1
|
Khan DA, Adhikary T, Sultana MT, Toukir IA. A comprehensive identification of potential molecular targets and small drugs candidate for melanoma cancer using bioinformatics and network-based screening approach. J Biomol Struct Dyn 2024; 42:7349-7369. [PMID: 37534476 DOI: 10.1080/07391102.2023.2240409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Melanoma is the third most common malignant skin tumor and has increased in morbidity and mortality over the previous decade due to its rapid spread into the bloodstream or lymphatic system. This study used integrated bioinformatics and network-based methodologies to reliably identify molecular targets and small molecular medicines that may be more successful for Melanoma diagnosis, prognosis and treatment. The statistical LIMMA approach utilized for bioinformatics analysis in this study found 246 common differentially expressed genes (cDEGs) between case and control samples from two microarray gene-expression datasets (GSE130244 and GSE15605). Protein-protein interaction network study revealed 15 cDEGs (PTK2, STAT1, PNO1, CXCR4, WASL, FN1, RUNX2, SOCS3, ITGA4, GNG2, CDK6, BRAF, AGO2, GTF2H1 and AR) to be critical in the development of melanoma (KGs). According to regulatory network analysis, the most important transcriptional and post-transcriptional regulators of DEGs and hub-DEGs are ten transcription factors and three miRNAs. We discovered the pathogenetic mechanisms of MC by studying DEGs' biological processes, molecular function, cellular components and KEGG pathways. We used molecular docking and dynamics modeling to select the four most expressed genes responsible for melanoma malignancy to identify therapeutic candidates. Then, utilizing the Connectivity Map (CMap) database, we analyzed the top 4-hub-DEGs-guided repurposable drugs. We validated four melanoma cancer drugs (Fisetin, Epicatechin Gallate, 1237586-97-8 and PF 431396) using molecular dynamics simulation with their target proteins. As a result, the results of this study may provide resources to researchers and medical professionals for the wet-lab validation of MC diagnosis, prognosis and treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhrubo Ahmed Khan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tonmoy Adhikary
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mst Tania Sultana
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Imran Ahamed Toukir
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
2
|
Bashyal A, Brodbelt JS. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation. MASS SPECTROMETRY REVIEWS 2024; 43:289-326. [PMID: 36165040 PMCID: PMC10040477 DOI: 10.1002/mas.21811] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications (PTMs) are covalent modifications of proteins that modulate the structure and functions of proteins and regulate biological processes. The development of various mass spectrometry-based proteomics workflows has facilitated the identification of hundreds of PTMs and aided the understanding of biological significance in a high throughput manner. Improvements in sample preparation and PTM enrichment techniques, instrumentation for liquid chromatography-tandem mass spectrometry (LC-MS/MS), and advanced data analysis tools enhance the specificity and sensitivity of PTM identification. Highly prevalent PTMs like phosphorylation, glycosylation, acetylation, ubiquitinylation, and methylation are extensively studied. However, the functions and impact of less abundant PTMs are not as well understood and underscore the need for analytical methods that aim to characterize these PTMs. This review focuses on the advancement and analytical challenges associated with the characterization of three less common but biologically relevant PTMs, specifically, adenosine diphosphate-ribosylation, tyrosine sulfation, and tyrosine nitration. The advantages and disadvantages of various enrichment, separation, and MS/MS techniques utilized to identify and localize these PTMs are described.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Griswold-Prenner I, Kashyap AK, Mazhar S, Hall ZW, Fazelinia H, Ischiropoulos H. Unveiling the human nitroproteome: Protein tyrosine nitration in cell signaling and cancer. J Biol Chem 2023; 299:105038. [PMID: 37442231 PMCID: PMC10413360 DOI: 10.1016/j.jbc.2023.105038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Covalent amino acid modification significantly expands protein functional capability in regulating biological processes. Tyrosine residues can undergo phosphorylation, sulfation, adenylation, halogenation, and nitration. These posttranslational modifications (PTMs) result from the actions of specific enzymes: tyrosine kinases, tyrosyl-protein sulfotransferase(s), adenylate transferase(s), oxidoreductases, peroxidases, and metal-heme containing proteins. Whereas phosphorylation, sulfation, and adenylation modify the hydroxyl group of tyrosine, tyrosine halogenation and nitration target the adjacent carbon residues. Because aberrant tyrosine nitration has been associated with human disorders and with animal models of disease, we have created an updated and curated database of 908 human nitrated proteins. We have also analyzed this new resource to provide insight into the role of tyrosine nitration in cancer biology, an area that has not previously been considered in detail. Unexpectedly, we have found that 879 of the 1971 known sites of tyrosine nitration are also sites of phosphorylation suggesting an extensive role for nitration in cell signaling. Overall, the review offers several forward-looking opportunities for future research and new perspectives for understanding the role of tyrosine nitration in cancer biology.
Collapse
Affiliation(s)
| | | | | | - Zach W Hall
- Nitrase Therapeutics, Brisbane, California, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Zhu P, Nguyen KT, Estelle AB, Sluchanko NN, Mehl RA, Cooley RB. Genetic encoding of 3-nitro-tyrosine reveals the impacts of 14-3-3 nitration on client binding and dephosphorylation. Protein Sci 2023; 32:e4574. [PMID: 36691781 PMCID: PMC9926477 DOI: 10.1002/pro.4574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
14-3-3 proteins are central hub regulators of hundreds of phosphorylated "client" proteins. They are subject to over 60 post-translational modifications (PTMs), yet little is known how these PTMs alter 14-3-3 function and its ability to regulate downstream signaling pathways. An often neglected, but well-documented 14-3-3 PTM found under physiological and immune-stimulatory conditions is the conversion of tyrosine to 3-nitro-tyrosine at several Tyr sites, two of which are located at sites considered important for 14-3-3 function: Y130 (β-isoform numbering) is located in the primary phospho-client peptide-binding groove, while Y213 is found on a secondary binding site that engages with clients for full 14-3-3/client complex formation and client regulation. By genetically encoding 3-nitro-tyrosine, we sought to understand if nitration at Y130 and Y213 effectively modulated 14-3-3 structure, function, and client complexation. The 1.5 Å resolution crystal structure of 14-3-3 nitrated at Y130 showed the nitro group altered the conformation of key residues in the primary binding site, while functional studies confirmed client proteins failed to bind this variant of 14-3-3. But, in contrast to other client-binding deficient variants, it did not localize to the nucleus. The 1.9 Å resolution structure of 14-3-3 nitrated at Y213 revealed unusual flexibility of its C-terminal α-helix resulting in domain swapping, suggesting additional structural plasticity though its relevance is not clear as this nitrated form retained its ability to bind clients. Collectively, our data suggest that nitration of 14-3-3 will alter downstream signaling systems, and if uncontrolled could result in global dysregulation of the 14-3-3 interactome.
Collapse
Affiliation(s)
- Phillip Zhu
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Kyle T. Nguyen
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Aidan B. Estelle
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of SciencesA.N. Bach Institute of BiochemistryMoscowRussia
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
5
|
Van Fossen EM, Grutzius S, Ruby CE, Mourich DV, Cebra C, Bracha S, Karplus PA, Cooley RB, Mehl RA. Creating a Selective Nanobody Against 3-Nitrotyrosine Containing Proteins. Front Chem 2022; 10:835229. [PMID: 35265586 PMCID: PMC8899190 DOI: 10.3389/fchem.2022.835229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
A critical step in developing therapeutics for oxidative stress-related pathologies is the ability to determine which specific modified protein species are innocuous by-products of pathology and which are causative agents. To achieve this goal, technologies are needed that can identify, characterize and quantify oxidative post translational modifications (oxPTMs). Nanobodies (Nbs) represent exquisite tools for intracellular tracking of molecules due to their small size, stability and engineerability. Here, we demonstrate that it is possible to develop a selective Nb against an oxPTM protein, with the key advance being the use of genetic code expansion (GCE) to provide an efficient source of the large quantities of high-quality, homogenous and site-specific oxPTM-containing protein needed for the Nb selection process. In this proof-of-concept study, we produce a Nb selective for a 3-nitrotyrosine (nitroTyr) modified form of the 14-3-3 signaling protein with a lesser recognition of nitroTyr in other protein contexts. This advance opens the door to the GCE-facilitated development of other anti-PTM Nbs.
Collapse
Affiliation(s)
- Elise M. Van Fossen
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
| | - Sonia Grutzius
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
| | - Carl E. Ruby
- Oregon State University, Department of Clinical Sciences, College of Veterinary Medicine, Corvallis, OR, United States
| | - Dan V. Mourich
- Oregon State University, Department of Clinical Sciences, College of Veterinary Medicine, Corvallis, OR, United States
| | - Chris Cebra
- Oregon State University, Department of Clinical Sciences, College of Veterinary Medicine, Corvallis, OR, United States
| | - Shay Bracha
- Department of Small Animal Clinical Sciences (VSCS), Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States
- *Correspondence: Ryan A. Mehl,
| |
Collapse
|
6
|
Randall LM, Dalla Rizza J, Parsonage D, Santos J, Mehl RA, Lowther WT, Poole LB, Denicola A. Unraveling the effects of peroxiredoxin 2 nitration; role of C-terminal tyrosine 193. Free Radic Biol Med 2019; 141:492-501. [PMID: 31323313 PMCID: PMC6749834 DOI: 10.1016/j.freeradbiomed.2019.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022]
Abstract
Peroxiredoxins (Prx) are enzymes that efficiently reduce hydroperoxides through active participation of cysteine residues (CP, CR). The first step in catalysis, the reduction of peroxide substrate, is fast, 107 - 108 M-1s-1 for human Prx2. In addition, the high intracellular concentration of Prx positions them not only as good antioxidants but also as central players in redox signaling pathways. These biological functions can be affected by post-translational modifications that could alter the peroxidase activity and/or interaction with other proteins. In particular, inactivation by hyperoxidation of CP, which occurs when a second molecule of peroxide reacts with the CP in the sulfenic acid form, modulates their participation in redox signaling pathways. The higher sensitivity to hyperoxidation of some Prx has been related to the presence of structural motifs that disfavor disulfide formation at the active site, making the CP sulfenic acid more available for hyperoxidation or interaction with a redox protein target. We previously reported that treatment of human Prx2 with peroxynitrite results in tyrosine nitration, a post-translational modification on non-catalytic residues, yielding a more active peroxidase with higher resistance to hyperoxidation. In this work, studies on various mutants of hPrx2 confirm that the presence of the tyrosyl side-chain of Y193, belonging to the C-terminal YF motif of eukaryotic Prx, is necessary to observe the increase in Prx2 resistance to hyperoxidation. Moreover, our results underline the critical role of this structural motif on the rate of disulfide formation that determines the differential participation of Prx in redox signaling pathways.
Collapse
Affiliation(s)
- Lía M Randall
- Laboratorio I+D de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay; Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas, Universidad de la República, Uruguay
| | - Joaquín Dalla Rizza
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas, Universidad de la República, Uruguay
| | - Derek Parsonage
- Department of Biochemistry and Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Buenos Aires, Argentina
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - W Todd Lowther
- Department of Biochemistry and Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Leslie B Poole
- Department of Biochemistry and Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas, Universidad de la República, Uruguay.
| |
Collapse
|
7
|
Izbiańska K, Floryszak-Wieczorek J, Gajewska J, Gzyl J, Jelonek T, Arasimowicz-Jelonek M. Switchable Nitroproteome States of Phytophthora infestans Biology and Pathobiology. Front Microbiol 2019; 10:1516. [PMID: 31379758 PMCID: PMC6647872 DOI: 10.3389/fmicb.2019.01516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The study demonstrates protein tyrosine nitration as a functional post-translational modification (PTM) in biology and pathobiology of the oomycete Phytophthora infestans (Mont.) de Bary, the most harmful pathogen of potato (Solanum tuberosum L.). Using two P. infestans isolates differing in their virulence toward potato cv. Sarpo Mira we found that the pathogen generates reactive nitrogen species (RNS) in hyphae and mature sporangia growing under in vitro and in planta conditions. However, acceleration of peroxynitrite formation and elevation of the nitrated protein pool within pathogen structures were observed mainly during the avr P. infestans MP 946-potato interaction. Importantly, the nitroproteome profiles varied for the pathogen virulence pattern and comparative analysis revealed that vr MP 977 P. infestans represented a much more diverse quality spectrum of nitrated proteins. Abundance profiles of nitrated proteins that were up- or downregulated were substantially different also between the analyzed growth phases. Briefly, in planta growth of avr and vr P. infestans was accompanied by exclusive nitration of proteins involved in energy metabolism, signal transduction and pathogenesis. Importantly, the P. infestans-potato interaction indicated cytosolic RXLRs and Crinklers effectors as potential sensors of RNS. Taken together, we explored the first plant pathogen nitroproteome. The results present new insights into RNS metabolism in P. infestans indicating protein nitration as an integral part of pathogen biology, dynamically modified during its offensive strategy. Thus, the nitroproteome should be considered as a flexible element of the oomycete developmental and adaptive mechanism to different micro-environments, including host cells.
Collapse
Affiliation(s)
- Karolina Izbiańska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Faculty of Horticulture and Landscape Architecture, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jarosław Gzyl
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Tomasz Jelonek
- Department of Forest Utilization, Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
8
|
Porter JJ, Jang HS, Van Fossen EM, Nguyen DP, Willi TS, Cooley RB, Mehl RA. Genetically Encoded Protein Tyrosine Nitration in Mammalian Cells. ACS Chem Biol 2019; 14:1328-1336. [PMID: 31117397 DOI: 10.1021/acschembio.9b00371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tyrosine nitration has served as a major biomarker for oxidative stress and is present in high abundance in over 50 disease pathologies in humans. While data mounts on specific disease pathways from specific sites of tyrosine nitration, the role of these modifications is still largely unclear. Strategies for installing site-specific tyrosine nitration in target proteins in eukaryotic cells, through routes not dependent on oxidative stress, would provide a powerful method to address the consequences of tyrosine nitration. Developed here is a Methanosarcina barkeri aminoacyl-tRNA synthetase/tRNA pair that efficiently incorporates nitrotyrosine site-specifically into proteins in mammalian cells. We demonstrate the utility of this approach to produce nitrated proteins identified in disease conditions by producing site-specific nitroTyr-containing manganese superoxide dismutase and 14-3-3 proteins in eukaryotic cells.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, United States
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, United States
| | - Elise M. Van Fossen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, United States
| | - Duy P. Nguyen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, United States
| | - Taylor S. Willi
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, United States
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, United States
| |
Collapse
|
9
|
Bandookwala M, Thakkar D, Sengupta P. Advancements in the Analytical Quantification of Nitroxidative Stress Biomarker 3-Nitrotyrosine in Biological Matrices. Crit Rev Anal Chem 2019; 50:265-289. [DOI: 10.1080/10408347.2019.1623010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Disha Thakkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
10
|
Zhao Y, Zhang Y, Sun H, Maroto R, Brasier AR. Selective Affinity Enrichment of Nitrotyrosine-Containing Peptides for Quantitative Analysis in Complex Samples. J Proteome Res 2017; 16:2983-2992. [PMID: 28714690 DOI: 10.1021/acs.jproteome.7b00275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein tyrosine nitration by oxidative and nitrate stress is important in the pathogenesis of many inflammatory or aging-related diseases. Mass spectrometry analysis of protein nitrotyrosine is very challenging because the non-nitrated peptides suppress the signals of the low-abundance nitrotyrosine (NT) peptides. No validated methods for enrichment of NT-peptides are currently available. Here we report an immunoaffinity enrichment of NT-peptides for proteomics analysis. The effectiveness of this approach was evaluated using nitrated protein standards and whole-cell lysates in vitro. A total of 1881 NT sites were identified from a nitrated whole-cell extract, indicating that this immunoaffinity-MS method is a valid approach for the enrichment of NT-peptides, and provides a significant advance for characterizing the nitrotyrosine proteome. We noted that this method had higher affinity to peptides with N-terminal nitrotyrosine relative to peptides with other nitrotyrosine locations, which raises the need for future study to develop a pan-specific nitrotyrosine antibody for unbiased, proteome-wide analysis of tyrosine nitration. We applied this method to quantify the changes in protein tyrosine nitration in mouse lungs after intranasal poly(I:C) treatment and quantified 237 NT sites. This result indicates that the immunoaffinity-MS method can be used for quantitative analysis of protein nitrotyrosines in complex samples.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Rosario Maroto
- Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| |
Collapse
|
11
|
Yang Y. Specific enrichment of a targeted nitrotyrosine-containing peptide from complex matrices and relative quantification for liquid chromatography–mass spectrometry analysis. J Chromatogr A 2017; 1485:90-100. [DOI: 10.1016/j.chroma.2017.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/01/2017] [Accepted: 01/13/2017] [Indexed: 12/27/2022]
|
12
|
Construction and analysis of a human testis/sperm-enriched interaction network: Unraveling the PPP1CC2 interactome. Biochim Biophys Acta Gen Subj 2017; 1861:375-385. [DOI: 10.1016/j.bbagen.2016.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
|
13
|
Venne AS, Solari FA, Faden F, Paretti T, Dissmeyer N, Zahedi RP. An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Proteomics 2016; 15:2458-69. [PMID: 26010716 DOI: 10.1002/pmic.201500014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/28/2015] [Accepted: 05/20/2015] [Indexed: 11/11/2022]
Abstract
We applied an extended charge-based fractional diagonal chromatography (ChaFRADIC) workflow to analyze the N-terminal proteome of Arabidopsis thaliana seedlings. Using iTRAQ protein labeling and a multi-enzyme digestion approach including trypsin, GluC, and subtilisin, a total of 200 μg per enzyme, and measuring only one third of each ChaFRADIC-enriched fraction by LC-MS, we quantified a total of 2791 unique N-terminal peptides corresponding to 2249 different unique N-termini from 1270 Arabidopsis proteins. Our data indicate the power, reproducibility, and sensitivity of the applied strategy that might be applicable to quantify proteolytic events from as little as 20 μg of protein per condition across up to eight different samples. Furthermore, our data clearly reflect the methionine excision dogma as well as the N-end rule degradation pathway (NERP) discriminating into a stabilizing or destabilizing function of N-terminal amino acid residues. We found bona fide NERP destabilizing residues underrepresented, and the list of neo N-termini from wild type samples may represent a helpful resource during the evaluation of NERP substrate candidates. All MS data have been deposited in the ProteomeXchange with identifier PXD001855 (http://proteomecentral.proteomexchange.org/dataset/PXD001855).
Collapse
Affiliation(s)
- A Saskia Venne
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Frederik Faden
- Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.,ScienceCampus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany
| | - Tomasso Paretti
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Italy
| | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.,ScienceCampus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| |
Collapse
|
14
|
Wang B, Wang M, Jiang Y, Sun D, Xu X. A novel network-based computational method to predict protein phosphorylation on tyrosine sites. J Bioinform Comput Biol 2016; 13:1542005. [DOI: 10.1142/s0219720015420056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phosphorylation plays a great role in regulating a variety of cellular processes and the identification of tyrosine phosphorylation sites is fundamental for understanding the post-translational modification (PTM) regulation processes. Although a lot of computational methods have been developed, most of them only concern local sequence information and few studies focus on the tyrosine sites with in situ PTM information, which refers to different types of PTM occurring on the same modification site. In this study, by constructing the site-modification network that efficiently incorporates in situ PTM information, we introduce a novel network-based computational method, site-modification network-based inference (SMNBI) to predict tyrosine phosphorylation. In order to verify the effectiveness of the proposed method, we compare it with other network-based computational methods. The results clearly show the superior performance of SMNBI. Besides, we extensively compare SMNBI with other sequence-based methods including SVM and Bayesian decision theory. The evaluation demonstrates the power of site-modification network in predicting tyrosine phosphorylation. The proposed method is freely available at http://bioinformatics.ustc.edu.cn/smnbi/ .
Collapse
Affiliation(s)
- Binghua Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Minghui Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Yujie Jiang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Dongdong Sun
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoyi Xu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Randall L, Manta B, Nelson KJ, Santos J, Poole LB, Denicola A. Structural changes upon peroxynitrite-mediated nitration of peroxiredoxin 2; nitrated Prx2 resembles its disulfide-oxidized form. Arch Biochem Biophys 2016; 590:101-108. [PMID: 26612102 PMCID: PMC9123601 DOI: 10.1016/j.abb.2015.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
Abstract
Peroxiredoxins are cys-based peroxidases that function in peroxide detoxification and H2O2-induced signaling. Human Prx2 is a typical 2-Cys Prx arranged as pentamers of head-to-tail homodimers. During the catalytic mechanism, the active-site cysteine (CP) cycles between reduced, sulfenic and disulfide state involving conformational as well as oligomeric changes. Several post-translational modifications were shown to affect Prx activity, in particular CP overoxidation which leads to inactivation. We have recently reported that nitration of Prx2, a post-translational modification on non-catalytic tyrosines, unexpectedly increases its peroxidase activity and resistance to overoxidation. To elucidate the cross-talk between this post-translational modification and the enzyme catalysis, we investigated the structural changes of Prx2 after nitration. Analytical ultracentrifugation, UV absorption, circular dichroism, steady-state and time-resolved fluorescence were used to connect catalytically relevant redox changes with tyrosine nitration. Our results show that the reduced nitrated Prx2 structurally resembles the disulfide-oxidized native form of the enzyme favoring a locally unfolded conformation that facilitates disulfide formation. These results provide structural basis for the kinetic analysis previously reported, the observed increase in activity and the resistance to overoxidation of the peroxynitrite-treated enzyme.
Collapse
Affiliation(s)
- Lía Randall
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Bruno Manta
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Javier Santos
- IQUIFIB (UBA-CONICET) and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
16
|
Walton A, Tsiatsiani L, Jacques S, Stes E, Messens J, Van Breusegem F, Goormachtig S, Gevaert K. Diagonal chromatography to study plant protein modifications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:945-51. [PMID: 26772901 DOI: 10.1016/j.bbapap.2016.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/01/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Alan Walton
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Liana Tsiatsiani
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Silke Jacques
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Nuriel T, Whitehouse J, Ma Y, Mercer EJ, Brown N, Gross SS. ANSID: A Solid-Phase Proteomic Approach for Identification and Relative Quantification of Aromatic Nitration Sites. Front Chem 2016; 3:70. [PMID: 26779476 PMCID: PMC4703760 DOI: 10.3389/fchem.2015.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Nitration of tyrosine and other aromatic amino acid residues in proteins occurs in the setting of inflammatory, neurodegenerative, and cardiovascular diseases—importantly, this modification has been implicated in the pathogenesis of diverse diseases and the physiological process of aging. To understand the biological consequences of aromatic nitration in both health and disease, it is critical to molecularly identify the proteins that undergo nitration, specify their cognate modification sites and quantify their extent of nitration. To date, unbiased identification of nitrated proteins has often involved painstaking 2D-gel electrophoresis followed by Western Blotting with an anti-nitrotyrosine antibody for detection. Apart from being relatively slow and laborious, this method suffers from limited coverage, the potential for false-positive identifications, and failure to reveal specific amino acid modification sites. To overcome these shortcomings, we have developed a solid-phase, chemical-capture approach for unbiased and high-throughput discovery of nitrotyrosine and nitrotryptophan sites in proteins. Utilizing this method, we have successfully identified several endogenously nitrated proteins in rat brain and a total of 244 nitrated peptides from 145 proteins following in vitro exposure of rat brain homogenates to the nitrating agent peroxynitrite (1 mM). As expected, Tyr residues constituted the great majority of peroxynitrite-mediated protein nitration sites; however, we were surprised to discover several brain proteins that contain nitrated Trp residues. By incorporating a stable-isotope labeling step, this new Aromatic Nitration Site IDentification (ANSID) method was also adapted for relative quantification of nitration site abundances in proteins. Application of the ANSID method offers great potential to advance our understanding of the role of protein nitration in disease pathogenesis and normal physiology.
Collapse
Affiliation(s)
- Tal Nuriel
- Department of Pharmacology, Weill Cornell Medical CollegeNew York, NY, USA; Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical CollegeNew York, NY, USA
| | - Julia Whitehouse
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Yuliang Ma
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Emily J Mercer
- Department of Pharmacology, Weill Cornell Medical CollegeNew York, NY, USA; Department of Surgery, Weill Cornell Medical CollegeNew York, NY, USA
| | - Neil Brown
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
18
|
Chicooree N, Unwin RD, Griffiths JR. The application of targeted mass spectrometry-based strategies to the detection and localization of post-translational modifications. MASS SPECTROMETRY REVIEWS 2015; 34:595-626. [PMID: 24737647 DOI: 10.1002/mas.21421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
This review describes some of the more interesting and imaginative ways in which mass spectrometry has been utilized to study a number of important post-translational modifications over the past two decades; from circa 1990 to 2013. A diverse range of modifications is covered, including citrullination, sulfation, hydroxylation and sumoylation. A summary of the biological role of each modification described, along with some brief mechanistic detail, is also included. Emphasis has been placed on strategies specifically aimed at detecting target modifications, as opposed to more serendipitous modification discovery approaches, which rely upon straightforward product ion scanning methods. The authors have intentionally excluded from this review both phosphorylation and glycosylation since these major modifications have been extensively reviewed elsewhere.
Collapse
Affiliation(s)
- Navin Chicooree
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
- School of Chemistry, University of Manchester, Brunswick Street, Manchester, M13 9SU, UK
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - John R Griffiths
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
19
|
Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2015; 34:423-448. [PMID: 24318073 DOI: 10.1002/mas.21413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Oxidative stress plays important roles in a wide range of diseases such as cancer, inflammatory disease, neurodegenerative disorders, etc. Tyrosine nitration in a protein is a chemically stable oxidative modification, and a marker of oxidative injuries. Mass spectrometry (MS) is a key technique to identify nitrotyrosine-containing proteins and nitrotyrosine sites in endogenous and synthetic nitroproteins and nitropeptides. However, in vivo nitrotyrosine-containing proteins occur with extreme low-abundance to severely challenge the use of MS to identify in vivo nitroproteins and nitrotyrosine sites. A preferential enrichment of nitroproteins and/or nitropeptides is necessary before MS analysis. Current enrichment methods include immuno-affinity techniques, chemical derivation of the nitro group plus target isolations, followed with tandem mass spectrometry analysis. This article reviews the MS techniques and pertinent before-MS enrichment techniques for the identification of nitrotyrosine-containing proteins. This article reviews future trends in the field of nitroproteomics, including quantitative nitroproteomics, systems biological networks of nitroproteins, and structural biology study of tyrosine nitration to completely clarify the biological functions of tyrosine nitration.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, Tennessee, 38163
| |
Collapse
|
20
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
21
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Vizovišek M, Vidmar R, Van Quickelberghe E, Impens F, Andjelković U, Sobotič B, Stoka V, Gevaert K, Turk B, Fonović M. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics 2015; 15:2479-90. [PMID: 25626674 DOI: 10.1002/pmic.201400460] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 01/22/2015] [Indexed: 11/12/2022]
Abstract
Proteases are important effectors of numerous physiological and pathological processes. Reliable determination of a protease's specificity is crucial to understand protease function and to develop activity-based probes and inhibitors. During the last decade, various proteomic approaches for profiling protease substrate specificities were reported. Although most of these approaches can identify up to thousands of substrate cleavage events in a single experiment, they are often time consuming and methodologically challenging as some of these approaches require rather complex sample preparation procedures. For such reasons their application is often limited to those labs that initially introduced them. Here, we report on a fast and simple approach for proteomic profiling of protease specificities (fast profiling of protease specificity (FPPS)), which can be applied to complex protein mixtures. FPPS is based on trideutero-acetylation of novel N-termini generated by the action of proteases and subsequent peptide fractionation on Stage Tips containing ion-exchange and reverse phase chromatographic resins. FPPS can be performed in 2 days and does not require extensive fractionation steps. Using this approach, we have determined the specificity profiles of the cysteine cathepsins K, L and S. We further validated our method by comparing the results with the specificity profiles obtained by the N-terminal combined fractional diagonal chromatography method. This comparison pointed to almost identical substrate specificities for all three cathepsins and confirmed the reliability of the FPPS approach. All MS data have been deposited in the ProteomeXchange with identifiers PXD001536 and PXD001553 (http://proteomecentral.proteomexchange.org/dataset/PXD001536; http://proteomecentral.proteomexchange.org/dataset/PXD001553).
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Emmy Van Quickelberghe
- Department of Biochemistry, Ghent University, Ghent, Belgium.,Department of Medical Protein Research, Ghent, Belgium
| | - Francis Impens
- Department of Biochemistry, Ghent University, Ghent, Belgium.,Department of Medical Protein Research, Ghent, Belgium.,Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
| | - Uroš Andjelković
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Barbara Sobotič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium.,Department of Medical Protein Research, Ghent, Belgium
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| |
Collapse
|
23
|
Yeo WS, Kim YJ, Kabir MH, Kang JW, Ahsan-Ul-Bari M, Kim KP. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. MASS SPECTROMETRY REVIEWS 2015; 34:166-183. [PMID: 24889964 DOI: 10.1002/mas.21429] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This review highlights the significance of protein tyrosine nitration (PTN) in signal transduction pathways, the progress achieved in analytical methods, and the implication of nitration in the cellular pathophysiology of aging and age-related neurodegenerative diseases. Although mass spectrometry of nitrated peptides has become a powerful tool for the characterization of nitrated peptides, the low stoichiometry of this modification clearly necessitates the use of affinity chromatography to enrich modified peptides. Analysis of nitropeptides involves identification of endogenous, intact modification as well as chemical conversion of the nitro group to a chemically reactive amine group and further modifications that enable affinity capture and enhance detectability by altering molecular properties. In this review, we focus on the recent progress in chemical derivatization of nitropeptides for enrichment and mass analysis, and for detection and quantification using various analytical tools. PTN participates in physiological processes, such as aging and neurodegenerative diseases. Accumulation of 3-nitrotyrosine has been found to occur during the aging process; this was identified through mass spectrometry. Further, there are several studies implicating the presence of nitrated tyrosine in age-related diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Ng JY, Wong JWH. Bioorthogonal labelling of 3-nitrotyrosine in peptides and proteins through diazotisation mediated azidation. Org Biomol Chem 2015; 13:374-8. [DOI: 10.1039/c4ob02133a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A bioorthogonal method of transforming 3-nitrotyrosine to 3-azidotyrosine is described, providing new opportunities to study 3-nitrotyrosine in biological samples.
Collapse
Affiliation(s)
- John Y. Ng
- Lowy Cancer Research Centre and the Prince of Wales Clinical School
- UNSW Australia
- Sydney
- Australia
| | - Jason W. H. Wong
- Lowy Cancer Research Centre and the Prince of Wales Clinical School
- UNSW Australia
- Sydney
- Australia
| |
Collapse
|
25
|
Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues. Sci Rep 2014; 4:7331. [PMID: 25476580 PMCID: PMC4256647 DOI: 10.1038/srep07331] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022] Open
Abstract
Recent studies have indicated that different post-translational modifications (PTMs) synergistically orchestrate specific biological processes by crosstalks. However, the preference of the crosstalk among different PTMs and the evolutionary constraint on the PTM crosstalk need further dissections. In this study, the in situ crosstalk at the same positions among three tyrosine PTMs including sulfation, nitration and phosphorylation were systematically analyzed. The experimentally identified sulfation, nitration and phosphorylation sites were collected and integrated with reliable predictions to perform large-scale analyses of in situ crosstalks. From the results, we observed that the in situ crosstalk between sulfation and nitration is significantly under-represented, whereas both sulfation and nitration prefer to co-occupy with phosphorylation at same tyrosines. Further analyses suggested that sulfation and nitration preferentially co-occur with phosphorylation at specific positions in proteins, and participate in distinct biological processes and functions. More interestingly, the long-term evolutionary analysis indicated that multi-PTM targeting tyrosines didn't show any higher conservation than singly modified ones. Also, the analysis of human genetic variations demonstrated that there is no additional functional constraint on inherited disease, cancer or rare mutations of multiply modified tyrosines. Taken together, our systematic analyses provided a better understanding of the in situ crosstalk among PTMs.
Collapse
|
26
|
Jones LH, Narayanan A, Hett EC. Understanding and applying tyrosine biochemical diversity. MOLECULAR BIOSYSTEMS 2014; 10:952-69. [PMID: 24623162 DOI: 10.1039/c4mb00018h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.
Collapse
Affiliation(s)
- Lyn H Jones
- Pfizer R&D, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|
27
|
Rezende Valim L, Davies JA, Tveen Jensen K, Guo R, Willison KR, Spickett CM, Pitt AR, Klug DR. Identification and relative quantification of tyrosine nitration in a model peptide using two-dimensional infrared spectroscopy. J Phys Chem B 2014; 118:12855-64. [PMID: 25347525 DOI: 10.1021/jp509053q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy.
Collapse
|
28
|
Venne AS, Zahedi RP. The potential of fractional diagonal chromatography strategies for the enrichment of post-translational modifications. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Xu Y, Wen X, Wen LS, Wu LY, Deng NY, Chou KC. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014; 9:e105018. [PMID: 25121969 PMCID: PMC4133382 DOI: 10.1371/journal.pone.0105018] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/16/2014] [Indexed: 12/31/2022] Open
Abstract
Nitrotyrosine is one of the post-translational modifications (PTMs) in proteins that occurs when their tyrosine residue is nitrated. Compared with healthy people, a remarkably increased level of nitrotyrosine is detected in those suffering from rheumatoid arthritis, septic shock, and coeliac disease. Given an uncharacterized protein sequence that contains many tyrosine residues, which one of them can be nitrated and which one cannot? This is a challenging problem, not only directly related to in-depth understanding the PTM’s mechanism but also to the nitrotyrosine-based drug development. Particularly, with the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop a high throughput tool in this regard. Here, a new predictor called “iNitro-Tyr” was developed by incorporating the position-specific dipeptide propensity into the general pseudo amino acid composition for discriminating the nitrotyrosine sites from non-nitrotyrosine sites in proteins. It was demonstrated via the rigorous jackknife tests that the new predictor not only can yield higher success rate but also is much more stable and less noisy. A web-server for iNitro-Tyr is accessible to the public at http://app.aporc.org/iNitro-Tyr/. For the convenience of most experimental scientists, we have further provided a protocol of step-by-step guide, by which users can easily get their desired results without the need to follow the complicated mathematics that were presented in this paper just for the integrity of its development process. It has not escaped our notice that the approach presented here can be also used to deal with the other PTM sites in proteins.
Collapse
Affiliation(s)
- Yan Xu
- Department of Information and Computer Science, University of Science and Technology Beijing, Beijing, China
- * E-mail:
| | - Xin Wen
- Department of Information and Computer Science, University of Science and Technology Beijing, Beijing, China
| | - Li-Shu Wen
- College of Sciences, Liaoning Shiyou University, FuShun, China
| | - Ling-Yun Wu
- Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Nai-Yang Deng
- College of Science, China Agricultural University, Beijing, China
| | - Kuo-Chen Chou
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Gordon Life Science Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
Arvaniti K, Papadioti A, Kinigopoulou M, Theodorou V, Skobridis K, Tsiotis G. Proteome Changes Induced by Imatinib and Novel Imatinib Derivatives in K562 Human Chronic Myeloid Leukemia Cells. Proteomes 2014; 2:363-381. [PMID: 28250386 PMCID: PMC5302748 DOI: 10.3390/proteomes2030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022] Open
Abstract
Imatinib mesylate is the leading compound to treat chronic myeloid leukemia (CML) and other cancers, through its inhibition of Bcr-Abl tyrosine kinases. However, resistance to imatinib develops frequently, particularly in late-stage disease and has necessitated the development of new Bcr-Abl inhibitors. The synthesis of a new series of phenylaminopyrimidines, structurally related to imatinib, showed large interest since the introduction of nilotinib. Here, we compare the protein levels in K562 cells treated with either imatinib or with novel imatinib derivates. Our results revealed that among the 986 quantified proteins, 35 had significantly altered levels of expression by imatinib or its derivates. In a second series of experiments, we directly compared the proteomes of imatinib treated K562 cells with those K562 cells treated with any of the four imatinib derivates. More than 1029 protein were quantified, 80 of which had altered levels of expression. Both experiments pointed to changes in the expression of the ATP-dependent RNA helicase DDX3X and of two mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing proteins.
Collapse
Affiliation(s)
- Katerina Arvaniti
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece.
| | - Anastasia Papadioti
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece.
| | - Maria Kinigopoulou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Vassiliki Theodorou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Konstantinos Skobridis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Georgios Tsiotis
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece.
| |
Collapse
|
31
|
Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. MASS SPECTROMETRY REVIEWS 2014; 33:237-76. [PMID: 24167057 DOI: 10.1002/mas.21396] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 05/11/2023]
Abstract
Reactive-nitrogen species (RNS) such as peroxynitrite (ONOO(-)), that is, the reaction product of nitric oxide ((•)NO) and superoxide (O2(-•)), nitryl chloride (NO2Cl) and (•)NO2 react with the activated aromatic ring of tyrosine to form 3-nitrotyrosine. This modification, which has been known for more than a century, occurs to both the free form of the amino acid (i.e., soluble/free tyrosine) and to tyrosine residues covalently bound within the backbone of peptides and proteins. Nitration of tyrosine is thought to be of biological significance and has been linked to health and disease, but determining its role has proved challenging. Several key questions have been the focus of much of the research activity: (a) to what extent is free/soluble tyrosine nitrated in biological tissues and fluids, and (b) are there specific site(s) of nitration within peptides/proteins and to what extent (i.e., stoichiometry) does this modification occur? These issues have been addressed in a wide range of sample types (e.g., blood, urine, CSF, exhaled breath condensate and various tissues) and a diverse array of physiological/pathophysiological scenarios. The accurate determination of nitrated tyrosine is, however, a stumbling block. Despite extensive study, the extent to which nitration occurs in vivo, the specificity of the nitration reaction, and its importance in health and disease, remain unclear. In this review, we highlight the analytical challenges and discuss the approaches adopted to address them. Mass spectrometry, in combination with either gas chromatography (GC-MS, GC-MS/MS) or liquid chromatography (LC-MS/MS), has played the central role in the analysis of 3-nitrotyrosine and tyrosine-nitrated biological macromolecules. We discuss its unique attributes and highlight the role of stable-isotope labeled 3-nitrotyrosine analogs in both accurate quantification, and in helping to define the biological relevance of tyrosine nitration. We show that the application of sophisticated mass spectrometric techniques is advantageous if not essential, but that this alone is by no means a guarantee of accurate findings. We discuss the important analytical challenges in quantifying 3-nitrotyrosine, possible workarounds, and we attempt to make sense of the disparate findings that have been reported so far.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
32
|
Randall LM, Manta B, Hugo M, Gil M, Batthyàny C, Trujillo M, Poole LB, Denicola A. Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase. J Biol Chem 2014; 289:15536-43. [PMID: 24719319 DOI: 10.1074/jbc.m113.539213] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins (Prx) are efficient thiol-dependent peroxidases and key players in the mechanism of H2O2-induced redox signaling. Any structural change that could affect their redox state, oligomeric structure, and/or interaction with other proteins could have a significant impact on the cascade of signaling events. Several post-translational modifications have been reported to modulate Prx activity. One of these, overoxidation of the peroxidatic cysteine to the sulfinic derivative, inactivates the enzyme and has been proposed as a mechanism of H2O2 accumulation in redox signaling (the floodgate hypothesis). Nitration of Prx has been reported in vitro as well as in vivo; in particular, nitrated Prx2 was identified in brains of Alzheimer disease patients. In this work we characterize Prx2 tyrosine nitration, a post-translational modification on a noncatalytic residue that increases its peroxidase activity and its resistance to overoxidation. Mass spectrometry analysis revealed that treatment of disulfide-oxidized Prx2 with excess peroxynitrite renders mainly mononitrated and dinitrated species. Tyrosine 193 of the YF motif at the C terminus, associated with the susceptibility toward overoxidation of eukaryotic Prx, was identified as nitrated and is most likely responsible for the protection of the peroxidatic cysteine against oxidative inactivation. Kinetic analyses suggest that tyrosine nitration facilitates the intermolecular disulfide formation, transforming a sensitive Prx into a robust one. Thus, tyrosine nitration appears as another mechanism to modulate these enzymes in the complex network of redox signaling.
Collapse
Affiliation(s)
- Lía M Randall
- From the Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay, the Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11100, Uruguay
| | - Bruno Manta
- From the Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay, the Laboratorio de Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Martín Hugo
- the Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11100, Uruguay, the Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay
| | - Magdalena Gil
- the Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay, the Unidad de Bioquímica y Proteómica Analíticas, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, 11600 Montevideo, Uruguay, and
| | - Carlos Batthyàny
- the Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11100, Uruguay, the Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay, the Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Madia Trujillo
- the Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11100, Uruguay, the Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay
| | - Leslie B Poole
- the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Ana Denicola
- From the Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay, the Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11100, Uruguay,
| |
Collapse
|
33
|
Selective chemoprecipitation to enrich nitropeptides from complex proteomes for mass-spectrometric analysis. Nat Protoc 2014; 9:882-95. [PMID: 24651500 DOI: 10.1038/nprot.2014.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-translational protein nitration has attracted interest owing to its involvement in cellular signaling, effects on protein function and potential as biomarker of nitroxidative stress. We describe a procedure for enriching nitropeptides for mass spectrometry (MS)-based proteomics that is a simple and reliable alternative to immunoaffinity-based methods. The starting material for this procedure is a proteolytic digest. The peptides are reacted with formaldehyde and sodium cyanoborohydride to dimethylate all the N-terminal and side chain amino groups. Sodium dithionite is added subsequently to reduce the nitro groups to amines; in theory, the only amino groups present will have originally been nitro groups. The peptide sample is then applied to a solid-phase active ester reagent (SPAER), and those peptides with amino groups will be selectively and covalently captured. Release of the peptides on hydrolysis with trifluoroacetic acid (TFA) results in peptides that have a 4-formyl-benzamido group where the nitro group used to be. In qualitative setups, the procedure can be used to identify proteins modified by reactive nitrogen species and to determine the specific sites of their nitration. Quantitative measurements can be performed by stable-isotope labeling of the peptides in the reductive dimethylation step. Preparation of the SPAER takes about 1 d. Enrichment of nitropeptides requires about 2 d, and sample preparations need 1-30 h, depending on the experimental design. LC-MS/MS assays take from 4 h to several days and data processing can be done in 1-7 d.
Collapse
|
34
|
Morais VA, Haddad D, Craessaerts K, De Bock PJ, Swerts J, Vilain S, Aerts L, Overbergh L, Grünewald A, Seibler P, Klein C, Gevaert K, Verstreken P, De Strooper B. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 2014; 344:203-7. [PMID: 24652937 DOI: 10.1126/science.1249161] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations.
Collapse
|
35
|
Abstract
SIGNIFICANCE The conversion of protein-bound Tyr residues to 3-nitrotyrosine (3NY) can occur during nitrative stress and has been correlated to aging and many disease states. Proteomic analysis of this post-translational modification, using mass spectrometry-based techniques, is crucial for understanding its potential role in pathological and physiological processes. RECENT ADVANCES To overcome some of the disadvantages inherent to well-established nitroproteomic methods using anti-3NY antibodies and gel-based separations, methods involving multidimensional chromatography, precursor ion scanning, and/or chemical derivatization have emerged for both identification and quantitation of protein nitration sites. A few of these methods have successfully detected endogenous 3NY modifications from biological samples. CRITICAL ISSUES While model systems often show promising results, identification of endogenous 3NY modifications remains largely elusive. The frequently low abundance of nitrated proteins in vivo, even under inflammatory conditions, is especially challenging, and sample loss due to derivatization and cleaning may become significant. FUTURE DIRECTIONS Continued efforts to avoid interference from non-nitrated peptides without sacrificing recovery of nitrated peptides are needed. Quantitative methods are emerging and are crucial for identifying endogenous modifications that may have significant biological impacts.
Collapse
Affiliation(s)
- Maria B Feeney
- Department of Pharmaceutical Chemistry, The University of Kansas , Lawrence, Kansas
| | | |
Collapse
|
36
|
Holmberg C, Ghesquière B, Impens F, Gevaert K, Kumar JD, Cash N, Kandola S, Hegyi P, Wang TC, Dockray GJ, Varro A. Mapping proteolytic processing in the secretome of gastric cancer-associated myofibroblasts reveals activation of MMP-1, MMP-2, and MMP-3. J Proteome Res 2013; 12:3413-3422. [PMID: 23705892 PMCID: PMC3709265 DOI: 10.1021/pr400270q] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 01/06/2023]
Abstract
Cancer progression involves changes in extracellular proteolysis, but the contribution of stromal cell secretomes to the cancer degradome remains uncertain. We have now defined the secretome of a specific stromal cell type, the myofibroblast, in gastric cancer and its modification by proteolysis. SILAC labeling and COFRADIC isolation of methionine containing peptides allowed us to quantify differences in gastric cancer-derived myofibroblasts compared with myofibroblasts from adjacent tissue, revealing increased abundance of several proteases in cancer myofibroblasts including matrix metalloproteinases (MMP)-1 and -3. Moreover, N-terminal COFRADIC analysis identified cancer-restricted proteolytic cleavages, including liberation of the active forms of MMP-1, -2, and -3 from their inactive precursors. In vivo imaging confirmed increased MMP activity when gastric cancer cells were xenografted in mice together with gastric cancer myofibroblasts. Western blot and enzyme activity assays confirmed increased MMP-1, -2, and -3 activity in cancer myofibroblasts, and cancer cell migration assays indicated stimulation by MMP-1, -2, and -3 in cancer-associated myofibroblast media. Thus, cancer-derived myofibroblasts differ from their normal counterparts by increased production and activation of MMP-1, -2, and -3, and this may contribute to the remodelling of the cancer cell microenvironment.
Collapse
Affiliation(s)
| | - Bart Ghesquière
- Department
of Medical Protein
Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Francis Impens
- Department
of Medical Protein
Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Department
of Medical Protein
Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - J. Dinesh Kumar
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Nicole Cash
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Sandhir Kandola
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Peter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Timothy C. Wang
- Department of Medicine, Columbia University
Medical Center, New York, United
States
| | - Graham J. Dockray
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Andrea Varro
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| |
Collapse
|
37
|
Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics 2013; 92:2-27. [PMID: 23777897 DOI: 10.1016/j.jprot.2013.05.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene - transcript - protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno & CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Iwase S, Sato R, De Bock PJ, Gevaert K, Fujiki S, Tawada T, Kuchitsu M, Yamagishi Y, Ono S, Abe H. Activation of ADF/cofilin by phosphorylation-regulated Slingshot phosphatase is required for the meiotic spindle assembly in Xenopus laevis oocytes. Mol Biol Cell 2013; 24:1933-46. [PMID: 23615437 PMCID: PMC3681698 DOI: 10.1091/mbc.e12-12-0851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We identify Xenopus ADF/cofilin (XAC) and its activator, Slingshot phosphatase (XSSH), as key regulators of actin dynamics essential for spindle microtubule assembly during Xenopus oocyte maturation. Phosphorylation of XSSH at multiple sites within the tail domain occurs just after germinal vesicle breakdown (GVBD) and is accompanied by dephosphorylation of XAC, which was mostly phosphorylated in immature oocytes. This XAC dephosphorylation after GVBD is completely suppressed by latrunculin B, an actin monomer-sequestering drug. On the other hand, jasplakinolide, an F-actin-stabilizing drug, induces dephosphorylation of XAC. Effects of latrunculin B and jasplakinolide are reconstituted in cytostatic factor-arrested extracts (CSF extracts), and XAC dephosphorylation is abolished by depletion of XSSH from CSF extracts, suggesting that XSSH functions as an actin filament sensor to facilitate actin filament dynamics via XAC activation. Injection of anti-XSSH antibody, which blocks full phosphorylation of XSSH after GVBD, inhibits both meiotic spindle formation and XAC dephosphorylation. Coinjection of constitutively active XAC with the antibody suppresses this phenotype. Treatment of oocytes with jasplakinolide also impairs spindle formation. These results strongly suggest that elevation of actin dynamics by XAC activation through XSSH phosphorylation is required for meiotic spindle assembly in Xenopus laevis.
Collapse
Affiliation(s)
- Shohei Iwase
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ng JY, Boelen L, Wong JWH. Bioinformatics analysis reveals biophysical and evolutionary insights into the 3-nitrotyrosine post-translational modification in the human proteome. Open Biol 2013; 3:120148. [PMID: 23389939 PMCID: PMC3603447 DOI: 10.1098/rsob.120148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein 3-nitrotyrosine is a post-translational modification that commonly arises from the nitration of tyrosine residues. This modification has been detected under a wide range of pathological conditions and has been shown to alter protein function. Whether 3-nitrotyrosine is important in normal cellular processes or is likely to affect specific biological pathways remains unclear. Using GPS-YNO2, a recently described 3-nitrotyrosine prediction algorithm, a set of predictions for nitrated residues in the human proteome was generated. In total, 9.27 per cent of the proteome was predicted to be nitratable (27 922/301 091). By matching the predictions against a set of curated and experimentally validated 3-nitrotyrosine sites in human proteins, it was found that GPS-YNO2 is able to predict 73.1 per cent (404/553) of these sites. Furthermore, of these sites, 42 have been shown to be nitrated endogenously, with 85.7 per cent (36/42) of these predicted to be nitrated. This demonstrates the feasibility of using the predicted dataset for a whole proteome analysis. A comprehensive bioinformatics analysis was subsequently performed on predicted and all experimentally validated nitrated tyrosine. This found mild but specific biophysical constraints that affect the susceptibility of tyrosine to nitration, and these may play a role in increasing the likelihood of 3-nitrotyrosine to affect processes, including phosphorylation and DNA binding. Furthermore, examining the evolutionary conservation of predicted 3-nitrotyrosine showed that, relative to non-nitrated tyrosine residues, 3-nitrotyrosine residues are generally less conserved. This suggests that, at least in the majority of cases, 3-nitrotyrosine is likely to have a deleterious effect on protein function and less likely to be important in normal cellular function.
Collapse
Affiliation(s)
- John Y Ng
- Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
40
|
Jacques S, Ghesquière B, Van Breusegem F, Gevaert K. Plant proteins under oxidative attack. Proteomics 2013; 13:932-40. [DOI: 10.1002/pmic.201200237] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 11/09/2022]
|
41
|
Jarmuła A, Rode W. Computational study of the effects of protein tyrosine nitrations on the catalytic activity of human thymidylate synthase. J Comput Aided Mol Des 2012; 27:45-66. [PMID: 23239172 DOI: 10.1007/s10822-012-9624-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/06/2012] [Indexed: 11/25/2022]
Abstract
Tyrosine nitration is a widespread post-translational modification capable of affecting both the function and structure of the host protein molecule. Enzyme thymidylate synthase (TS), a homodimer, is a molecular target for anticancer therapy. Recently purified TS preparations, isolated from mammalian tissues, were found to be nitrated, suggesting this modification to appear endogenously in normal and tumor tissues. Moreover, human TS (hTS) nitration in vitro led to a by twofold lowered catalytic activity following nitration in average of 1 tyrosine residue per monomer (Dąbrowska-Maś et al. in Org Biomol Chem 10:323-331, 2012), with the modification identified by mass spectrometry at seven different sites (Y33, Y65, Y135, Y213, Y230, Y258 and Y301). In the present paper, combined computational approach, including molecular and essential dynamics and free energy computations, was used to predict the influence on the activity of hTS of nitration of each of the seven tyrosine residues. The simulations were based on the crystal structure of hTS ternary complex with dUMP and Tomudex (PDB code: 1I00), with the Tomudex molecule replaced by the molecule of TS cofactor analogue, tetrahydrofolate. The present results indicate that while with nitration of five out of seven residues (Y33, Y135, Y230, Y258 and Y301), single residue modification appears to have a strong reducing effect on the activity, with the remaining two, Y65 and Y213, no or a weaker influence is apparent. Taken together, these results demonstrate that tyrosine nitrations in the hTS enzyme show clear tendency to influence the structure and dynamics and, in turn, catalytic properties of the host enzyme. These effects are overall distance-dependent.
Collapse
Affiliation(s)
- Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warszawa, Poland.
| | | |
Collapse
|
42
|
Matta S, Van Kolen K, da Cunha R, van den Bogaart G, Mandemakers W, Miskiewicz K, De Bock PJ, Morais VA, Vilain S, Haddad D, Delbroek L, Swerts J, Chávez-Gutiérrez L, Esposito G, Daneels G, Karran E, Holt M, Gevaert K, Moechars DW, De Strooper B, Verstreken P. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 2012; 75:1008-21. [PMID: 22998870 DOI: 10.1016/j.neuron.2012.08.022] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
LRRK2 is a kinase mutated in Parkinson's disease, but how the protein affects synaptic function remains enigmatic. We identified LRRK2 as a critical regulator of EndophilinA. Using genetic and biochemical studies involving Lrrk loss-of-function mutants and Parkinson-related LRRK2(G2019S) gain-of-kinase function, we show that LRRK2 affects synaptic endocytosis by phosphorylating EndoA at S75, a residue in the BAR domain. We show that LRRK2-mediated EndoA phosphorylation has profound effects on EndoA-dependent membrane tubulation and membrane association in vitro and in vivo and on synaptic vesicle endocytosis at Drosophila neuromuscular junctions in vivo. Our work uncovers a regulatory mechanism that indicates that reduced LRRK2 kinase activity facilitates EndoA membrane association, while increased kinase activity inhibits membrane association. Consequently, both too much and too little LRRK2-dependent EndoA phosphorylation impedes synaptic endocytosis, and we propose a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses.
Collapse
Affiliation(s)
- Samer Matta
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guo J, Prokai L. Conversion of 3-nitrotyrosine to 3-aminotyrosine residues facilitates mapping of tyrosine nitration in proteins by electrospray ionization-tandem mass spectrometry using electron capture dissociation. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1601-1611. [PMID: 23280749 DOI: 10.1002/jms.3102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
Protein tyrosine nitration is associated with oxidative stress and various human diseases. Tandem mass spectrometry has been the method of choice for the identification and localization of this posttranslational modification to understand the underlying mechanisms and functional consequences. Due to the electron predator effect of the nitro group limiting fragmentation of the peptide backbone, electron-based dissociation has not been applicable, however, to nitrotyrosine-containing peptides. A straightforward conversion of the nitrotyrosine to the aminotyrosine residues is introduced to address this limitation. When tested with nitrated ubiquitin and human serum albumin as model proteins in top-down and bottom-up approaches, respectively, this chemical derivatization enhanced backbone fragmentation of the corresponding nitroproteins and nitropeptides by electron capture dissociation (ECD). Increased sequence coverage has been obtained by combining in the bottom-up strategy the conversion of nitrotyrosine to aminotyrosine and introducing, in addition to trypsin, a further digesting enzyme of complementary specificity, when protein nitration was mapped by liquid chromatography-electrospray ionization tandem mass spectrometry using both collision-induced dissociation (CID) and ECD.
Collapse
Affiliation(s)
- Jia Guo
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA
| | | |
Collapse
|
44
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
45
|
Sharov V, Pal R, Dremina E, Michaelis E, Schöneich C. Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzene sulfonate in tissues: a useful alternative to Immunohistochemistry for fluorescence microscopy imaging of protein nitration. Free Radic Biol Med 2012; 53:1877-85. [PMID: 22995636 PMCID: PMC3523807 DOI: 10.1016/j.freeradbiomed.2012.08.582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023]
Abstract
Protein tyrosine nitration is a common biomarker of biological aging and diverse pathologies associated with the excessive formation of reactive oxygen and nitrogen species. Recently, we suggested a novel fluorogenic derivatization procedure for the detection of 3-nitrotyrosine (3-NT) using benzylamine derivatives to convert specifically protein- or peptide-bound 3-NT to a highly fluorescent benzoxazole product. In this study, we applied this procedure to fluorogenic derivatization of protein 3-NT in sections from adult rat cerebellum to: (i) test this method for imaging nitrated proteins in fixed brain tissue sections and (ii) compare the chemical approach to immunohistochemical labeling with anti-3-NT antibodies. Immunofluorescence analysis of cerebellar sections using anti-3-NT antibodies showed differential levels of immunostaining in the molecular, Purkinje, and granule cell layers of the cerebellar cortex; in agreement with previous reports, the Purkinje cells were most highly labeled. Importantly, fluorogenic derivatization reactions of cerebellar proteins with 4-(aminomethyl)benzene sulfonic acid (ABS) and K(3)Fe(CN)(6) at pH 9, after sodium dithionite reduction of 3-NT to 3-aminotyrosine, showed a very similar pattern of relative intensity of cell labeling and improved resolution compared with antibody labeling. Our data demonstrate that ABS derivatization may be either a useful alternative to or a complementary approach to immunolabeling in imaging protein nitration in cells and tissues, including under conditions of dual labeling with antibodies to cell proteins, thus allowing for cellular colocalization of nitrated proteins and any protein of interest.
Collapse
Affiliation(s)
- V.S. Sharov
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - R. Pal
- Department of Pharmacology and Toxicology, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - E.S. Dremina
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - E.K. Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - C. Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
46
|
Sun X, Singleton PA, Letsiou E, Zhao J, Belvitch P, Sammani S, Chiang ET, Moreno-Vinasco L, Wade MS, Zhou T, Liu B, Parastatidis I, Thomson L, Ischiropoulos H, Natarajan V, Jacobson JR, Machado RF, Dudek SM, Garcia JGN. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am J Respir Cell Mol Biol 2012; 47:628-36. [PMID: 22771388 DOI: 10.1165/rcmb.2012-0048oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The inflamed lung exhibits oxidative and nitrative modifications of multiple target proteins, potentially reflecting disease severity and progression. We identified sphingosine-1-phosphate receptor-3 (S1PR3), a critical signaling molecule mediating cell proliferation and vascular permeability, as a nitrated plasma protein in mice with acute lung injury (ALI). We explored S1PR3 as a potential biomarker in murine and human ALI. In vivo nitrated and total S1PR3 concentrations were determined by immunoprecipitation and microarray studies in mice, and by ELISA in human plasma. In vitro nitrated S1PR3 concentrations were evaluated in human lung vascular endothelial cells (ECs) or within microparticles shed from ECs after exposure to barrier-disrupting agonists (LPS, low-molecular-weight hyaluronan, and thrombin). The effects of S1PR3-containing microparticles on EC barrier function were assessed by transendothelial electrical resistance (TER). Nitrated S1PR3 was identified in the plasma of murine ALI and in humans with severe sepsis-induced ALI. Elevated total S1PR3 plasma concentrations (> 251 pg/ml) were linked to sepsis and ALI mortality. In vitro EC exposure to barrier-disrupting agents induced S1PR3 nitration and the shedding of S1PR3-containing microparticles, which significantly reduced TER, consistent with increased permeability. These changes were attenuated by reduced S1PR3 expression (small interfering RNAs). These results suggest that microparticles containing nitrated S1PR3 shed into the circulation during inflammatory lung states, and represent a novel ALI biomarker linked to disease severity and outcome.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Institute for Personalized Respiratory Medicine, College of Medicine, University of Illinois at Chicago, 914 South Wood St., MC 719, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Robinson RAS, Evans AR. Enhanced Sample Multiplexing for Nitrotyrosine-Modified Proteins Using Combined Precursor Isotopic Labeling and Isobaric Tagging. Anal Chem 2012; 84:4677-86. [DOI: 10.1021/ac202000v] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Papadioti A, De Bock PJ, Vranakis I, Tselentis Y, Gevaert K, Psaroulaki A, Tsiotis G. Study of the Whole Cell Lysate of Two Coxiella burnetii Strains Using N-Terminomics. J Proteome Res 2012; 11:3150-9. [DOI: 10.1021/pr201175m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anastasia Papadioti
- Division of Biochemistry, Department
of Chemistry, University of Crete, P.O.
Box 2208, GR-71003 Voutes, Greece
| | - Pieter-Jan De Bock
- Department of Medical Protein
Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Iosif Vranakis
- Department of Clinical Bacteriology,
Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | - Yiannis Tselentis
- Department of Clinical Bacteriology,
Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | - Kris Gevaert
- Department of Medical Protein
Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Anna Psaroulaki
- Department of Clinical Bacteriology,
Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | - Georgios Tsiotis
- Division of Biochemistry, Department
of Chemistry, University of Crete, P.O.
Box 2208, GR-71003 Voutes, Greece
| |
Collapse
|
49
|
Sandalakis V, Psaroulaki A, De Bock PJ, Christidou A, Gevaert K, Tsiotis G, Tselentis Y. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. J Proteome Res 2012; 11:2374-85. [PMID: 22360387 DOI: 10.1021/pr201122w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations in the rpoB gene have already been shown to contribute to rifampicin resistance in many bacterial strains including Brucella species. Resistance against this antibiotic easily occurs and resistant strains have already been detected in human samples. We here present the first research project that combines proteomic, genomic, and microbiological analysis to investigate rifampicin resistance in an in vitro developed rifampicin resistant strain of Brucella abortus 2308. In silico analysis of the rpoB gene was performed and several antibiotics used in the therapy of Brucellosis were used for cross resistance testing. The proteomic profiles were examined and compared using MS-driven comparative proteomics. The resistant strain contained an already described mutation in the rpoB gene, V154F. A correlation between rifampicin resistance and reduced susceptibility on trimethoprim/sulfamethoxazole was detected by E-test and supported by the proteomics results. Using 12 836 MS/MS spectra we identified 6753 peptides corresponding to 456 proteins. The resistant strain presented 39 differentially regulated proteins most of which are involved in various metabolic pathways. Results from our research suggest that rifampicin resistance in Brucella mostly involves mutations in the rpoB gene, excitation of several metabolic processes, and perhaps the use of the already existing secretion mechanisms at a more efficient level.
Collapse
Affiliation(s)
- Vassilios Sandalakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
50
|
Quantitative proteome profiling of C. burnetii under tetracycline stress conditions. PLoS One 2012; 7:e33599. [PMID: 22438959 PMCID: PMC3306420 DOI: 10.1371/journal.pone.0033599] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/12/2012] [Indexed: 01/18/2023] Open
Abstract
The recommended antibiotic regimen against Coxiella burnetii, the etiological agent of Q fever, is based on a semi-synthetic, second-generation tetracycline, doxycycline. Here, we report on the comparison of the proteomes of a C. burnetii reference strain either cultured under control conditions or under tetracycline stress conditions. Using the MS-driven combined fractional diagonal chromatography proteomics technique, out of the 531 proteins identified, 5 and 19 proteins were found significantly up- and down-regulated respectively, under tetracycline stress. Although the predicted cellular functions of these regulated proteins did not point to known tetracycline resistance mechanisms, our data clearly reveal the plasticity of the proteome of C. burnetii to battle tetracycline stress. Finally, we raise several plausible hypotheses that could further lead to more focused experiments on studying tetracycline resistance in C. burnetii and thus reduced treatment failures of Q fever.
Collapse
|