control Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
27
|
Rafehi H, Khan AW, El-Osta A. Improving understanding of chromatin regulatory proteins and potential implications for drug discovery. Expert Rev Proteomics 2016; 13:435-45. [PMID: 26923902 DOI: 10.1586/14789450.2016.1159960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many epigenetic-based therapeutics, including drugs such as histone deacetylase inhibitors, are now used in the clinic or are undergoing advanced clinical trials. The study of chromatin-modifying proteins has benefited from the rapid advances in high-throughput sequencing methods, the organized efforts of major consortiums and by individual groups to profile human epigenomes in diverse tissues and cell types. However, while such initiatives have carefully characterized healthy human tissue, disease epigenomes and drug-epigenome interactions remain very poorly understood. Reviewed here is how high-throughput sequencing improves our understanding of chromatin regulator proteins and the potential implications for the study of human disease and drug development and discovery.
Collapse
Affiliation(s)
- Haloom Rafehi
- a Epigenetics in Human Health and Disease Laboratory , Baker IDI Heart and Diabetes Institute , Melbourne , Victoria , Australia
| | - Abdul Waheed Khan
- a Epigenetics in Human Health and Disease Laboratory , Baker IDI Heart and Diabetes Institute , Melbourne , Victoria , Australia.,b Department of Pathology , The University of Melbourne , Parkville , Victoria , Australia
| | - Assam El-Osta
- a Epigenetics in Human Health and Disease Laboratory , Baker IDI Heart and Diabetes Institute , Melbourne , Victoria , Australia.,b Department of Pathology , The University of Melbourne , Parkville , Victoria , Australia.,c Faculty of Medicine , Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
28
|
Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 2016; 8:429-45. [DOI: 10.2217/epi.15.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an overview of the applications of MS-based proteomics in various areas of chromatin biology.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, via Adamello 16, Milano, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| |
Collapse
|
29
|
Valero ML, Sendra R, Pamblanco M. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae. J Proteomics 2016; 136:183-92. [PMID: 26778144 DOI: 10.1016/j.jprot.2016.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction.
Collapse
Affiliation(s)
- M Luz Valero
- Secció de Proteòmica, Servei Central de Suport a la Investigació Experimental (SCSIE), Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, València, Spain.
| | - Ramon Sendra
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, València, Spain.
| | - Mercè Pamblanco
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, València, Spain.
| |
Collapse
|
30
|
Jose L, Ramachandran R, Bhagavat R, Gomez RL, Chandran A, Raghunandanan S, Omkumar RV, Chandra N, Mundayoor S, Kumar RA. Hypothetical protein Rv3423.1 ofMycobacterium tuberculosisis a histone acetyltransferase. FEBS J 2015; 283:265-81. [DOI: 10.1111/febs.13566] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Leny Jose
- Mycobacterium Research Group; Tropical Disease Biology Division; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Ranjit Ramachandran
- Mycobacterium Research Group; Tropical Disease Biology Division; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Raghu Bhagavat
- Bioinformatics Centre; Indian Institute of Science; Bangalore India
| | - Roshna Lawrence Gomez
- Mycobacterium Research Group; Tropical Disease Biology Division; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Aneesh Chandran
- Mycobacterium Research Group; Tropical Disease Biology Division; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Sajith Raghunandanan
- Mycobacterium Research Group; Tropical Disease Biology Division; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | | | - Nagasuma Chandra
- Bioinformatics Centre; Indian Institute of Science; Bangalore India
| | - Sathish Mundayoor
- Mycobacterium Research Group; Tropical Disease Biology Division; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Group; Tropical Disease Biology Division; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| |
Collapse
|
31
|
Mayne J, Ning Z, Zhang X, Starr AE, Chen R, Deeke S, Chiang CK, Xu B, Wen M, Cheng K, Seebun D, Star A, Moore JI, Figeys D. Bottom-Up Proteomics (2013-2015): Keeping up in the Era of Systems Biology. Anal Chem 2015; 88:95-121. [PMID: 26558748 DOI: 10.1021/acs.analchem.5b04230] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Xu Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Amanda E Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Rui Chen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Shelley Deeke
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Bo Xu
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Ming Wen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Kai Cheng
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Deeptee Seebun
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Alexandra Star
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Jasmine I Moore
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| |
Collapse
|
32
|
Chao JT, Wong AKO, Tavassoli S, Young BP, Chruscicki A, Fang NN, Howe LJ, Mayor T, Foster LJ, Loewen CJR. Polarization of the endoplasmic reticulum by ER-septin tethering. Cell 2015; 158:620-32. [PMID: 25083872 DOI: 10.1016/j.cell.2014.06.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023]
Abstract
Polarization of the plasma membrane (PM) into domains is an important mechanism to compartmentalize cellular activities and to establish cell polarity. Polarization requires formation of diffusion barriers that prevent mixing of proteins between domains. Recent studies have uncovered that the endoplasmic reticulum (ER) of budding yeast and neurons is polarized by diffusion barriers, which in neurons controls glutamate signaling in dendritic spines. The molecular identity of these barriers is currently unknown. Here, we show that a direct interaction between the ER protein Scs2 and the septin Shs1 creates the ER diffusion barrier in yeast. Barrier formation requires Epo1, a novel ER-associated subunit of the polarisome that interacts with Scs2 and Shs1. ER-septin tethering polarizes the ER into separate mother and bud domains, one function of which is to position the spindle in the mother until M phase by confining the spindle capture protein Num1 to the mother ER.
Collapse
Affiliation(s)
- Jesse T Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Andrew K O Wong
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Shabnam Tavassoli
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Barry P Young
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Adam Chruscicki
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Nancy N Fang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver BC V6T 1Z4, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver BC V6T 1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver BC V6T 1Z4, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada.
| |
Collapse
|
33
|
Nguyen NTT, Saguez C, Conesa C, Lefebvre O, Acker J. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 2015; 556:51-60. [DOI: 10.1016/j.gene.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023]
|
34
|
Alekseyenko AA, McElroy KA, Kang H, Zee BM, Kharchenko PV, Kuroda MI. BioTAP-XL: Cross-linking/Tandem Affinity Purification to Study DNA Targets, RNA, and Protein Components of Chromatin-Associated Complexes. ACTA ACUST UNITED AC 2015; 109:21.30.1-21.30.32. [PMID: 25559106 DOI: 10.1002/0471142727.mb2130s109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to understand how chromatin complexes function in the nucleus, it is important to obtain a comprehensive picture of their protein, DNA, and RNA components, as well as their mutual interactions. This unit presents a chromatin cross-linking approach (BioTAP-XL) that utilizes a special BioTAP-tagged transgenic protein bait along with mass spectrometry to identify protein complex components, and high-throughput sequencing to identify RNA components and DNA binding sites. Full protocols are provided for Drosophila cells and for human cells in culture, along with an additional protocol for Drosophila embryos as the source material. A key element of the approach in all cases is the generation of control data from input chromatin samples.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Kyle A McElroy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Barry M Zee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts.,Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Abstract
The extent of chromatin compaction is a fundamental driver of nuclear metabolism . Yta7 is a chromatin-associated AAA-ATPase, the human ortholog of which, ANCCA/ATAD2 transcriptionally activates pathways of malignancy in a broad range of cancers. Yta7 directly binds histone H3, and bulk chromatin exhibits increased nucleosomal density in yta7Δ mutants. The suppression of yta7Δ mutant growth and transcriptional phenotypes in budding yeast by decreased dosage of histones H3 and H4 indicates the acute sensitivity of cells to deviations in nucleosome spacing. This study investigated the global changes in chromatin structure upon Yta7 loss or overexpression and determined which of these effects reflected direct Yta7 activity. Metagene analysis of Yta7's genome-wide localization indicated peak binding of Yta7 just downstream of the transcription start site. Cells lacking Yta7 exhibited increased nucleosome density within genes downstream of the +1 nucleosome, as defined by decreased internucleosomal distance, resulting in progressively 5'-shifted nucleosomes within the gene. In contrast, cells overexpressing Yta7 displayed profound 3'-shifts in nucleosome position and reduced nucleosome density within genes. Importantly, Yta7-bound regions were enriched for nucleosomal shifts, indicating that Yta7 acted locally to modulate nucleosome spacing. The phenotype of cells lacking both Yta7 and Rtt106, the histone H3/H4 chaperone, indicated that Yta7 functions in both Rtt106-dependent and Rtt106-independent ways to modulate nucleosome spacing within genes. This study suggested that Yta7 affected nucleosome density throughout the gene by both blocking Rtt106 from entering the gene, as shown previously at HTA1, and facilitating the loss of nucleosomes from the 5'-end.
Collapse
|
36
|
Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics 2014; 118:81-94. [PMID: 25281560 DOI: 10.1016/j.jprot.2014.09.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Mapping protein-protein interactions for chromatin-associated proteins remains challenging. Here we explore the use of BioID, a proximity biotinylation approach in which a mutated biotin ligase (BirA*) is fused to a bait of interest, allowing for the local activation of biotin and subsequent biotinylation of proteins in the bait vicinity. BioID allowed for successful interactome mapping of core histones and members of the mediator complex. We explored the background signal produced by the BioID approach and found that using distinct types of controls increased the stringency of our statistical analysis with SAINTexpress. A direct comparison of BioID with our AP-MS protocol optimized for chromatin-associated protein complexes revealed that the approaches identified few shared interaction partners and enriched for distinct biological processes; yet, both approaches permitted the recovery of biologically meaningful interactions. While no clear bias could be observed for either technique toward protein complexes of particular functions, BioID allowed for the purification of proteins of lower cellular abundance. Finally, we were able to identify a strong association of MED4 with the centrosome by BioID and validated this finding by immunofluorescence. In summary, BioID complements AP-MS for the study of chromatin-associated protein complexes. BIOLOGICAL SIGNIFICANCE This manuscript describes the application of BioID, a proximity biotinylation approach, to chromatin-associated proteins, namely core histones and members of the mediator complex. We observed that BioID was successful at identifying known interaction partners for the baits tested, but also allowed novel putative interaction partners to be identified. By performing a detailed comparison of BioID versus a standard method for interactome mapping (affinity purification coupled to mass spectrometry, AP-MS), we show that the approaches were complementary, allowing for purification of different interaction partners. These interaction partners were different in the biological processes they are associated with, but also in their abundance. BioID represents a significant technical development in the field of chromatin research by expanding the search space for interactome mapping beyond what is possible with AP-MS. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
|
37
|
Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proc Natl Acad Sci U S A 2014; 111:14124-9. [PMID: 25228766 DOI: 10.1073/pnas.1414024111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase-specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APC(Cdh1)) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation.
Collapse
|
38
|
Abstract
During interphase, chromatin hosts fundamental cellular processes, such as gene expression, DNA replication and DNA damage repair. To analyze chromatin on a proteomic scale, we have developed chromatin enrichment for proteomics (ChEP), which is a simple biochemical procedure that enriches interphase chromatin in all its complexity. It enables researchers to take a 'snapshot' of chromatin and to isolate and identify even transiently bound factors. In ChEP, cells are fixed with formaldehyde; subsequently, DNA together with all cross-linked proteins is isolated by centrifugation under denaturing conditions. This approach enables the analysis of global chromatin composition and its changes, which is in contrast with existing chromatin enrichment procedures, which either focus on specific chromatin loci (e.g., affinity purification) or are limited in specificity, such as the analysis of the chromatin pellet (i.e., analysis of all insoluble nuclear material). ChEP takes half a day to complete and requires no specialized laboratory skills or equipment. ChEP enables the characterization of chromatin response to drug treatment or physiological processes. Beyond proteomics, ChEP may preclear chromatin for chromatin immunoprecipitation (ChIP) analyses.
Collapse
Affiliation(s)
- Georg Kustatscher
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Karen L H Wills
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cristina Furlan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- 1] Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK. [2] Department of Biotechnology, Institute of Bioanalytics, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
39
|
Guillen-Ahlers H, Shortreed MR, Smith LM, Olivier M. Advanced methods for the analysis of chromatin-associated proteins. Physiol Genomics 2014; 46:441-7. [PMID: 24803678 DOI: 10.1152/physiolgenomics.00041.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA-protein interactions are central to gene expression and chromatin regulation and have become one of the main focus areas of the ENCODE consortium. Advances in mass spectrometry and associated technologies have facilitated studies of these interactions, revealing many novel DNA-interacting proteins and histone posttranslational modifications. Proteins interacting at a single locus or at multiple loci have been targeted in these recent studies, each requiring a separate analytical strategy for isolation and analysis of DNA-protein interactions. The enrichment of target chromatin fractions occurs via a number of methods including immunoprecipitation, affinity purification, and hybridization, with the shared goal of using proteomics approaches as the final readout. The result of this is a number of exciting new tools, with distinct strengths and limitations that can enable highly robust and novel chromatin studies when applied appropriately. The present review compares and contrasts these methods to help the reader distinguish the advantages of each approach.
Collapse
Affiliation(s)
- Hector Guillen-Ahlers
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas; and
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas; and
| |
Collapse
|
40
|
Soldi M, Bonaldi T. The ChroP approach combines ChIP and mass spectrometry to dissect locus-specific proteomic landscapes of chromatin. J Vis Exp 2014. [PMID: 24747196 DOI: 10.3791/51220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology;
| |
Collapse
|
41
|
Soldi M, Bremang M, Bonaldi T. Biochemical systems approaches for the analysis of histone modification readout. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:657-68. [PMID: 24681439 DOI: 10.1016/j.bbagrm.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
42
|
Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ, Nielsen ML, Kouzarides T. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 2014; 505:564-8. [PMID: 24352239 PMCID: PMC3901671 DOI: 10.1038/nature12819] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 10/29/2013] [Indexed: 12/03/2022]
Abstract
Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.
Collapse
Affiliation(s)
- Peter Tessarz
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Helena Santos-Rosa
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Sam C. Robson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Kathrine B. Sylvestersen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Christopher J Nelson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Michael L. Nielsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
43
|
Lambert JP, Tucholska M, Pawson T, Gingras AC. Incorporating DNA shearing in standard affinity purification allows simultaneous identification of both soluble and chromatin-bound interaction partners. J Proteomics 2014; 100:55-9. [PMID: 24412199 DOI: 10.1016/j.jprot.2013.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/14/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
Abstract
UNLABELLED Affinity purification coupled to mass spectrometry (AP-MS) is an effective means of identifying protein-protein interactions to better understand biological functions. However, issues associated with sample preparation still limit the success of AP-MS for specific classes of proteins, including those associated with chromatin that exhibit overall poor solubility in the protocols normally used for AP-MS analysis. Here, we wanted to provide a generally applicable method to simultaneously identify interactors for the chromatin-bound and the soluble fractions of a given bait protein. Using four FLAG-tagged canonical histone proteins (H2A, H2B, H3.1 and H4) we demonstrate that the chromatin solubility issue can be robustly alleviated by fragmenting DNA prior to AP-MS using a combination of sonication and nuclease treatment. We show that - in comparison to a commonly used AP-MS method - our optimized protocol greatly improves the recovery of chromatin-associated interactors for core histones. Critically, this is achieved while preserving the interaction partners associated with the soluble portion of the histones. Detailed protocols amenable to the study of both histone and non-histone baits are presented here. BIOLOGICAL SIGNIFICANCE This manuscript describes workflow improvements to enable the recovery of chromatin-bound interactors by affinity purification coupled to mass spectrometry (AP-MS). This is significant, as most of the high-throughput studies to date can only monitor protein-protein interactions for soluble (not bound to chromatin) components. By consequence, we still poorly understand how protein complexes form on chromatin, which greatly hampers our understanding of gene expression. Using core histones as test cases, we show here a simple and universally applicable workflow that permits the identification of chromatin-bound protein-protein interactions. As exemplified in our manuscript, this revised protocol should result in a much deeper understanding of chromatin biology. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada
| | - Monika Tucholska
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
44
|
Sun M, Schwalb B, Pirkl N, Maier KC, Schenk A, Failmezger H, Tresch A, Cramer P. Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels. Mol Cell 2013; 52:52-62. [PMID: 24119399 DOI: 10.1016/j.molcel.2013.09.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/30/2013] [Accepted: 09/06/2013] [Indexed: 02/08/2023]
Abstract
The rates of mRNA synthesis and degradation determine cellular mRNA levels and can be monitored by comparative dynamic transcriptome analysis (cDTA) that uses nonperturbing metabolic RNA labeling. Here we present cDTA data for 46 yeast strains lacking genes involved in mRNA degradation and metabolism. In these strains, changes in mRNA degradation rates are generally compensated by changes in mRNA synthesis rates, resulting in a buffering of mRNA levels. We show that buffering of mRNA levels requires the RNA exonuclease Xrn1. The buffering is rapidly established when mRNA synthesis is impaired, but is delayed when mRNA degradation is impaired, apparently due to Xrn1-dependent transcription repressor induction. Cluster analysis of the data defines the general mRNA degradation machinery, reveals different substrate preferences for the two mRNA deadenylase complexes Ccr4-Not and Pan2-Pan3, and unveils an interwoven cellular mRNA surveillance network.
Collapse
Affiliation(s)
- Mai Sun
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mayne J, Starr AE, Ning Z, Chen R, Chiang CK, Figeys D. Fine Tuning of Proteomic Technologies to Improve Biological Findings: Advancements in 2011–2013. Anal Chem 2013; 86:176-95. [DOI: 10.1021/ac403551f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Zhibin Ning
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Rui Chen
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Daniel Figeys
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| |
Collapse
|
46
|
Couzens AL, Knight JDR, Kean MJ, Teo G, Weiss A, Dunham WH, Lin ZY, Bagshaw RD, Sicheri F, Pawson T, Wrana JL, Choi H, Gingras AC. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 2013; 6:rs15. [PMID: 24255178 DOI: 10.1126/scisignal.2004712] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 protein interactions, including 599 previously unrecognized interactions, and demonstrated that several interactions with serine and threonine phosphatases were phosphorylation-dependent. Mutation of the T-loop of MST2 (mammalian STE20-like protein kinase 2), which prevented autophosphorylation, disrupted its association with STRIPAK (striatin-interacting phosphatase and kinase complex). Deletion of the amino-terminal forkhead-associated domain of SLMAP (sarcolemmal membrane-associated protein), a component of the STRIPAK complex, prevented its association with MST1 and MST2. Phosphatase inhibition produced temporally distinct changes in proteins that interacted with MOB1A and MOB1B (Mps one binder kinase activator-like 1A and 1B) and promoted interactions with upstream Hippo pathway proteins, such as MST1 and MST2, and with the trimeric protein phosphatase 6 complex (PP6). Mutation of three basic amino acids that are part of a phospho-serine- and phospho-threonine-binding domain in human MOB1B prevented its interaction with MST1 and PP6 in cells treated with okadaic acid. Collectively, our results indicated that changes in phosphorylation orchestrate interactions between kinases and phosphatases in Hippo signaling, providing a putative mechanism for pathway regulation.
Collapse
Affiliation(s)
- Amber L Couzens
- 1Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Han Y, Garcia BA. Combining genomic and proteomic approaches for epigenetics research. Epigenomics 2013; 5:439-52. [PMID: 23895656 DOI: 10.2217/epi.13.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA-protein and protein-protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level.
Collapse
Affiliation(s)
- Yumiao Han
- Epigenetics Program, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 1009C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
Schindler D, Waldminghaus T. "Non-canonical protein-DNA interactions identified by ChIP are not artifacts": response. BMC Genomics 2013; 14:638. [PMID: 24053571 PMCID: PMC3870955 DOI: 10.1186/1471-2164-14-638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/18/2013] [Indexed: 11/10/2022] Open
Abstract
Background Studies of protein association with DNA on a genome wide scale are possible through methods like ChIP-Chip or ChIP-Seq. Massive problems with false positive signals in our own experiments motivated us to revise the standard ChIP-Chip protocol. Analysis of chromosome wide binding of the alternative sigma factor σ32 in Escherichia coli with this new protocol resulted in detection of only a subset of binding sites found in a previous study by Wade and colleagues. We suggested that the remainder of binding sites detected in the previous study are likely to be false positives. In a recent article the Wade group claimed that our conclusion is wrong and that the disputed sites are genuine σ32 binding sites. They further claimed that the non-detection of these sites in our study was due to low data quality. Results/discussion We respond to the criticism of Wade and colleagues and discuss some general questions of ChIP-based studies. We outline why the quality of our data is sufficient to derive meaningful results. Specific points are: (i) the modifications we introduced into the standard ChIP-Chip protocol do not necessarily result in a low dynamic range, (ii) correlation between ChIP-Chip replicates should not be calculated based on the whole data set as done in transcript analysis, (iii) control experiments are essential for identifying false positives. Suggestions are made how ChIP-based methods could be further optimized and which alternative approaches can be used to strengthen conclusions. Conclusion We appreciate the ongoing discussion about the ChIP-Chip method and hope that it helps other scientist to analyze and interpret their results. The modifications we introduced into the ChIP-Chip protocol are a first step towards reducing false positive signals but there is certainly potential for further optimization. The discussion about the σ32 binding sites in question highlights the need for alternative approaches and further investigation of appropriate methods for verification.
Collapse
Affiliation(s)
- Daniel Schindler
- LOEWE-Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Hans-Meerwein-Str, 6, D-35043, Marburg, Germany.
| | | |
Collapse
|
49
|
Dürnberger G, Bürckstümmer T, Huber K, Giambruno R, Doerks T, Karayel E, Burkard TR, Kaupe I, Müller AC, Schönegger A, Ecker GF, Lohninger H, Bork P, Bennett KL, Superti-Furga G, Colinge J. Experimental characterization of the human non-sequence-specific nucleic acid interactome. Genome Biol 2013; 14:R81. [PMID: 23902751 PMCID: PMC4053969 DOI: 10.1186/gb-2013-14-7-r81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022] Open
Abstract
Background The interactions between proteins and nucleic acids have a fundamental function in many biological processes, including gene transcription, RNA homeostasis, protein translation and pathogen sensing for innate immunity. While our knowledge of the ensemble of proteins that bind individual mRNAs in mammalian cells has been greatly augmented by recent surveys, no systematic study on the non-sequence-specific engagement of native human proteins with various types of nucleic acids has been reported. Results We designed an experimental approach to achieve broad coverage of the non-sequence-specific RNA and DNA binding space, including methylated cytosine, and tested for interaction potential with the human proteome. We used 25 rationally designed nucleic acid probes in an affinity purification mass spectrometry and bioinformatics workflow to identify proteins from whole cell extracts of three different human cell lines. The proteins were profiled for their binding preferences to the different general types of nucleic acids. The study identified 746 high-confidence direct binders, 139 of which were novel and 237 devoid of previous experimental evidence. We could assign specific affinities for sub-types of nucleic acid probes to 219 distinct proteins and individual domains. The evolutionarily conserved protein YB-1, previously associated with cancer and drug resistance, was shown to bind methylated cytosine preferentially, potentially conferring upon YB-1 an epigenetics-related function. Conclusions The dataset described here represents a rich resource of experimentally determined nucleic acid-binding proteins, and our methodology has great potential for further exploration of the interface between the protein and nucleic acid realms.
Collapse
|
50
|
Zhang Y, Hu Z, Qin H, Liu F, Cheng K, Wu R, Zou H. Cell Nucleus Targeting for Living Cell Extraction of Nucleic Acid Associated Proteins with Intracellular Nanoprobes of Magnetic Carbon Nanotubes. Anal Chem 2013; 85:7038-43. [DOI: 10.1021/ac401269g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yi Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Hu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqiang Qin
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjie Liu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Cheng
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren’an Wu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hanfa Zou
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|