1
|
Hou C, Deng J, Wu C, Zhang J, Byers S, Moremen KW, Pei H, Ma J. Ultradeep O-GlcNAc proteomics reveals widespread O-GlcNAcylation on tyrosine residues of proteins. Proc Natl Acad Sci U S A 2024; 121:e2409501121. [PMID: 39531497 PMCID: PMC11588081 DOI: 10.1073/pnas.2409501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As a unique type of glycosylation, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on Ser/Thr residues of proteins was discovered 40 y ago. O-GlcNAcylation is catalyzed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove O-GlcNAc, respectively. O-GlcNAcylation is an essential glycosylation that regulates the functions of many proteins in virtually all cellular processes. However, deep and site-specific characterization of O-GlcNAcylated proteins remains a challenge. We developed an ultradeep O-GlcNAc proteomics workflow by integrating digestion with multiple proteases, two mass spectrometric approaches (i.e., electron-transfer/higher-energy collision dissociation [EThcD] and HCD product-dependent electron-transfer/higher-energy collision dissociation [HCD-pd-EThcD]), and two data analysis tools (i.e., MaxQuant and Proteome Discoverer). The performance of this strategy was benchmarked by the analysis of whole lysates from PANC-1 (a pancreatic cancer cell line). In total, 2,831 O-GlcNAc sites were unambiguously identified, representing the largest O-GlcNAc dataset of an individual study reported so far. Unexpectedly, in addition to confirming known sites and identifying many other sites of Ser/Thr modification, O-GlcNAcylation was found on 121 tyrosine (Tyr) residues of 93 proteins. In vitro enzymatic assays showed that OGT catalyzes the transfer of O-GlcNAc onto Tyr residues of peptides and OGA catalyzes its removal. Taken together, our work reveals widespread O-GlcNAcylation on Tyr residues of proteins and that Tyr O-GlcNAcylation is mediated by OGT and OGA. As another form of glycosylation, Tyr O-GlcNAcylation is likely to have important regulatory roles.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Jingtao Deng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Jing Zhang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA30302
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA30602
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| |
Collapse
|
2
|
Peng Q, Weerapana E. Profiling nuclear cysteine ligandability and effects on nuclear localization using proximity labeling-coupled chemoproteomics. Cell Chem Biol 2024; 31:550-564.e9. [PMID: 38086369 PMCID: PMC10960692 DOI: 10.1016/j.chembiol.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 03/24/2024]
Abstract
The nucleus controls cell growth and division through coordinated interactions between nuclear proteins and chromatin. Mutations that impair nuclear protein association with chromatin are implicated in numerous diseases. Covalent ligands are a promising strategy to pharmacologically target nuclear proteins, such as transcription factors, which lack ordered small-molecule binding pockets. To identify nuclear cysteines that are susceptible to covalent liganding, we couple proximity labeling (PL), using a histone H3.3-TurboID (His-TID) construct, with chemoproteomics. Using covalent scout fragments, KB02 and KB05, we identified ligandable cysteines on proteins involved in spindle assembly, DNA repair, and transcriptional regulation, such as Cys101 of histone acetyltransferase 1 (HAT1). Furthermore, we show that covalent fragments can affect the abundance, localization, and chromatin association of nuclear proteins. Notably, the Parkinson disease protein 7 (PARK7) showed increased nuclear localization and chromatin association upon KB02 modification at Cys106. Together, this platform provides insights into targeting nuclear cysteines with covalent ligands.
Collapse
Affiliation(s)
- Qianni Peng
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
3
|
Xu S, Suttapitugsakul S, Tong M, Wu R. Systematic analysis of the impact of phosphorylation and O-GlcNAcylation on protein subcellular localization. Cell Rep 2023; 42:112796. [PMID: 37453062 PMCID: PMC10530397 DOI: 10.1016/j.celrep.2023.112796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
The subcellular localization of proteins is critical for their functions in eukaryotic cells and is tightly correlated with protein modifications. Here, we comprehensively investigate the nuclear-cytoplasmic distributions of the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins to dissect the correlation between protein distribution and modifications. Phosphorylated and O-GlcNAcylated proteins have overall higher nuclear distributions than non-modified ones. Different distributions among the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins are associated with protein size, structure, and function, as well as local environment and adjacent residues around modification sites. Moreover, we perform site-mutagenesis experiments using phosphomimetic and phospho-null mutants of two proteins to validate the proteomic results. Additionally, the effects of the OGT/OGA inhibition on glycoprotein distribution are systematically investigated, and the distribution changes of glycoproteins are related to their abundance changes under the inhibitions. Systematic investigation of the relationship between protein modification and localization advances our understanding of protein functions.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Prieto Maradona M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, Siskos A, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 3-fucosyllactose (3-FL) produced by a derivative strain of Escherichia coli K-12 DH1 as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e08026. [PMID: 37304347 PMCID: PMC10248826 DOI: 10.2903/j.efsa.2023.8026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3-fucosyllactose (3-FL) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3-FL, but it also contains d-lactose, l-fucose, 3-fucosyllactulose and a small fraction of other related saccharides. The NF is produced by fermentation by a genetically modified strain (Escherichia coli K-12 DH1 MDO MAP1834) of E. coli K-12 DH1 (DSM 4235). The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for special medical purposes and food supplements (FS). The target population is the general population. The anticipated daily intake of 3-FL from both proposed and combined (authorised and proposed) uses at their respective maximum use levels in all population categories does not exceed the highest intake level of 3-FL from human milk in infants on a body weight basis. The intake of 3-FL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 3-FL is also considered of no safety concern. FS are not intended to be used if other foods with added 3-FL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
5
|
Chen Z, Wang D, Yu Q, Johnson J, Shipman R, Zhong X, Huang J, Yu Q, Zetterberg H, Asthana S, Carlsson C, Okonkwo O, Li L. In-Depth Site-Specific O-Glycosylation Analysis of Glycoproteins and Endogenous Peptides in Cerebrospinal Fluid (CSF) from Healthy Individuals, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD) Patients. ACS Chem Biol 2022; 17:3059-3068. [PMID: 34964596 PMCID: PMC9240109 DOI: 10.1021/acschembio.1c00932] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Site-specific O-glycoproteome mapping in complex biological systems provides a molecular basis for understanding the structure-function relationships of glycoproteins and their roles in physiological and pathological processes. Previous O-glycoproteome analysis in cerebrospinal fluid (CSF) focused on sialylated glycoforms, while missing information on other glycosylation types. In order to achieve an unbiased O-glycosylation profile, we developed an integrated strategy combining universal boronic acid enrichment, high-pH fractionation, and electron-transfer and higher-energy collision dissociation (EThcD) for enhanced intact O-glycopeptide analysis. We applied this strategy to analyze the O-glycoproteome in CSF, resulting in the identification of 308 O-glycopeptides from 110 O-glycoproteins, covering both sialylated and nonsialylated glycoforms. To our knowledge, this is the largest data set of O-glycoproteins and O-glycosites reported for CSF to date. We also developed a peptidomics workflow that utilized the EThcD and a three-step database searching strategy for comprehensive PTM analysis of endogenous peptides, including N-glycosylation, O-glycosylation, and other common peptide PTMs. Interestingly, among the 1411 endogenous peptides identified, 89 were O-glycosylated, and only one N-glycosylated peptide was found, indicating that CSF endogenous peptides were predominantly O-glycosylated. Analyses of the O-glycoproteome and endogenous peptidome PTMs were also conducted in the CSF of MCI and AD patients to provide a landscape of glycosylation patterns in different disease states. Our results showed a decreasing trend in fucosylation and an increasing trend of endogenous peptide O-glycosylation, which may play an important role in AD progression.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Danqing Wang
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Richard Shipman
- Applied Science Program, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom,UK Dementia Research Institute at UCL, London, WC1E 6BT, United Kingdom
| | - Sanjay Asthana
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Cynthia Carlsson
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Ozioma Okonkwo
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA,School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA,Correspondence: Professor Lingjun Li, School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, , Fax: +1-608-262-5345, Phone: +1-608-265-8491
| |
Collapse
|
6
|
Investigation of in vitro histone H3 glycosylation using H3 tail peptides. Sci Rep 2022; 12:19251. [PMID: 36357422 PMCID: PMC9649660 DOI: 10.1038/s41598-022-21883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Posttranslational modifications (PTMs) on histone tails regulate eukaryotic gene expression by impacting the chromatin structure and by modulating interactions with other cellular proteins. One such PTM has been identified as serine and threonine glycosylation, the introduction of the ß-N-acetylglucosamine (GlcNAc) moiety on histone H3 tail at position Ser10 and Thr32. The addition of the ß-O-GlcNAc moiety on serine or threonine residues is facilitated by the O-GlcNAc transferase (OGT), and can be removed by the action of O-GlcNAcase (OGA). Conflicting reports on histone tail GlcNAc modification in vivo prompted us to investigate whether synthetic histone H3 tail peptides in conjunction with other PTMs are substrates for OGT and OGA in vitro. Our enzymatic assays with recombinantly expressed human OGT revealed that the unmodified and PTM-modified histone H3 tails are not substrates for OGT at both sites, Ser10 and Thr32. In addition, full length histone H3 was not a substrate for OGT. Conversely, our work demonstrates that synthetic peptides containing the GlcNAc functionality at Ser10 are substrates for recombinantly expressed human OGA, yielding deglycosylated histone H3 peptides. We also show that the catalytic domains of human histone lysine methyltransferases G9a, GLP and SETD7 and histone lysine acetyltransferases PCAF and GCN5 do somewhat tolerate glycosylated H3Ser10 close to lysine residues that undergo methylation and acetylation reactions, respectively. Overall, this work indicates that GlcNAcylation of histone H3 tail peptide in the presence of OGT does not occur in vitro.
Collapse
|
7
|
Wu C, Shi S, Hou C, Luo Y, Byers S, Ma J. Design and Preparation of Novel Nitro-Oxide-Grafted Nanospheres with Enhanced Hydrogen Bonding Interaction for O-GlcNAc Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47482-47490. [PMID: 36240223 PMCID: PMC9938961 DOI: 10.1021/acsami.2c15039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an essential modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modulates the functions of many proteins. However, site-specific characterization of O-GlcNAcylated proteins remains challenging. Herein, an innovative material grafted with nitro-oxide (N→O) groups was designed for high affinity enrichment for O-GlcNAc peptides from native proteins. By testing with synthetic O-GlcNAc peptides and standard proteins, the synthesized material exhibited high affinity and selectivity. Based on the material prepared, we developed a workflow for site-specific analysis of O-GlcNAcylated proteins in complex samples. We performed O-GlcNAc proteomics with the PANC-1 cell line, a representative model for pancreatic ductal adenocarcinoma. In total 364 O-GlcNAc peptides from 267 proteins were identified from PANC-1 cells. Among them, 183 proteins were newly found to be O-GlcNAcylated in humans (with 197 O-GlcNAc sites newly reported). The materials and methods can be facilely applied for site-specific O-GlcNAc proteomics in other complex samples.
Collapse
Affiliation(s)
- Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Song Shi
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, USA 19716, USA
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Yang Luo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| |
Collapse
|
8
|
Spatial and temporal proteomics reveals the distinct distributions and dynamics of O-GlcNAcylated proteins. Cell Rep 2022; 39:110946. [PMID: 35705054 PMCID: PMC9244862 DOI: 10.1016/j.celrep.2022.110946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Protein O-GlcNAcylation plays critical roles in many cellular events, and its dysregulation is related to multiple diseases. Integrating bioorthogonal chemistry and multiplexed proteomics, we systematically and site specifically study the distributions and dynamics of protein O-GlcNAcylation in the nucleus and the cytoplasm of human cells. The results demonstrate that O-GlcNAcylated proteins with different functions have distinct distribution patterns. The distributions vary site specifically, indicating that different glycoforms of the same protein may have different distributions. Moreover, we comprehensively analyze the dynamics of O-GlcNAcylated and non-modified proteins in these two compartments, respectively, and the half-lives of glycoproteins in different compartments are markedly different, with the median half-life in the cytoplasm being much longer. In addition, glycoproteins in the nucleus are more dramatically stabilized than those in the cytoplasm under the O-GlcNAcase inhibition. The comprehensive spatial and temporal analyses of protein O-GlcNAcylation provide valuable information and advance our understanding of this important modification. Xu et al. systematically and site specifically study the distribution and dynamics of O-GlcNAcylated proteins in the nucleus and the cytoplasm. O-GlcNAcylated proteins with different functions have distinct distribution patterns. The half-lives of glycoproteins in the two cellular compartments are markedly different, with the much longer median half-life in the cytoplasm.
Collapse
|
9
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 3-fucosyllactose (3-FL) produced by a derivative strain of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07329. [PMID: 35646167 PMCID: PMC9131588 DOI: 10.2903/j.efsa.2022.7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3-fucosyllactose (3-FL) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3-FL, but it also contains d-lactose, l-fucose, d-glucose and d-galactose, and a small fraction of other related saccharides. The NF is produced by fermentation with a genetically modified strain of Escherichia coli BL21 (DE3). The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for infants and young children, food for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 3-FL from both proposed and combined (authorised and proposed) uses at their respective maximum use levels in all population categories does not exceed the highest intake level of 3-FL from human milk in infants on a body weight basis. The intake of 3-FL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 3-FL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added 3-FL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
10
|
Bouchard G, Garcia Marques FJ, Karacosta LG, Zhang W, Bermudez A, Riley NM, Varma S, Mehl LC, Benson JA, Shrager JB, Bertozzi CR, Pitteri S, Giaccia AJ, Plevritis SK. Multiomics Analysis of Spatially Distinct Stromal Cells Reveals Tumor-Induced O-Glycosylation of the CDK4-pRB Axis in Fibroblasts at the Invasive Tumor Edge. Cancer Res 2022; 82:648-664. [PMID: 34853070 PMCID: PMC9075699 DOI: 10.1158/0008-5472.can-21-1705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The invasive leading edge represents a potential gateway for tumor metastasis. The role of fibroblasts from the tumor edge in promoting cancer invasion and metastasis has not been comprehensively elucidated. We hypothesize that cross-talk between tumor and stromal cells within the tumor microenvironment results in activation of key biological pathways depending on their position in the tumor (edge vs. core). Here we highlight phenotypic differences between tumor-adjacent-fibroblasts (TAF) from the invasive edge and tumor core fibroblasts from the tumor core, established from human lung adenocarcinomas. A multiomics approach that includes genomics, proteomics, and O-glycoproteomics was used to characterize cross-talk between TAFs and cancer cells. These analyses showed that O-glycosylation, an essential posttranslational modification resulting from sugar metabolism, alters key biological pathways including the cyclin-dependent kinase 4 (CDK4) and phosphorylated retinoblastoma protein axis in the stroma and indirectly modulates proinvasive features of cancer cells. In summary, the O-glycoproteome represents a new consideration for important biological processes involved in tumor-stroma cross-talk and a potential avenue to improve the anticancer efficacy of CDK4 inhibitors. SIGNIFICANCE A multiomics analysis of spatially distinct fibroblasts establishes the importance of the stromal O-glycoproteome in tumor-stroma interactions at the leading edge and provides potential strategies to improve cancer treatment. See related commentary by De Wever, p. 537.
Collapse
Affiliation(s)
- Gina Bouchard
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
- Department of Radiation Oncology, Stanford, CA 94305, USA
| | | | | | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| | | | - Sushama Varma
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Jalen Anthony Benson
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Joseph B Shrager
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | | | - Sharon Pitteri
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford, CA 94305, USA
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sylvia Katina Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| |
Collapse
|
11
|
Yin R, Wang X, Li C, Gou Y, Ma X, Liu Y, Peng J, Wang C, Zhang Y. Mass Spectrometry for O-GlcNAcylation. Front Chem 2021; 9:737093. [PMID: 34938717 PMCID: PMC8685217 DOI: 10.3389/fchem.2021.737093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) at proteins with low-abundance expression level and species diversity, shows important roles in plenty of biological processes. O-GlcNAcylations with abnormal expression levels are associated with many diseases. Systematically profiling of O-GlcNAcylation at qualitative or quantitative level is vital for their function understanding. Recently, the combination of affinity enrichment, metabolic labeling or chemical tagging with mass spectrometry (MS) have made significant contributions to structure-function mechanism elucidating of O-GlcNAcylations in organisms. Herein, this review provides a comprehensive update of MS-based methodologies for quali-quantitative characterization of O-GlcNAcylation.
Collapse
Affiliation(s)
- Ruoting Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuhan Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xuecheng Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yongzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianfang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Chao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Ying Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
12
|
Dietze J, van Pijkeren A, Egger AS, Ziegler M, Kwiatkowski M, Heiland I. Natural isotope correction improves analysis of protein modification dynamics. Anal Bioanal Chem 2021; 413:7333-7340. [PMID: 34705077 PMCID: PMC8626371 DOI: 10.1007/s00216-021-03732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Stable isotope labelling in combination with high-resolution mass spectrometry approaches are increasingly used to analyze both metabolite and protein modification dynamics. To enable correct estimation of the resulting dynamics, it is critical to correct the measured values for naturally occurring stable isotopes, a process commonly called isotopologue correction or deconvolution. While the importance of isotopologue correction is well recognized in metabolomics, it has received far less attention in proteomics approaches. Although several tools exist that enable isotopologue correction of mass spectrometry data, the majority is tailored for the analysis of low molecular weight metabolites. We here present PICor which has been developed for isotopologue correction of complex isotope labelling experiments in proteomics or metabolomics and demonstrate the importance of appropriate correction for accurate determination of protein modifications dynamics, using histone acetylation as an example.
Collapse
Affiliation(s)
- Jörn Dietze
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Alienke van Pijkeren
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria.,Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Burt RA, Dejanovic B, Peckham HJ, Lee KA, Li X, Ounadjela JR, Rao A, Malaker SA, Carr SA, Myers SA. Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Mol Cell Proteomics 2021; 20:100167. [PMID: 34678516 PMCID: PMC8605273 DOI: 10.1016/j.mcpro.2021.100167] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Antibodies against posttranslational modifications (PTMs) such as lysine acetylation, ubiquitin remnants, or phosphotyrosine have resulted in significant advances in our understanding of the fundamental roles of these PTMs in biology. However, the roles of a number of PTMs remain largely unexplored due to the lack of robust enrichment reagents. The addition of N-acetylglucosamine to serine and threonine residues (O-GlcNAc) by the O-GlcNAc transferase (OGT) is a PTM implicated in numerous biological processes and disease states but with limited techniques for its study. Here, we evaluate a new mixture of anti-O-GlcNAc monoclonal antibodies for the immunoprecipitation of native O-GlcNAcylated peptides from cells and tissues. The anti-O-GlcNAc antibodies display good sensitivity and high specificity toward O-GlcNAc-modified peptides and do not recognize O-GalNAc or GlcNAc in extended glycans. Applying this antibody-based enrichment strategy to synaptosomes from mouse brain tissue samples, we identified over 1300 unique O-GlcNAc-modified peptides and over 1000 sites using just a fraction of sample preparation and instrument time required in other landmark investigations of O-GlcNAcylation. Our rapid and robust method greatly simplifies the analysis of O-GlcNAc signaling and will help to elucidate the role of this challenging PTM in health and disease. Anti-O-GlcNAc antibodies are fast and simple enrichment reagents. Anti-O-GlcNAc antibodies are sensitive and achieve significant depth of coverage. Anti-O-GlcNAc antibodies are specific for singular O-GlcNAc modifications. Anti-O-GlcNAc antibody enrichment techniques can be applied to cells and tissues. HCD product-triggered EThcD data acquisition improves depth of coverage.
Collapse
Affiliation(s)
- Rajan A Burt
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Borislav Dejanovic
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Kimberly A Lee
- Cell Signaling Technology, Inc, Danvers, Massachusetts, USA
| | - Xiang Li
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Anjana Rao
- La Jolla Institute for Immunology, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA; Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - Samuel A Myers
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; La Jolla Institute for Immunology, La Jolla, California, USA.
| |
Collapse
|
14
|
Kim EJ. Advances in Strategies and Tools Available for Interrogation of Protein O-GlcNAcylation. Chembiochem 2021; 22:3010-3026. [PMID: 34101962 DOI: 10.1002/cbic.202100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
The attachment of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues of numerous proteins in the nucleus, cytoplasm, and mitochondria is a reversible post-translational modification (PTM) and plays an important role as a regulator of various cellular processes in both healthy and disease states. Advances in strategies and tools that allow for the detection of dynamic O-GlcNAcylation on cellular proteins have helped to enhance our initial and ongoing understanding of its dynamic effects on cellular stimuli and given insights into its link to the pathogenesis of several chronic diseases. Furthermore, chemical genetic strategies and related tools have been successfully applied to a myriad of biological systems with a new level of spatiotemporal and molecular precision. These strategies have started to be used in studying and controlling O-GlcNAcylation both in vivo and in vitro. In this minireview, overviews of recent advances in molecular tools being applied to the detection and identification of O-GlcNAcylation on cellular proteins as well as on individual proteins are provided. In addition, chemical genetic strategies that have already been applied or are potentially usable in O-GlcNAc functional are also discussed.
Collapse
Affiliation(s)
- Eun Ju Kim
- Daegu University, Gyeongsan-Si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
15
|
Yoo TY, Mitchison TJ. O-GlcNAc modification of nuclear pore complexes accelerates bidirectional transport. J Cell Biol 2021; 220:212033. [PMID: 33909044 PMCID: PMC8091080 DOI: 10.1083/jcb.202010141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
Macromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG-repeat domains in NPCs are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated transport of proteins in both directions, and decreasing modification slowed transport. Superresolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the nonspecific permeability of the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.
Collapse
Affiliation(s)
- Tae Yeon Yoo
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Timothy J Mitchison
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Chen Z, Yu Q, Yu Q, Johnson J, Shipman R, Zhong X, Huang J, Asthana S, Carlsson C, Okonkwo O, Li L. In-depth Site-specific Analysis of N-glycoproteome in Human Cerebrospinal Fluid and Glycosylation Landscape Changes in Alzheimer's Disease. Mol Cell Proteomics 2021; 20:100081. [PMID: 33862227 PMCID: PMC8724636 DOI: 10.1016/j.mcpro.2021.100081] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/22/2023] Open
Abstract
As the body fluid that directly interchanges with the extracellular fluid of the central nervous system (CNS), cerebrospinal fluid (CSF) serves as a rich source for CNS-related disease biomarker discovery. Extensive proteome profiling has been conducted for CSF, but studies aimed at unraveling site-specific CSF N-glycoproteome are lacking. Initial efforts into site-specific N-glycoproteomics study in CSF yield limited coverage, hindering further experimental design of glycosylation-based disease biomarker discovery in CSF. In the present study, we have developed an N-glycoproteomic approach that combines enhanced N-glycopeptide sequential enrichment by hydrophilic interaction chromatography (HILIC) and boronic acid enrichment with electron transfer and higher-energy collision dissociation (EThcD) for large-scale intact N-glycopeptide analysis. The application of the developed approach to the analyses of human CSF samples enabled identifications of a total of 2893 intact N-glycopeptides from 511 N-glycosites and 285 N-glycoproteins. To our knowledge, this is the largest site-specific N-glycoproteome dataset reported for CSF to date. Such dataset provides molecular basis for a better understanding of the structure-function relationships of glycoproteins and their roles in CNS-related physiological and pathological processes. As accumulating evidence suggests that defects in glycosylation are involved in Alzheimer's disease (AD) pathogenesis, in the present study, a comparative in-depth N-glycoproteomic analysis was conducted for CSF samples from healthy control and AD patients, which yielded a comparable N-glycoproteome coverage but a distinct expression pattern for different categories of glycoforms, such as decreased fucosylation in AD CSF samples. Altered glycosylation patterns were detected for a number of N-glycoproteins including alpha-1-antichymotrypsin, ephrin-A3 and carnosinase CN1 etc., which serve as potentially interesting targets for further glycosylation-based AD study and may eventually lead to molecular elucidation of the role of glycosylation in AD progression.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Shipman
- Department of Applied Science, University of Wisconsin-Stout, Menomonie, Wisconsin, USA
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Sanjay Asthana
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Cynthia Carlsson
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ozioma Okonkwo
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
17
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Xu S, Sun F, Tong M, Wu R. MS-based proteomics for comprehensive investigation of protein O-GlcNAcylation. Mol Omics 2021; 17:186-196. [PMID: 33687411 DOI: 10.1039/d1mo00025j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein O-GlcNAcylation refers to the covalent binding of a single N-acetylglucosamine (GlcNAc) to the serine or threonine residue. This modification primarily occurs on proteins in the nucleus and the cytosol, and plays critical roles in many cellular events, including regulation of gene expression and signal transduction. Aberrant protein O-GlcNAcylation is directly related to human diseases such as cancers, diabetes and neurodegenerative diseases. In the past decades, considerable progress has been made for global and site-specific analysis of O-GlcNAcylation in complex biological samples using mass spectrometry (MS)-based proteomics. In this review, we summarized previous efforts on comprehensive investigation of protein O-GlcNAcylation by MS. Specifically, the review is focused on methods for enriching and site-specifically mapping O-GlcNAcylated peptides, and applications for quantifying protein O-GlcNAcylation in different biological systems. As O-GlcNAcylation is an important protein modification for cell survival, effective methods are essential for advancing our understanding of glycoprotein functions and cellular events.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
19
|
Affiliation(s)
- Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Xu S, Sun F, Wu R. A Chemoenzymatic Method Based on Easily Accessible Enzymes for Profiling Protein O-GlcNAcylation. Anal Chem 2020; 92:9807-9814. [PMID: 32574038 PMCID: PMC7437014 DOI: 10.1021/acs.analchem.0c01284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O-GlcNAcylation has gradually been recognized as a critically important protein post-translational modification in mammalian cells. Besides regulation of gene expression, its crosstalk with protein phosphorylation is vital for cell signaling. Despite its importance, comprehensive analysis of O-GlcNAcylation is extraordinarily challenging due to the low abundances of many O-GlcNAcylated proteins and the complexity of biological samples. Here, we developed a novel chemoenzymatic method based on a wild-type galactosyltransferase and uridine diphosphate galactose (UDP-Gal) for global and site-specific analysis of protein O-GlcNAcylation. This method integrates enzymatic reactions and hydrazide chemistry to enrich O-GlcNAcylated peptides. All reagents used are more easily accessible and cost-effective as compared to the engineered enzyme and click chemistry reagents. Biological triplicate experiments were performed to validate the effectiveness and the reproducibility of this method, and the results are comparable with the previous chemoenzymatic method using the engineered enzyme and click chemistry. Moreover, because of the promiscuity of the galactosyltransferase, 18 unique O-glucosylated peptides were identified on the EGF domain from nine proteins. Considering that effective and approachable methods are critical to advance glycoscience research, the current method without any sample restrictions can be widely applied for global analysis of protein O-GlcNAcylation in different samples.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Escobar EE, King DT, Serrano-Negrón JE, Alteen MG, Vocadlo DJ, Brodbelt JS. Precision Mapping of O-Linked N-Acetylglucosamine Sites in Proteins Using Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2020; 142:11569-11577. [PMID: 32510947 DOI: 10.1021/jacs.0c04710] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite its central importance as a regulator of cellular physiology, identification and precise mapping of O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (PTM) sites in proteins by mass spectrometry (MS) remains a considerable technical challenge. This is due in part to cleavage of the glycosidic bond occurring prior to the peptide backbone during collisionally activated dissociation (CAD), which leads to generation of characteristic oxocarbenium ions and impairs glycosite localization. Herein, we leverage CAD-induced oxocarbenium ion generation to trigger ultraviolet photodissociation (UVPD), an alternate high-energy deposition method that offers extensive fragmentation of peptides while leaving the glycosite intact. Upon activation using UV laser pulses, efficient photodissociation of glycopeptides is achieved with production of multiple sequence ions that enable robust and precise localization of O-GlcNAc sites. Application of this method to tryptic peptides originating from O-GlcNAcylated proteins TAB1 and Polyhomeotic confirmed previously reported O-GlcNAc sites in TAB1 (S395 and S396) and uncovered new sites within both proteins. We expect this strategy will complement existing MS/MS methods and be broadly useful for mapping O-GlcNAcylated residues of both proteins and proteomes.
Collapse
Affiliation(s)
- Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dustin T King
- Department of Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jesús E Serrano-Negrón
- Department of Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Ramirez DH, Aonbangkhen C, Wu HY, Naftaly JA, Tang S, O’Meara TR, Woo CM. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. ACS Chem Biol 2020; 15:1059-1066. [PMID: 32119511 DOI: 10.1021/acschembio.0c00074] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a monosaccharide that plays an essential role in cellular signaling throughout the nucleocytoplasmic proteome of eukaryotic cells. Strategies for selectively increasing O-GlcNAc levels on a target protein in cells would accelerate studies of this essential modification. Here, we report a generalizable strategy for introducing O-GlcNAc into selected target proteins in cells using a nanobody as a proximity-directing agent fused to O-GlcNAc transferase (OGT). Fusion of a nanobody that recognizes GFP (nGFP) or a nanobody that recognizes the four-amino acid sequence EPEA (nEPEA) to OGT yielded nanobody-OGT constructs that selectively delivered O-GlcNAc to a series of tagged target proteins (e.g., JunB, cJun, and Nup62). Truncation of the tetratricopeptide repeat domain as in OGT(4) increased selectivity for the target protein through the nanobody by reducing global elevation of O-GlcNAc levels in the cell. Quantitative chemical proteomics confirmed the increase in O-GlcNAc to the target protein by nanobody-OGT(4). Glycoproteomics revealed that nanobody-OGT(4) or full-length OGT produced a similar glycosite profile on the target protein JunB and Nup62. Finally, we demonstrate the ability to selectively target endogenous α-synuclein for O-GlcNAcylation in HEK293T cells. These first proximity-directed OGT constructs provide a flexible strategy for targeting additional proteins and a template for further engineering of OGT and the O-GlcNAc proteome in the future. The use of a nanobody to redirect OGT substrate selection for glycosylation of desired proteins in cells may further constitute a generalizable strategy for controlling a broader array of post-translational modifications in cells.
Collapse
Affiliation(s)
- Daniel H. Ramirez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Chanat Aonbangkhen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jeffrey A. Naftaly
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Stephanie Tang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Timothy R. O’Meara
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
23
|
Abstract
O-Linked N-acetyl glucosamine (O-GlcNAc) is a protein modification found on thousands of nuclear, cytosolic, and mitochondrial proteins. Many O-GlcNAc sites occur in proximity to protein sites that are likewise modified by phosphorylation. While several studies have uncovered crosstalk between these two signaling modifications on individual proteins and pathways, an understanding of the role of O-GlcNAc in regulating kinases, the enzymes that install the phosphate modification, is still emerging. Here we review recent methods to profile the O-GlcNAc modification on a global scale that have revealed more than 100 kinases are modified by O-GlcNAc and highlight existing studies about regulation of these kinases by O-GlcNAc. Continuing efforts to profile the O-GlcNAc proteome and understand the role of O-GlcNAc on kinases will reveal new mechanisms of regulation and potential avenues for manipulation of the signaling mechanisms at the intersection of O-GlcNAc and phosphorylation.
Collapse
Affiliation(s)
- Paul A. Schwein
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Sun F, Suttapitugsakul S, Xiao H, Wu R. Comprehensive Analysis of Protein Glycation Reveals Its Potential Impacts on Protein Degradation and Gene Expression in Human Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2480-2490. [PMID: 31073893 PMCID: PMC6842084 DOI: 10.1007/s13361-019-02197-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 05/02/2023]
Abstract
Glycation as a type of non-enzymatic protein modification is related to aging and chronic diseases, especially diabetes. Global analysis of protein glycation will aid in a better understanding of its formation mechanism and biological significance. In this work, we comprehensively investigated protein glycation in human cells (HEK293T, Jurkat, and MCF7 cells). The current results indicated that this non-enzymatic modification was not random, and protein at the extracellular regions and the nucleus were more frequently glycated. Systematic and site-specific analysis of glycated proteins allowed us to study the effect of the primary sequences and secondary structures of proteins on glycation. Furthermore, nearly every enzyme in the glycolytic pathway was found to be glycated and a possible mechanism was proposed. Many glycation sites were also previously reported as acetylation and ubiquitination sites, which strongly suggested that this non-enzymatic modification may disturb protein degradation and gene expression. The current results will facilitate further studies of protein glycation in biomedical and clinical research.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
26
|
van Pijkeren A, Bischoff R, Kwiatkowski M. Mass spectrometric analysis of PTM dynamics using stable isotope labeled metabolic precursors in cell culture. Analyst 2019; 144:6812-6833. [PMID: 31650141 DOI: 10.1039/c9an01258c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological organisms represent highly dynamic systems, which are continually exposed to environmental factors and always strive to restore steady-state homeostasis. Posttranslational modifications are key regulators with which biological systems respond to external stimuli. To understand how homeostasis is restored, it is important to study the kinetics of posttranslational modifications. In this review we discuss proteomic approaches using stable isotope labeled metabolic precursors to study dynamics of posttranslational modifications in cell culture.
Collapse
Affiliation(s)
- Alienke van Pijkeren
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
27
|
Valdés A, Bergström Lind S. Mass Spectrometry-Based Analysis of Time-Resolved Proteome Quantification. Proteomics 2019; 20:e1800425. [PMID: 31652013 DOI: 10.1002/pmic.201800425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Indexed: 11/09/2022]
Abstract
The aspect of time is essential in biological processes and thus it is important to be able to monitor signaling molecules through time. Proteins are key players in cellular signaling and they respond to many stimuli and change their expression in many time-dependent processes. Mass spectrometry (MS) is an important tool for studying proteins, including their posttranslational modifications and their interaction partners-both in qualitative and quantitative ways. In order to distinguish the different trends over time, proteins, modification sites, and interacting proteins must be compared between different time points, and therefore relative quantification is preferred. In this review, the progress and challenges for MS-based analysis of time-resolved proteome dynamics are discussed. Further, aspects on model systems, technologies, sampling frequencies, and presentation of the dynamic data are discussed.
Collapse
Affiliation(s)
- Alberto Valdés
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Box 599, 75124, Uppsala, Sweden
| |
Collapse
|
28
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
29
|
Suttapitugsakul S, Ulmer LD, Jiang C, Sun F, Wu R. Surface Glycoproteomic Analysis Reveals That Both Unique and Differential Expression of Surface Glycoproteins Determine the Cell Type. Anal Chem 2019; 91:6934-6942. [PMID: 31025852 PMCID: PMC6584960 DOI: 10.1021/acs.analchem.9b01447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proteins on the cell surface are frequently glycosylated, and they are essential for cells. Surface glycoproteins regulate nearly every extracellular event, but compared with global analysis of proteins, comprehensive and site-specific analysis of surface glycoproteins is much more challenging and dramatically understudied. Here, combining metabolic labeling, click-chemistry and enzymatic reactions, and mass spectrometry-based proteomics, we globally characterized surface glycoproteins from eight popular types of human cells. This integrative and effective method allowed for the identification of 2172 N-glycosylation sites and 1047 surface glycoproteins. The distribution and occurrence of N-glycosylation sites were systematically investigated, and protein secondary structures were found to have a dramatic influence on glycosylation sites. As expected, most sites are located on disordered regions. For the sites with the motif N-!P-C, about one-third of them are located on helix structures, while those with the motif N-!P-S/T prefer strand structures. There is almost no correlation between the number of glycosylation sites and protein length, but the number of sites corresponds well with the frequencies of the motif. Quantification results reveal that besides cell-specific glycoproteins, the uniqueness of each cell type further arises from differential expression of surface glycoproteins. The current research indicates that multiple surface glycoproteins including their abundances need to be considered for cell classification rather than a single cluster of differentiation (CD) protein normally used in conventional methods. These results provide valuable information to the glycoscience and biomedical communities and aid in the discovery of surface glycoproteins as disease biomarkers and drug targets.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lindsey D. Ulmer
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chendi Jiang
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
Hu CW, Worth M, Li H, Jiang J. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O-GlcNAc-Cycling Enzymes. Chembiochem 2019; 20:312-318. [PMID: 30199580 PMCID: PMC6433133 DOI: 10.1002/cbic.201800481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Indexed: 12/11/2022]
Abstract
The O-linked N-acetylglucosamine (O-GlcNAc) modification is an essential component in cell regulation. A single pair of human enzymes conducts this modification dynamically on a broad variety of proteins: O-GlcNAc transferase (OGT) adds the GlcNAc residue and O-GlcNAcase (OGA) hydrolyzes it. This modification is dysregulated in many diseases, but its exact effect on particular substrates remains unclear. In addition, no apparent sequence motif has been found in the modified proteins, and the factors controlling the substrate specificity of OGT and OGA are largely unknown. In this minireview, we will discuss recent developments in chemical and biochemical methods toward addressing the challenge of OGT and OGA substrate recognition. We hope that the new concepts and knowledge from these studies will promote research in this area to advance understanding of O-GlcNAc regulation in health and disease.
Collapse
Affiliation(s)
- Chia-Wei Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Matthew Worth
- Department of Chemistry, University of Wisconsin–Madison, 101 University Avenue, Madison, WI 53706 (USA)
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| |
Collapse
|
31
|
Structural characterization of the O-GlcNAc cycling enzymes: insights into substrate recognition and catalytic mechanisms. Curr Opin Struct Biol 2019; 56:97-106. [PMID: 30708324 DOI: 10.1016/j.sbi.2018.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Dysregulation of nuclear and cytoplasmic O-linked β-N-acetylglucosamine (O-GlcNAc) cycling is implicated in a range of diseases including diabetes and cancer. This modification maintains cellular homeostasis by regulating several biological processes, such as cell signaling. This highly regulated cycle is governed by two sole essential enzymes, O-GlcNAc transferase and O-GlcNAcase that add O-GlcNAc and remove it from over a thousand substrates, respectively. Until recently, due to lack of structural information, the mechanism of substrate recognition has eluted researchers. Here, we review recent successes in structural characterization of these enzymes and how this information has illuminated key features essential for catalysis and substrate recognition. Additionally, we highlight recent studies which have used this information to expand our understanding of substrate specificity by each enzyme.
Collapse
|
32
|
Puchalska P, Huang X, Martin SE, Han X, Patti GJ, Crawford PA. Isotope Tracing Untargeted Metabolomics Reveals Macrophage Polarization-State-Specific Metabolic Coordination across Intracellular Compartments. iScience 2018; 9:298-313. [PMID: 30448730 PMCID: PMC6240706 DOI: 10.1016/j.isci.2018.10.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by 13C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2) polarized macrophages were 13C-labeled with surprising concordance. Total pools of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an intermediate in the hexosamine biosynthetic pathway, were equally abundant in LPS- and IL-4-polarized macrophages. Informatic scrutiny of 13C-isotopologues revealed that LPS-polarized macrophages leverage the pentose phosphate pathway to generate UDP-GlcNAc, whereas IL-4-polarized macrophages rely on intact glucose and mitochondrial metabolism of glucose carbon. Labeling from [13C]glucose is competed by unlabeled fatty acids and acetoacetate, underscoring the broad roles for substrate metabolism beyond energy conversion. Finally, the LPS-polarized macrophage metabolite itaconate is imported into IL-4-polarized macrophages, in which it reprograms [13C]glucose metabolism. Thus, use of fully unsupervised isotope tracing metabolomics in macrophages reveals polarization-state-specific metabolic pathway connectivity, substrate competition, and metabolite allocation among cellular compartments.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA; Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Xiaojing Huang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Chemistry, Washington University, St. Louis, MO 63110, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shannon E Martin
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Barshop Institute for Longevity and Aging Studies, Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA; Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Kim EJ. Chemical Reporters and Their Bioorthogonal Reactions for Labeling Protein O-GlcNAcylation. Molecules 2018; 23:molecules23102411. [PMID: 30241321 PMCID: PMC6222402 DOI: 10.3390/molecules23102411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
Protein O-GlcNAcylation is a non-canonical glycosylation of nuclear, mitochondrial, and cytoplasmic proteins with the attachment of a single O-linked β-N-acetyl-glucosamine (O-GlcNAc) moiety. Advances in labeling and identifying O-GlcNAcylated proteins have helped improve the understanding of O-GlcNAcylation at levels that range from basic molecular biology to cell signaling and gene regulation to physiology and disease. This review describes these advances in chemistry involving chemical reporters and their bioorthogonal reactions utilized for detection and construction of O-GlcNAc proteomes in a molecular mechanistic view. This detailed view will help better understand the principles of the chemistries utilized for biology discovery and promote continued efforts in developing new molecular tools and new strategies to further explore protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongsan-si 712-714, Gyeongsangbuk-do, Korea.
| |
Collapse
|
34
|
Xiao H, Suttapitugsakul S, Sun F, Wu R. Mass Spectrometry-Based Chemical and Enzymatic Methods for Global Analysis of Protein Glycosylation. Acc Chem Res 2018; 51:1796-1806. [PMID: 30011186 DOI: 10.1021/acs.accounts.8b00200] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosylation is one of the most common protein modifications, and it is essential for mammalian cell survival. It often determines protein folding and trafficking, and regulates nearly every extracellular activity, including cell-cell communication and cell-matrix interactions. Aberrant protein glycosylation events are hallmarks of human diseases such as cancer and infectious diseases. Therefore, glycoproteins can serve as effective biomarkers for disease detection and targets for drug and vaccine development. Despite the importance of glycoproteins, global analysis of protein glycosylation (either glycoproteins or glycans) in complex biological samples has been a daunting task, and here we mainly focus on glycoprotein analysis using mass spectrometry (MS)-based bottom-up proteomics. Although the emergence of MS-based proteomics has provided a great opportunity to analyze glycoproteins globally, the low abundance of many glycoproteins and the heterogeneity of glycans dramatically increase the technical difficulties. In order to overcome these obstacles, considerable progress has been made in recent years, which has contributed to comprehensive analysis of glycoproteins. In our lab, we developed effective MS-based chemical and enzymatic methods to (1) globally analyze glycoproteins in complex biological samples, (2) target glycoproteins specifically on the surface of human cells, (3) systematically quantify glycoprotein and surface glycoprotein dynamics (the abundance changes of glycoproteins as a function of time), and (4) selectively characterize glycoproteins with a particular and important glycan. In this Account, we first briefly describe the glycopeptide/protein enrichment methods in the literature and then discuss the developments of boronic acid-based methods to enrich glycopeptides for large-scale analysis of protein glycosylation. Boronic acids can form reversible covalent interactions with sugars, but the low binding affinity of normal boronic acid-based methods prevents us from capturing glycoproteins with low abundance, which often contain more valuable information. We enhanced the boronic acid-glycan interactions by using a boronic acid derivative (benzoboroxole) and conjugating it onto a dendrimer to allow synergistic interactions between the boronic acid derivative and sugars. The new method is capable of globally analyzing protein glycosylation with site and glycan structure information, especially for those with low abundance. In the next part, we discuss the combination of metabolic labeling, click chemistry and enzymatic reactions, and MS-based proteomics as a very powerful approach for surface glycoproteome analysis in human cells. The methods enable us to specifically identify surface glycoproteins and to quantify their abundance changes and dynamics together with quantitative proteomics. The last section of this Account focuses on chemical and enzymatic methods to study glycoproteins containing a particular and important glycan (the Tn antigen, i.e., O-GalNAc). Although not comprehensive, this Account provides an overview of chemical and enzymatic methods to characterize protein glycosylation in combination with MS-based proteomics. These methods will have extensive applications in the fields of biology and biomedicine, which will lead to a better understanding of glycoprotein functions and the molecular mechanisms of diseases. Eventually, glycoproteins will be identified as effective biomarkers for disease detection and drug targets for disease treatment.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Xiao H, Hwang JE, Wu R. Mass spectrometric analysis of the N-glycoproteome in statin-treated liver cells with two lectin-independent chemical enrichment methods. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 429:66-75. [PMID: 30147434 PMCID: PMC6103449 DOI: 10.1016/j.ijms.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein N-glycosylation is essential for mammalian cell survival and is well-known to be involved in many biological processes. Aberrant glycosylation is directly related to human disease including cancer and infectious diseases. Global analysis of protein N-glycosylation will allow a better understanding of protein functions and cellular activities. Mass spectrometry (MS)-based proteomics provides a unique opportunity to site-specifically characterize protein glycosylation on a large scale. Due to the complexity of biological samples, effective enrichment methods are critical prior to MS analysis. Here, we compared two lectin-independent methods to enrich glycopeptides for the global analysis of protein N-glycosylation by MS. The first boronic acid-based enrichment (BA) method benefits from the universal and reversible interactions between boronic acid and sugars; the other method utilizes metabolic labeling and click chemistry (MC) to incorporate a chemical handle into glycoproteins for future affinity enrichment. We comprehensively compared the performance of the two methods in the identification and quantification of glycoproteins in statin-treated liver cells. Based on the current results, the BA method is more universal in enriching glycopeptides, while with the MC method, cell surface glycoproteins were highly enriched, and the quantification results appear to be more dynamic because only the newly-synthesized glycoproteins were analyzed. In addition, we normalized the glycosylation site ratios by the corresponding parent protein ratios to reflect the real modification changes. In combination with MS-based proteomics, effective enrichment methods will vertically advance protein glycosylation research.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ju Eun Hwang
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
36
|
Xiao H, Chen W, Smeekens JM, Wu R. An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins. Nat Commun 2018; 9:1692. [PMID: 29703890 PMCID: PMC5923262 DOI: 10.1038/s41467-018-04081-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Protein glycosylation is ubiquitous in biological systems and essential for cell survival. However, the heterogeneity of glycans and the low abundance of many glycoproteins complicate their global analysis. Chemical methods based on reversible covalent interactions between boronic acid and glycans have great potential to enrich glycopeptides, but the binding affinity is typically not strong enough to capture low-abundance species. Here, we develop a strategy using dendrimer-conjugated benzoboroxole to enhance the glycopeptide enrichment. We test the performance of several boronic acid derivatives, showing that benzoboroxole markedly increases glycopeptide coverage from human cell lysates. The enrichment is further improved by conjugating benzoboroxole to a dendrimer, which enables synergistic benzoboroxole–glycan interactions. This robust and simple method is highly effective for sensitive glycoproteomics analysis, especially capturing low-abundance glycopeptides. Importantly, the enriched glycopeptides remain intact, making the current method compatible with mass-spectrometry-based approaches to identify glycosylation sites and glycan structures. Understanding the functions of protein glycosylation critically depends on methods to efficiently enrich glycoproteins from complex samples. Here, the authors develop a strategy using dendrimer-conjugated benzoboroxole to enhance glycopeptide enrichment, providing the basis for more comprehensive glycoprotein analyses.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Weixuan Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Johanna M Smeekens
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
37
|
Simithy J, Sidoli S, Garcia BA. Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics 2018. [PMID: 29512899 DOI: 10.1002/pmic.201700309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromatin fiber is the control panel of eukaryotic cells. Chromatin is mostly composed of DNA, which contains the genetic instruction for cell phenotype, and histone proteins, which provide the scaffold for chromatin folding and part of the epigenetic inheritance. Histone writers/erasers "flag" chromatin regions by catalyzing/removing covalent histone post-translational modifications (PTMs). Histone PTMs chemically contribute to chromatin relaxation or compaction and recruit histone readers to modulate DNA readout. The precursors of protein PTMs are mostly small metabolites. For instance, acetyl-CoA is used for acetylation, ATP for phosphorylation, and S-adenosylmethionine for methylation. Interestingly, PTMs such as acetylation can occur at neutral pH also without their respective enzyme when the precursor is sufficiently concentrated. Therefore, it is essential to differentially quantify the contribution of histone writers/erasers versus the effect of local concentration of metabolites to understand the primary regulation of histone PTM abundance. Aberrant phenotypes such as cancer cells have misregulated metabolism and thus the composition and the modulation of chromatin is not only driven by enzymatic tuning. In this review, the latest advances in mass spectrometry (MS) to analyze histone PTMs and the most adopted quantification methods for related metabolites, both necessary to understand PTM relative changes, are discussed.
Collapse
Affiliation(s)
- Johayra Simithy
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Suttapitugsakul S, Xiao H, Smeekens J, Wu R. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics. MOLECULAR BIOSYSTEMS 2017; 13:2574-2582. [PMID: 29019370 PMCID: PMC5698164 DOI: 10.1039/c7mb00393e] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass spectrometry (MS) has become an increasingly important technique to analyze proteins. In popular bottom-up MS-based proteomics, reduction and alkylation are routine steps to facilitate peptide identification. However, incomplete reactions and side reactions may occur, which compromise the experimental results. In this work, we systematically evaluated the reduction step with commonly used reagents, i.e., dithiothreitol, 2-mercaptoethanol, tris(2-carboxyethyl)phosphine, or tris(3-hydroxypropyl)phosphine, and alkylation with iodoacetamide, acrylamide, N-ethylmaleimide, or 4-vinylpyridine. By using digested peptides from a yeast whole-cell lysate, the number of proteins and peptides identified were very similar using four different reducing reagents. The results from four alkylating reagents, however, were dramatically different with iodoacetamide giving the highest number of peptides with alkylated cysteine and the lowest number of peptides with incomplete cysteine alkylation and side reactions. Alkylation conditions with iodoacetamide were further optimized. To identify more peptides with cysteine, thiopropyl-sepharose 6B resins were used to enrich them, and the optimal conditions were employed for the reduction and alkylation. The enrichment resulted in over three times more cysteine-containing peptides than without enrichment. Systematic evaluation of the reduction and alkylation with different reagents can aid in a better design of bottom-up proteomic experiments.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | |
Collapse
|
39
|
You X, Qin H, Ye M. Recent advances in methods for the analysis of protein o-glycosylation at proteome level. J Sep Sci 2017; 41:248-261. [PMID: 28988430 DOI: 10.1002/jssc.201700834] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
Abstract
O-Glycosylation, which refers to the glycosylation of the hydroxyl group of side chains of Serine/Threonine/Tyrosine residues, is one of the most common post-translational modifications. Compared with N-linked glycosylation, O-glycosylation is less explored because of its complex structure and relatively low abundance. Recently, O-glycosylation has drawn more and more attention for its various functions in many sophisticated biological processes. To obtain a deep understanding of O-glycosylation, many efforts have been devoted to develop effective strategies to analyze the two most abundant types of O-glycosylation, i.e. O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation. In this review, we summarize the proteomics workflows to analyze these two types of O-glycosylation. For the large-scale analysis of mucin-type glycosylation, the glycan simplification strategies including the ''SimpleCell'' technology were introduced. A variety of enrichment methods including lectin affinity chromatography, hydrophilic interaction chromatography, hydrazide chemistry, and chemoenzymatic method were introduced for the proteomics analysis of O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation.
Collapse
Affiliation(s)
- Xin You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Xiao H, Wu R. Simultaneous Quantitation of Glycoprotein Degradation and Synthesis Rates by Integrating Isotope Labeling, Chemical Enrichment, and Multiplexed Proteomics. Anal Chem 2017; 89:10361-10367. [PMID: 28850217 PMCID: PMC5678942 DOI: 10.1021/acs.analchem.7b02241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein glycosylation is essential for cell survival and regulates many cellular events. Reversible glycosylation is also dynamic in biological systems. The functions of glycoproteins are regulated by their dynamics to adapt the ever-changing inter- and intracellular environments. Glycans on proteins not only mediate a variety of protein activities, but also creates a steric hindrance for protecting the glycoproteins from degradation by proteases. In this work, a novel strategy integrating isotopic labeling, chemical enrichment and multiplexed proteomics was developed to simultaneously quantify the degradation and synthesis rates of many glycoproteins in human cells. We quantified the synthesis rates of 847 N-glycoproteins and the degradation rates of 704 glycoproteins in biological triplicate experiments, including many important glycoproteins such as CD molecules. Through comparing the synthesis and degradation rates, we found that most proteins have higher synthesis rates since cells are still growing throughout the time course, while a small group of proteins with lower synthesis rates mainly participate in adhesion, locomotion, localization, and signaling. This method can be widely applied in biochemical and biomedical research and provide insights into elucidating glycoprotein functions and the molecular mechanism of many biological events.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
41
|
Ma X, Li H, He Y, Hao J. The emerging link between O-GlcNAcylation and neurological disorders. Cell Mol Life Sci 2017; 74:3667-3686. [PMID: 28534084 PMCID: PMC11107615 DOI: 10.1007/s00018-017-2542-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/23/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is involved in the regulation of many cellular cascades and neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In the brain, the expression of O-GlcNAcylation is notably heightened, as is that of O-linked N-acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA), the presence of which is prominent in many regions of neurological importance. Most importantly, O-GlcNAcylation is believed to contribute to the normal functioning of neurons; conversely, its dysregulation participates in the pathogenesis of neurological disorders. In neurodegenerative diseases, O-GlcNAcylation of the brain's key proteins, such as tau and amyloid-β, interacts with their phosphorylation, thereby triggering the formation of neurofibrillary tangles and amyloid plaques. An increase of O-GlcNAcylation by pharmacological intervention prevents neuronal loss. Additionally, O-GlcNAcylation is stress sensitive, and its elevation is cytoprotective. Increased O-GlcNAcylation ameliorated brain damage in victims of both trauma-hemorrhage and stroke. In this review, we summarize the current understanding of O-GlcNAcylation's physiological and pathological roles in the nervous system and provide a foundation for development of a therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - He Li
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yating He
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
42
|
Li B, Li H, Hu CW, Jiang J. Structural insights into the substrate binding adaptability and specificity of human O-GlcNAcase. Nat Commun 2017; 8:666. [PMID: 28939839 PMCID: PMC5610315 DOI: 10.1038/s41467-017-00865-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
The O-linked β-N-acetyl glucosamine (O-GlcNAc) modification dynamically regulates the functions of numerous proteins. A single human enzyme O-linked β-N-acetyl glucosaminase (O-GlcNAcase or OGA) hydrolyzes this modification. To date, it remains largely unknown how OGA recognizes various substrates. Here we report the structures of OGA in complex with each of four distinct glycopeptide substrates that contain a single O-GlcNAc modification on a serine or threonine residue. Intriguingly, these glycopeptides bind in a bidirectional yet conserved conformation within the substrate-binding cleft of OGA. This study provides fundamental insights into a general principle that confers the substrate binding adaptability and specificity to OGA in O-GlcNAc regulation. O-linked β-N-acetyl glucosamine (O-GlcNAc) is an important protein modification that is hydrolyzed by O-GlcNAcase (OGA). Here the authors give insights into OGA substrate recognition by presenting four human OGA structures complexed with glycopeptide substrates containing a single O-GlcNAc modification on either a serine or threonine.
Collapse
Affiliation(s)
- Baobin Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chia-Wei Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
43
|
Álvarez-Salamero C, Castillo-González R, Navarro MN. Lighting Up T Lymphocyte Signaling with Quantitative Phosphoproteomics. Front Immunol 2017; 8:938. [PMID: 28848546 PMCID: PMC5552657 DOI: 10.3389/fimmu.2017.00938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation is the most abundant post-translational modification, regulating several aspects of protein and cell function. Quantitative phosphoproteomics approaches have expanded the scope of phosphorylation analysis enabling the quantification of changes in thousands of phosphorylation sites simultaneously in two or more conditions. These approaches offer a global view of the impact of cellular perturbations such as extracellular stimuli or gene ablation in intracellular signaling networks. Such great potential also brings on a new challenge: to identify, among the thousands of phosphorylations found in global phosphoproteomics studies, the small subset of site-specific phosphorylations expected to be functionally relevant. This review focus on updating and integrating findings on T lymphocyte signaling generated using global phosphoproteomics approaches, drawing attention on the biological relevance of the obtained data.
Collapse
Affiliation(s)
- Candelas Álvarez-Salamero
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | | | - María N Navarro
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
44
|
Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis. Proc Natl Acad Sci U S A 2017; 114:E6749-E6758. [PMID: 28760965 DOI: 10.1073/pnas.1702688114] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2'-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo.
Collapse
|
45
|
Shi J, Tomašič T, Sharif S, Brouwer AJ, Anderluh M, Ruijtenbeek R, Pieters RJ. Peptide microarray analysis of the cross-talk between O-GlcNAcylation and tyrosine phosphorylation. FEBS Lett 2017; 591:1872-1883. [DOI: 10.1002/1873-3468.12708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/31/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | | | - Suhela Sharif
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | - Arwin J. Brouwer
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | | | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
- PamGene International BV; ‘s-Hertogenbosch The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| |
Collapse
|
46
|
Zheng J, Xiao H, Wu R. Specific Identification of Glycoproteins Bearing the Tn Antigen in Human Cells. Angew Chem Int Ed Engl 2017; 56:7107-7111. [PMID: 28514044 PMCID: PMC5529048 DOI: 10.1002/anie.201702191] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Indexed: 01/17/2023]
Abstract
Glycoproteins contain a wealth of valuable information regarding the development and disease status of cells. In cancer cells, some glycans (such as the Tn antigen) are highly up-regulated, but this remains largely unknown for glycoproteins with a particular glycan. Herein, an innovative method combining enzymatic and chemical reactions was first designed to enrich glycoproteins with the Tn antigen. Using synthetic glycopeptides with O-GalNAc (the Tn antigen) or O-GlcNAc, we demonstrated that the method is selective for glycopeptides with O-GalNAc and can distinguish between these two modifications. The diagnostic ions from the tagged O-GalNAc further confirmed the effectiveness of the method and confidence in the identification of glycopeptides with the Tn antigen by mass spectrometry. Using this method, we identified 96 glycoproteins with the Tn antigen in Jurkat cells. The method can be extensively applied in biological and biomedical research.
Collapse
Affiliation(s)
- Jiangnan Zheng
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
47
|
Zheng J, Xiao H, Wu R. Specific Identification of Glycoproteins Bearing the Tn Antigen in Human Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiangnan Zheng
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA 30332 USA
| |
Collapse
|
48
|
Shen B, Zhang W, Shi Z, Tian F, Deng Y, Sun C, Wang G, Qin W, Qian X. A novel strategy for global mapping of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry identification. Talanta 2017; 169:195-202. [PMID: 28411811 DOI: 10.1016/j.talanta.2017.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 01/07/2023]
Abstract
O-GlcNAcylation is a kind of dynamic O-linked glycosylation of nucleocytoplasmic and mitochondrial proteins. It serves as a major nutrient sensor to regulate numerous biological processes including transcriptional regulation, cell metabolism, cellular signaling, and protein degradation. Dysregulation of cellular O-GlcNAcylated levels contributes to the etiologies of many diseases such as diabetes, neurodegenerative disease and cancer. However, deeper insight into the biological mechanism of O-GlcNAcylation is hampered by its extremely low stoichiometry and the lack of efficient enrichment approaches for large-scale identification by mass spectrometry. Herein, we developed a novel strategy for the global identification of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry analysis. Standard O-GlcNAc peptides can be efficiently enriched even in the presence of 500-fold more abundant non-O-GlcNAc peptides and identified by mass spectrometry with a low nanogram detection sensitivity. This strategy successfully achieved the first large-scale enrichment and characterization of O-GlcNAc proteins and peptides in human urine. A total of 474 O-GlcNAc peptides corresponding to 457 O-GlcNAc proteins were identified by mass spectrometry analysis, which is at least three times more than that obtained by commonly used enrichment methods. A large number of unreported O-GlcNAc proteins related to cell cycle, biological regulation, metabolic and developmental process were found in our data. The above results demonstrated that this novel strategy is highly efficient in the global enrichment and identification of O-GlcNAc peptides. These data provide new insights into the biological function of O-GlcNAcylation in human urine, which is correlated with the physiological states and pathological changes of human body and therefore indicate the potential of this strategy for biomarker discovery from human urine.
Collapse
Affiliation(s)
- Bingquan Shen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China
| | - Zhaomei Shi
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China
| | - Fang Tian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | | | | | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China.
| | - Xiaohong Qian
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China.
| |
Collapse
|
49
|
Xiao H, Wu R. Global and Site-Specific Analysis Revealing Unexpected and Extensive Protein S-GlcNAcylation in Human Cells. Anal Chem 2017; 89:3656-3663. [PMID: 28234450 DOI: 10.1021/acs.analchem.6b05064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein glycosylation is highly diverse and essential for mammalian cell survival. Heterogeneous glycans may be bound to different amino acid residues, forming multiple types of protein glycosylation. In this work, unexpected protein S-GlcNAcylation on cysteine residues was observed to extensively exist in human cells through global and site-specific analysis of protein GlcNAcylation by mass spectrometry. Three independent experiments produced similar results of many cysteine residues bound to N-acetylglucosamine (GlcNAc). Among well-localized S-GlcNAcylation sites, several motifs with an acidic amino acid around the sites were identified, which strongly suggests that a particular type of enzyme is responsible for this modification. Clustering results show that glycoproteins modified with S-GlcNAc are mainly involved in cell-cell adhesion and gene expression. For the first time, we found that proteins were extensively bound to GlcNAc through the side chains of cysteine residues in human cells, and the current discovery further advances our understanding of protein glycosylation.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
50
|
Abstract
O-GlcNAcylation is the modification of serine and threonine residues with β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. This dynamic modification is attached by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) and is a critical regulator of various cellular processes. Furthermore, O-GlcNAcylation is dysregulated in many diseases, such as diabetes, cancer, and Alzheimer's disease. However, the precise role of this modification and its cycling enzymes (OGT and OGA) in normal and disease states remains elusive. This is partially due to the difficulty in studying O-GlcNAcylation with traditional genetic and biochemical techniques. In this review, we will summarize recent progress in chemical approaches to overcome these obstacles. We will cover new inhibitors of OGT and OGA, advances in metabolic labeling and cellular imaging, synthetic approaches to access homogeneous O-GlcNAcylated proteins, and cross-linking methods to identify O-GlcNAc-protein interactions. We will also discuss remaining gaps in our toolbox for studying O-GlcNAcylation and questions of high interest that are yet to be answered.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|