1
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
2
|
Ghousein A, Mosca N, Cartier F, Charpentier J, Dupuy JW, Raymond AA, Bioulac-Sage P, Grosset CF. miR-4510 blocks hepatocellular carcinoma development through RAF1 targeting and RAS/RAF/MEK/ERK signalling inactivation. Liver Int 2020; 40:240-251. [PMID: 31612616 DOI: 10.1111/liv.14276] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/20/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Therapeutic outcomes using the multikinase inhibitors, sorafenib and regorafenib, remain unsatisfactory for patients with advanced hepatocellular carcinoma (HCC). Thus, new drug modalities are needed. We recently reported the remarkable capacity of miR-4510 to impede the growth of HCC and hepatoblastoma through Glypican-3 (GPC3) targeting and Wnt pathway inactivation. METHODS To identify new targets of miR-4510, we used a label-free proteomic approach and reported down-regulation of RAF proto-oncogene serine/threonine-protein kinase (RAF1) by miR-4510. Because the tumourigenic role of RAF1 in HCC is controversial, we further studied RAF1:miR-4510 interactions using cellular, molecular as well as functional approaches and a chicken chorioallantoic membrane (CAM) xenograft model. RESULTS We found an increase in RAF1 protein in 59.3% of HCC patients and a specific up-regulation of its transcript in proliferative tumours. We showed that miR-4510 inactivates the RAS/RAF/MEK/ERK pathway and reduces the expression of downstream targets (ie c-Fos proto-oncogene [FOS]) through RAF1 direct targeting. At a cellular level, miR-4510 inhibited HCC cell proliferation and migration and induced senescence in part by lowering RAF1 messenger RNA (mRNA) and protein expression. Finally, we confirmed the pro-tumoural function of RAF1 protein in HCC cells and its ability to sustain HCC tumour progression in vitro and in vivo. CONCLUSIONS In this work, we confirm that RAF1 acts as an oncogene in HCC and further demonstrate that miR-4510 acts as a strong tumour suppressor in the liver by targeting many proto-oncogenes, including GPC3 and RAF1, and subsequently controlling key biological and signalling pathways among which Wnt and RAS/RAF/MEK/ERK signals.
Collapse
Affiliation(s)
| | - Nicola Mosca
- Inserm, BMGIC, U1035, Univ. Bordeaux, Bordeaux, France
| | - Flora Cartier
- Inserm, BMGIC, U1035, Univ. Bordeaux, Bordeaux, France
| | | | - Jean-William Dupuy
- Centre de Génomique Fonctionnelle de Bordeaux, Plateforme Proteome, Univ. Bordeaux, Bordeaux, France
| | | | | | | |
Collapse
|
3
|
Zhang JG, Xu C, Zhang L, Zhu W, Shen H, Deng HW. Identify gene expression pattern change at transcriptional and post-transcriptional levels. Transcription 2019; 10:137-146. [PMID: 30696368 PMCID: PMC6602563 DOI: 10.1080/21541264.2019.1575159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Gene transcription is regulated with distinct sets of regulatory factors at multiple levels. Transcriptional and post-transcriptional regulation constitute two major regulation modes of gene expression to either activate or repress the initiation of transcription and thereby control the number of proteins synthesized during translation. Disruptions of the proper regulation patterns at transcriptional and post-transcriptional levels are increasingly recognized as causes of human diseases. Consequently, identifying the differential gene expression at transcriptional and post-transcriptional levels respectively is vital to identify potential disease-associated and/or causal genes and understand their roles in the disease development. Here, we proposed a novel method with a linear mixed model that can identify a set of differentially expressed genes at transcriptional and post-transcriptional levels. The simulation and real data analysis showed our method could provide an accurate way to identify genes subject to aberrant transcriptional and post-transcriptional regulation and reveal the potential causal genes that contributed to the diseases.
Collapse
Affiliation(s)
- Ji-Gang Zhang
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
- Computational Science, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Chao Xu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Lan Zhang
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Wei Zhu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
- School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
4
|
Cartier F, Indersie E, Lesjean S, Charpentier J, Hooks KB, Ghousein A, Desplat A, Dugot-Senant N, Trézéguet V, Sagliocco F, Hagedorn M, Grosset CF. New tumor suppressor microRNAs target glypican-3 in human liver cancer. Oncotarget 2018; 8:41211-41226. [PMID: 28476031 PMCID: PMC5522324 DOI: 10.18632/oncotarget.17162] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/25/2017] [Indexed: 12/22/2022] Open
Abstract
Glypican-3 (GPC3) is an oncogene, frequently upregulated in liver malignancies such as hepatocellular carcinoma (HCC) and hepatoblastoma and constitutes a potential molecular target for therapy in liver cancer. Using a functional screening system, we identified 10 new microRNAs controlling GPC3 expression in malignant liver cells, five of them e.g. miR-4510, miR-203a-3p, miR-548aa, miR-376b-3p and miR-548v reduce GPC3 expression. These 5 microRNAs were significantly downregulated in tumoral compared to non-tumoral liver and inhibited tumor cell proliferation. Interestingly, miR-4510 inversely correlated with GPC3 mRNA and protein in HCC samples. This microRNA also induced apoptosis of hepatoma cells and blocked tumor growth in vivo in the chick chorioallantoic membrane model. We further show that the tumor suppressive effect of miR-4510 is mediated through direct targeting of GPC3 mRNA and inactivation of Wnt/β-catenin transcriptional activity and signaling pathway. Moreover, miR-4510 up-regulated the expression of several tumor suppressor genes while reducing the expression of other pro-oncogenes. In summary, we uncovered several new microRNAs targeting the oncogenic functions of GPC3. We provided strong molecular, cellular and in vivo evidences for the tumor suppressive activities of miR-4510 bringing to the fore the potential value of this microRNA in HCC therapy.
Collapse
Affiliation(s)
- Flora Cartier
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Emilie Indersie
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Sarah Lesjean
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Justine Charpentier
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Katarzyna B Hooks
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Amani Ghousein
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Angélique Desplat
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Nathalie Dugot-Senant
- INSERM US005 - TBM Core, Service for Experimental Histopathology, F-33000 Bordeaux, France
| | - Véronique Trézéguet
- University of Bordeaux, F-33000 Bordeaux, France.,CNRS, UMR5248, Chimie & Biologie des Membranes & des Nano-objets, CBMN, F-33600 Pessac, France
| | - Francis Sagliocco
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Martin Hagedorn
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| | - Christophe F Grosset
- University of Bordeaux, Inserm, Groupe de Recherche pour l'Etude du Foie, GREF, U1053, F-33076 Bordeaux, France.,University of Bordeaux, Inserm, Biothérapies des Maladies Génétiques Inflammatoires et Cancers, BMGIC, U1035, F-33076 Bordeaux, France
| |
Collapse
|
5
|
Saad A, Liet B, Joucla G, Santarelli X, Charpentier J, Claverol S, Grosset CF, Trézéguet V. Role of Glycanation and Convertase Maturation of Soluble Glypican-3 in Inhibiting Proliferation of Hepatocellular Carcinoma Cells. Biochemistry 2018; 57:1201-1211. [PMID: 29345911 DOI: 10.1021/acs.biochem.7b01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glypican 3 (GPC3) is a complex heparan sulfate proteoglycan associated with the outer surface of the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. It is also N-glycosylated and processed by a furin-like convertase. GPC3 has numerous biological functions. Although GPC3 is undetectable in normal liver tissue, it is abnormally and highly overexpressed in hepatocellular carcinoma (HCC). Interestingly, proliferation of HCC cells such as HepG2 and HuH7 is inhibited when they express a soluble form of GPC3 after lentiviral transduction. To obtain more insight into the role of some of its post-translational modifications, we designed a mutant GPC3, sGPC3m, without its GPI anchor, convertase cleavage site, and glycosaminoglycan chains. The highly pure sGPC3m protein strongly inhibited HuH7 and HepG2 cell proliferation in vitro and induced a significant increase in their cell doubling time. It changed the morphology of HuH7 cells but not that of HepG2. It induced the enlargement of HuH7 cell nuclear area and the restructuration of adherent cell junctions. Unexpectedly, for both cell types, the levels of apoptosis, cell division, and β-catenin were not altered by sGPC3m, although growth inhibition was very efficient. Overall, our data show that glycanation and convertase maturation are not required for sGPC3m to inhibit HCC cell proliferation.
Collapse
Affiliation(s)
- Ahmad Saad
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Benjamin Liet
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Gilles Joucla
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Xavier Santarelli
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | | | - Stéphane Claverol
- Univ. Bordeaux, Plateforme Protéome, CGFB , F-33076 Bordeaux, France
| | - Christophe F Grosset
- Univ. Bordeaux, Inserm, BMGIC, U1035 , 33076 Bordeaux, France.,Univ. Bordeaux, Inserm, GREF, U1053 , 33076 Bordeaux, France
| | - Véronique Trézéguet
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France.,Univ. Bordeaux, Inserm, BMGIC, U1035 , 33076 Bordeaux, France
| |
Collapse
|
6
|
Indersie E, Lesjean S, Hooks KB, Sagliocco F, Ernault T, Cairo S, Merched-Sauvage M, Rullier A, Le Bail B, Taque S, Grotzer M, Branchereau S, Guettier C, Fabre M, Brugières L, Hagedorn M, Buendia MA, Grosset CF. MicroRNA therapy inhibits hepatoblastoma growth in vivo by targeting β-catenin and Wnt signaling. Hepatol Commun 2017; 1:168-183. [PMID: 29404451 PMCID: PMC5721429 DOI: 10.1002/hep4.1029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
Hepatoblastoma (HBL) is the most common pediatric liver cancer. In this malignant neoplasm, beta-catenin protein accumulates and increases Wnt signaling due to recurrent activating mutations in the catenin-beta 1 (CTNNB1) gene. Therefore, beta-catenin is a key therapeutic target in HBL. However, controlling beta-catenin production with therapeutic molecules has been challenging. New biological studies could provide alternative therapeutic solutions for the treatment of HBL, especially for advanced tumors and metastatic disease. In this study, we identified microRNAs (miRNAs) that target beta-catenin and block HBL cell proliferation in vitro and tumor growth in vivo. Using our dual-fluorescence-FunREG system, we screened a library of 1,712 miRNA mimics and selected candidates inhibiting CTNNB1 expression through interaction with its untranslated regions. After validating the regulatory effect of nine miRNAs on beta-catenin in HBL cells, we measured their expression in patient samples. Let-7i-3p, miR-449b-3p, miR-624-5p, and miR-885-5p were decreased in tumors compared to normal livers. Moreover, they inhibited HBL cell growth and Wnt signaling activity in vitro partly through beta-catenin down-regulation. Additionally, miR-624-5p induced cell senescence in vitro, blocked experimental HBL growth in vivo, and directly targeted the beta-catenin 3'-untranslated region. Conclusion: Our results shed light on how beta-catenin-regulating miRNAs control HBL progression through Wnt signaling inactivation. In particular, miR-624-5p may constitute a promising candidate for miRNA replacement therapy for HBL patients. (Hepatology Communications 2017;1:168-183).
Collapse
Affiliation(s)
- Emilie Indersie
- Univ. Bordeaux, Inserm, GREF, U1053, 33076 Bordeaux France.,Univ. Bordeaux, Inserm, BMGIC, U1035, 33076 Bordeaux France
| | - Sarah Lesjean
- Univ. Bordeaux, Inserm, GREF, U1053, 33076 Bordeaux France.,Univ. Bordeaux, Inserm, BMGIC, U1035, 33076 Bordeaux France
| | - Katarzyna B Hooks
- Univ. Bordeaux, Inserm, GREF, U1053, 33076 Bordeaux France.,Univ. Bordeaux, Inserm, BMGIC, U1035, 33076 Bordeaux France
| | - Francis Sagliocco
- Univ. Bordeaux, Inserm, GREF, U1053, 33076 Bordeaux France.,Univ. Bordeaux, Inserm, BMGIC, U1035, 33076 Bordeaux France
| | - Tony Ernault
- INSERM, UMR 1193, Paul-Brousse Hospital, Hepatobiliary Centre F-94800 Villejuif France.,Univ. Paris Saclay F-94800 Villejuif France
| | - Stefano Cairo
- XenTechEvry France.,Laboratory for Technologies of Advanced Therapies, Department of Morphology, Surgery and Experimental Medicine University of Ferrara Italy
| | | | | | | | | | - Michael Grotzer
- SIOPEL (International Childhood Liver Tumours Strategy Group) Liver Tumor and Tissue Banking Program University Children's Hospital Zürich Switzerland
| | | | | | | | | | - Martin Hagedorn
- Univ. Bordeaux, Inserm, GREF, U1053, 33076 Bordeaux France.,Univ. Bordeaux, Inserm, BMGIC, U1035, 33076 Bordeaux France
| | - Marie-Annick Buendia
- INSERM, UMR 1193, Paul-Brousse Hospital, Hepatobiliary Centre F-94800 Villejuif France.,Univ. Paris Saclay F-94800 Villejuif France
| | - Christophe F Grosset
- Univ. Bordeaux, Inserm, GREF, U1053, 33076 Bordeaux France.,Univ. Bordeaux, Inserm, BMGIC, U1035, 33076 Bordeaux France
| |
Collapse
|
7
|
XU HUI, HU YANWEI, ZHAO JIAYI, HU XIUMEI, LI SHUFEN, WANG YANCHAO, GAO JIJUAN, SHA YANHUA, KANG CHUNMIN, LIN LI, HUANG CHUAN, ZHAO JINGJING, ZHENG LEI, WANG QIAN. MicroRNA-195-5p acts as an anti-oncogene by targeting PHF19 in hepatocellular carcinoma. Oncol Rep 2015; 34:175-82. [DOI: 10.3892/or.2015.3957] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
|
8
|
Baril P, Ezzine S, Pichon C. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities. Int J Mol Sci 2015; 16:4947-72. [PMID: 25749473 PMCID: PMC4394458 DOI: 10.3390/ijms16034947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.
Collapse
Affiliation(s)
- Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| | - Safia Ezzine
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| |
Collapse
|
9
|
Martins I, Hartmann DO, Alves PC, Martins C, Garcia H, Leclercq CC, Ferreira R, He J, Renaut J, Becker JD, Silva Pereira C. Elucidating how the saprophytic fungus Aspergillus nidulans uses the plant polyester suberin as carbon source. BMC Genomics 2014; 15:613. [PMID: 25043916 PMCID: PMC4117967 DOI: 10.1186/1471-2164-15-613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/16/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lipid polymers in plant cell walls, such as cutin and suberin, build recalcitrant hydrophobic protective barriers. Their degradation is of foremost importance for both plant pathogenic and saprophytic fungi. Regardless of numerous reports on fungal degradation of emulsified fatty acids or cutin, and on fungi-plant interactions, the pathways involved in the degradation and utilisation of suberin remain largely overlooked. As a structural component of the plant cell wall, suberin isolation, in general, uses harsh depolymerisation methods that destroy its macromolecular structure. We recently overcame this limitation isolating suberin macromolecules in a near-native state. RESULTS Suberin macromolecules were used here to analyse the pathways involved in suberin degradation and utilisation by Aspergillus nidulans. Whole-genome profiling data revealed the complex degrading enzymatic machinery used by this saprophytic fungus. Initial suberin modification involved ester hydrolysis and ω-hydroxy fatty acid oxidation that released long chain fatty acids. These fatty acids were processed through peroxisomal β-oxidation, leading to up-regulation of genes encoding the major enzymes of these pathways (e.g. faaB and aoxA). The obtained transcriptome data was further complemented by secretome, microscopic and spectroscopic analyses. CONCLUSIONS Data support that during fungal growth on suberin, cutinase 1 and some lipases (e.g. AN8046) acted as the major suberin degrading enzymes (regulated by FarA and possibly by some unknown regulatory elements). Suberin also induced the onset of sexual development and the boost of secondary metabolism.
Collapse
Affiliation(s)
- Isabel Martins
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diego O Hartmann
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula C Alves
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Celso Martins
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- />Instituto de Biologia Experimental e Tecnológica (iBET), Av. da República, 2781-901 Oeiras, Portugal
| | - Helga Garcia
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Céline C Leclercq
- />Proteomics Platform, Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg
| | - Rui Ferreira
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ji He
- />Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, (previously, the Scientific Computing department, Samuel Roberts Noble Foundation, USA, 8717 Grovemont Circle, 20877 Gaithersburg, MD USA
| | - Jenny Renaut
- />Proteomics Platform, Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg
| | - Jörg D Becker
- />Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Cristina Silva Pereira
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- />Instituto de Biologia Experimental e Tecnológica (iBET), Av. da República, 2781-901 Oeiras, Portugal
| |
Collapse
|
10
|
Karamichali E, Foka P, Tsitoura E, Kalliampakou K, Kazazi D, Karayiannis P, Georgopoulou U, Mavromara P. HCV NS5A co-operates with PKR in modulating HCV IRES-dependent translation. INFECTION GENETICS AND EVOLUTION 2014; 26:113-22. [PMID: 24815730 DOI: 10.1016/j.meegid.2014.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 12/11/2022]
Abstract
Translation initiation of the Hepatitis C virus (HCV) genome is driven by an internal ribosome entry site (IRES), located within the 5' non-coding region. Several studies have suggested that different cellular non canonical proteins or viral proteins can regulate the HCV IRES activity. However, the role of the viral proteins on HCV translation remains controversial. In this report, we confirmed previous studies showing that NS5A down-regulates IRES activity in HepG2 but not in Huh7 cells suggesting that the NS5A effect on HCV IRES is cell-type dependent. Additionally, we provide strong evidence that activated PKR up-regulates the IRES activity while silencing of endogenous PKR had the opposite effect. Furthermore, we present data indicating that the NS5A-mediated inhibitory effect on IRES-dependent translation could be linked with the PKR inactivation. Finally, we show that NS5A from GBV-C but not from GBV-B down-regulates HCV IRES activity in the absence or the presence of PKR over expression. Notably, HCV and GBV-C but not GBV-B NS5A contains a previously identified PKR interacting protein domain.
Collapse
Affiliation(s)
- Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece; University of Patras, School of Health Sciences, Department of Pharmacy, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Eliza Tsitoura
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Dorothea Kazazi
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Peter Karayiannis
- Molecular Virology/Microbiology, University of Nicosia Medical School, Cyprus
| | | | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
11
|
Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int 2014; 86:943-53. [PMID: 24759152 DOI: 10.1038/ki.2014.117] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 02/09/2014] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
The contribution of miRNA to the pathogenesis of acute kidney injury (AKI) is not well understood. Here we evaluated an integrative network of miRNAs and mRNA data to discover a possible master regulator of AKI. Microarray analyses of the kidneys of mice treated with cisplatin were used to extract putative miRNAs that cause renal injury. Of them, miR-122 was mostly downregulated by cisplatin, whereas miR-34a was upregulated. A network integrating dysregulated miRNAs and altered mRNA expression along with target prediction enabled us to identify Foxo3 as a core protein to activate p53. The miR-122 inhibited Foxo3 translation as assessed using an miR mimic, an inhibitor, and a Foxo3 3'-UTR reporter. In a mouse model, Foxo3 levels paralleled the degree of tubular injury. The role of decreased miR-122 in inducing Foxo3 during AKI was strengthened by the ability of the miR-122 mimic or inhibitor to replicate results. Increase in miR-34a also promoted the acetylation of Foxo3 by repressing Sirt1. Consistently, cisplatin facilitated the binding of Foxo3 and p53 for activation, which depended not only on decreased miR-122 but also on increased miR-34a. Other nephrotoxicants had similar effects. Among targets of p53, Phlda3 was robustly induced by cisplatin, causing tubular injury. Consistently, treatment with miR mimics and/or inhibitors, or with Foxo3 and Phlda3 siRNAs, modulated apoptosis. Thus, our results uncovered an miR integrative network regulating toxicant-induced AKI and identified Foxo3 as a bridge molecule to the p53 pathway.
Collapse
|
12
|
Maurel M, Dejeans N, Taouji S, Chevet E, Grosset CF. MicroRNA-1291-mediated silencing of IRE1α enhances Glypican-3 expression. RNA (NEW YORK, N.Y.) 2013; 19:778-788. [PMID: 23598528 PMCID: PMC3683912 DOI: 10.1261/rna.036483.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/06/2013] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNA) are generally described as negative regulators of gene expression. However, some evidence suggests that they may also play positive roles. As such, we reported that miR-1291 leads to a GPC3 mRNA expression increase in hepatoma cells through a 3' untranslated region (UTR)-dependent mechanism. In the absence of any direct interaction between miR-1291 and GPC3 mRNA, we hypothesized that miR-1291 could act by silencing a negative regulator of GPC3 mRNA expression. Based on in silico predictions and experimental validation, we demonstrate herein that miR-1291 represses the expression of the mRNA encoding the endoplasmic reticulum (ER)-resident stress sensor IRE1α by interacting with a specific site located in the 5' UTR. Moreover, we show, in vitro and in cultured cells, that IRE1α cleaves GPC3 mRNA at a 3' UTR consensus site independently of ER stress, thereby prompting GPC3 mRNA degradation. Finally, we show that the expression of a miR-1291-resistant form of IRE1α abrogates the positive effects of miR-1291 on GPC3 mRNA expression. Collectively, our data demonstrate that miR-1291 is a biologically relevant regulator of GPC3 expression in hepatoma cells and acts through silencing of the ER stress sensor IRE1α.
Collapse
Affiliation(s)
- Marion Maurel
- Groupe de Recherche sur L’Étude du Foie, Université Bordeaux Segalen, F-33000 Bordeaux, France
- Team Post-transcriptional Regulation and Liver Cancer, INSERM, U1053, F-33000 Bordeaux, France
| | - Nicolas Dejeans
- Groupe de Recherche sur L’Étude du Foie, Université Bordeaux Segalen, F-33000 Bordeaux, France
- Team Endoplasmic Reticulum Stress and Cancer, INSERM, U1053, F-33000 Bordeaux, France
| | - Saïd Taouji
- Groupe de Recherche sur L’Étude du Foie, Université Bordeaux Segalen, F-33000 Bordeaux, France
- Team Endoplasmic Reticulum Stress and Cancer, INSERM, U1053, F-33000 Bordeaux, France
| | - Eric Chevet
- Groupe de Recherche sur L’Étude du Foie, Université Bordeaux Segalen, F-33000 Bordeaux, France
- Team Endoplasmic Reticulum Stress and Cancer, INSERM, U1053, F-33000 Bordeaux, France
- CHU de Bordeaux, F-33000 Bordeaux, France
| | - Christophe F. Grosset
- Groupe de Recherche sur L’Étude du Foie, Université Bordeaux Segalen, F-33000 Bordeaux, France
- Team Post-transcriptional Regulation and Liver Cancer, INSERM, U1053, F-33000 Bordeaux, France
| |
Collapse
|
13
|
Maurel M, Jalvy S, Ladeiro Y, Combe C, Vachet L, Sagliocco F, Bioulac-Sage P, Pitard V, Jacquemin-Sablon H, Zucman-Rossi J, Laloo B, Grosset CF. A functional screening identifies five microRNAs controlling glypican-3: role of miR-1271 down-regulation in hepatocellular carcinoma. Hepatology 2013; 57:195-204. [PMID: 22865282 DOI: 10.1002/hep.25994] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/25/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is the major primary liver cancer. Glypican-3 (GPC3), one of the most abnormally expressed genes in HCC, participates in liver carcinogenesis. Based on data showing that GPC3 expression is posttranscriptionally altered in HCC cells compared to primary hepatocytes, we investigated the implication of microRNAs (miRNAs) in GPC3 overexpression and HCC. To identify GPC3-regulating miRNAs, we developed a dual-fluorescence FunREG (functional, integrated, and quantitative method to measure posttranscriptional regulations) system that allowed us to screen a library of 876 individual miRNAs. Expression of candidate miRNAs and that of GPC3 messenger RNA (mRNA) was measured in 21 nontumoral liver and 112 HCC samples. We then characterized the phenotypic consequences of modulating expression of one candidate miRNA in HuH7 cells and deciphered the molecular mechanism by which this miRNA controls the posttranscriptional regulation of GPC3. We identified five miRNAs targeting GPC3 3'-untranslated region (UTR) and regulating its expression about the 876 tested. Whereas miR-96 and its paralog miR-1271 repressed GPC3 expression, miR-129-1-3p, miR-1291, and miR-1303 had an inducible effect. We report that miR-1271 expression is down-regulated in HCC tumor samples and inversely correlates with GPC3 mRNA expression in a particular subgroup of HCC. We also report that miR-1271 inhibits the growth of HCC cells in a GPC3-dependent manner and induces cell death. CONCLUSION Using a functional screen, we found that miR-96, miR-129-1-3p, miR-1271, miR-1291, and miR-1303 differentially control GPC3 expression in HCC cells. In a subgroup of HCC, the up-regulation of GPC3 was associated with a concomitant down-regulation of its repressor miR-1271. Therefore, we propose that GPC3 overexpression and its associated oncogenic effects are linked to the down-regulation of miR-1271 in HCC.
Collapse
Affiliation(s)
- Marion Maurel
- University Bordeaux, Physiopathologie du cancer du foie, U1053, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jalvy-Delvaille S, Maurel M, Majo V, Pierre N, Chabas S, Combe C, Rosenbaum J, Sagliocco F, Grosset CF. Molecular basis of differential target regulation by miR-96 and miR-182: the Glypican-3 as a model. Nucleic Acids Res 2011; 40:1356-65. [PMID: 22009679 PMCID: PMC3273822 DOI: 10.1093/nar/gkr843] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Besides the fact that miR-96 and miR-182 belong to the miR-182/183 cluster, their seed region (UUGGCA, nucleotides 2–7) is identical suggesting potential common properties in mRNA target recognition and cellular functions. Here, we used the mRNA encoding Glypican-3, a heparan-sulfate proteoglycan, as a model target as its short 3′ untranslated region is predicted to contain one miR-96/182 site, and assessed whether it is post-transcriptionally regulated by these two microRNAs. We found that miR-96 downregulated GPC3 expression by targeting its mRNA 3′-untranslated region and interacting with the predicted site. This downregulatory effect was due to an increased mRNA degradation and depended on Argonaute-2. Despite its seed similarity with miR-96, miR-182 was unable to regulate GPC3. This differential regulation was confirmed on two other targets, FOXO1 and FN1. By site-directed mutagenesis, we demonstrated that the miRNA nucleotide 8, immediately downstream the UUGGCA seed, plays a critical role in target recognition by miR-96 and miR-182. Our data suggest that because of a base difference at miRNA position 8, these two microRNAs control a completely different set of genes and therefore are functionally independent.
Collapse
Affiliation(s)
- Sandra Jalvy-Delvaille
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Marion Maurel
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Vanessa Majo
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Nathalie Pierre
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Sandrine Chabas
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Chantal Combe
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Jean Rosenbaum
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Francis Sagliocco
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
| | - Christophe F. Grosset
- Université Bordeaux Segalen, INSERM, U1053 and INSERM, U869, Bordeaux, F-33076 Bordeaux, France
- *To whom correspondence should be addressed. Tel: +33 557 57 46 30; Fax: +33 556 51 40 77;
| |
Collapse
|
15
|
Abstract
An increasing number of arguments, including altered microRNA expression, support the idea that post-transcriptional deregulation participates in gene disturbances found in diseased tissues. To evaluate this hypothesis, we developed a method which facilitates post-transcriptional investigations in a wide range of human cells and experimental conditions. This method, called FunREG (functional, integrated and quantitative method to measure post-transcriptional regulation), connects lentiviral transduction with a fluorescent reporter system and quantitative PCR. Using FunREG, we efficiently measured post-transcriptional regulation mediated either by selected RNA sequences or regulatory factors (microRNAs), and then evaluated the contribution of mRNA decay and translation efficiency in the observed regulation. We demonstrated the existence of gene-specific post-transcriptional deregulation in liver tumour cells, and also reported a molecular link between a transcript variant abrogating HDAC6 (histone deacetylase 6) regulation by miR-433 and a rare familial genetic disease. Because FunREG is sensitive, quantitative and easy to use, many applications can be envisioned in fundamental and pathophysiological research.
Collapse
|
16
|
Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P. The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 2010; 21:3080-92. [PMID: 20587780 PMCID: PMC2930000 DOI: 10.1091/mbc.e10-01-0006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular responses to environmental changes occur on different levels. We investigated the translational response of yeast cells after mild hyperosmotic shock by isolating mRNA associated with multiple ribosomes (polysomes) followed by array analysis. Globally, recruitment of preexisting mRNAs to ribosomes (translational response) is faster than the transcriptional response. Specific functional groups of mRNAs are recruited to ribosomes without any corresponding increase in total mRNA. Among mRNAs under strong translational up-regulation upon shock, transcripts encoding membrane-bound proteins including hexose transporters were enriched. Similarly, numerous mRNAs encoding cytoplasmic ribosomal proteins run counter to the overall trend of down-regulation and are instead translationally mobilized late in the response. Surprisingly, certain transcriptionally induced mRNAs were excluded from ribosomal association after shock. Importantly, we verify, using constructs with intact 5' and 3' untranslated regions, that the observed changes in polysomal mRNA are reflected in protein levels, including cases with only translational up-regulation. Interestingly, the translational regulation of the most highly osmostress-regulated mRNAs was more strongly dependent on the stress-activated protein kinases Hog1 and Rck2 than the transcriptional regulation. Our results show the importance of translational control for fine tuning of the adaptive responses.
Collapse
Affiliation(s)
- Jonas Warringer
- Department of Cell and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-40530 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
17
|
Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 2010; 36:320-30. [PMID: 20202123 DOI: 10.1111/j.1365-2990.2010.01076.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS MicroRNAs (miRNAs) are small non-coding RNAs that regulate translational repression of target mRNAs. Accumulating evidence indicates that various miRNAs, expressed in a spatially and temporally controlled that manner in the brain plays a key role in neuronal development. However, at present, the pathological implication of aberrant miRNA expression in neurodegenerative events remains largely unknown. To identify miRNAs closely associated with neurodegeneration, we performed miRNA expression profiling of brain tissues of various neurodegenerative diseases. METHODS We initially studied the frontal cortex derived from three amyotrophic lateral sclerosis patients by using a microarray of 723 human miRNAs. This was followed by enlargement of study population with quantitative RT-PCR analysis (n = 21). RESULTS By microarray analysis, we identified up-regulation of miR-29a, miR-29b and miR-338-3p in amyotrophic lateral sclerosis brains, but due to a great interindividual variation, we could not validate these results by quantitative RT-PCR. However, we found significant down-regulation of miR-29a in Alzheimer disease (AD) brains. The database search on TargetScan, PicTar and miRBase Target identified neurone navigator 3 (NAV3), a regulator of axon guidance, as a principal target of miR-29a, and actually NAV3 mRNA levels were elevated in AD brains. MiR-29a-mediated down-regulation of NAV3 was verified by the luciferase reporter assay. By immunohistochemistry, NAV3 expression was most evidently enhanced in degenerating pyramidal neurones in the cerebral cortex of AD. CONCLUSIONS These observations suggest the hypothesis that underexpression of miR-29a affects neurodegenerative processes by enhancing neuronal NAV3 expression in AD brains.
Collapse
Affiliation(s)
- M Shioya
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Simon D, Laloo B, Barillot M, Barnetche T, Blanchard C, Rooryck C, Marche M, Burgelin I, Coupry I, Chassaing N, Gilbert-Dussardier B, Lacombe D, Grosset C, Arveiler B. A mutation in the 3'-UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsa-miR-433 is linked to a new form of dominant X-linked chondrodysplasia. Hum Mol Genet 2010; 19:2015-27. [PMID: 20181727 DOI: 10.1093/hmg/ddq083] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A family with dominant X-linked chondrodysplasia was previously described. The disease locus was ascribed to a 24 Mb interval in Xp11.3-q13.1. We have identified a variant (c.*281A>T) in the 3' untranslated region (UTR) of the HDAC6 gene that totally segregates with the disease. The variant is located in the seed sequence of hsa-miR-433. Our data showed that, in MG63 osteosarcoma cells, hsa-miR-433 (miR433) down-regulated both the expression of endogenous HDAC6 and that of an enhanced green fluorescent protein-reporter mRNA bearing the wild-type 3'-UTR of HDAC6. This effect was totally abrogated when the reporter mRNA bore the mutated HDAC6 3'-UTR. The HDAC6 protein was found to be over-expressed in thymus from an affected male fetus. Concomitantly, the level of total alpha-tubulin, a target of HDAC6, was found to be increased in the affected fetal thymus, whereas the level of acetylated alpha-tubulin was found to be profoundly decreased. Skin biopsies were obtained from a female patient who presented a striking body asymmetry with hypotrophy of the left limbs. The mutated HDAC6 allele was expressed in 31% of left arm-derived fibroblasts, whereas it was not expressed in the right arm. Overexpression of HDAC6 was observed in left arm-derived fibroblasts. Altogether these results strongly suggest that this HDAC6 3'-UTR variant suppressed hsa-miR-433-mediated post-transcriptional regulation causing the overexpression of HDAC6. This variant is likely to constitute the molecular cause of this new form of X-linked chondrodysplasia. This represents to our knowledge the first example of a skeletal disease caused by the loss of a miRNA-mediated post-transcriptional regulation on its target mRNA.
Collapse
Affiliation(s)
- Delphine Simon
- Laboratoire de Génétique Humaine, EA 4137, Université Victor Segalen Bordeaux 2, Bordeaux 33076, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Satoh JI. MicroRNAs and Their Therapeutic Potential for Human Diseases: Aberrant MicroRNA Expression in Alzheimer’s Disease Brains. J Pharmacol Sci 2010; 114:269-75. [DOI: 10.1254/jphs.10r11fm] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|