1
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
3
|
Zoppi C, Nocentini A, Supuran CT, Pratesi A, Messori L. Native mass spectrometry of human carbonic anhydrase I and its inhibitor complexes. J Biol Inorg Chem 2020; 25:979-993. [PMID: 32926233 PMCID: PMC7584553 DOI: 10.1007/s00775-020-01818-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/30/2020] [Indexed: 02/03/2023]
Abstract
Abstract Native mass spectrometry is a potent technique to study and characterize biomacromolecules in their native state. Here, we have applied this method to explore the solution chemistry of human carbonic anhydrase I (hCA I) and its interactions with four different inhibitors, namely three sulfonamide inhibitors (AAZ, MZA, SLC-0111) and the dithiocarbamate derivative of morpholine (DTC). Through high-resolution ESI-Q-TOF measurements, the native state of hCA I and the binding of the above inhibitors were characterized in the molecular detail. Native mass spectrometry was also exploited to assess the direct competition in solution among the various inhibitors in relation to their affinity constants. Additional studies were conducted on the interaction of hCA I with the metallodrug auranofin, under various solution and instrumental conditions. Auranofin is a selective reagent for solvent-accessible free cysteine residues, and its reactivity was analyzed also in the presence of CA inhibitors. Overall, our investigation reveals that native mass spectrometry represents an excellent tool to characterize the solution behavior of carbonic anhydrase. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00775-020-01818-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlotta Zoppi
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy.
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Cieplak-Rotowska MK, Tarnowski K, Rubin M, Fabian MR, Sonenberg N, Dadlez M, Niedzwiecka A. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:158-173. [PMID: 29080206 PMCID: PMC5785596 DOI: 10.1007/s13361-017-1830-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. Graphical Abstract.
Collapse
Affiliation(s)
- Maja K Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Krzysztof Tarnowski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Marcin Rubin
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Goodman Cancer Center, McGill University, Montréal, Québec, Canada
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
5
|
Kilpatrick LE, Kilpatrick EL. Optimizing High-Resolution Mass Spectrometry for the Identification of Low-Abundance Post-Translational Modifications of Intact Proteins. J Proteome Res 2017; 16:3255-3265. [PMID: 28738681 DOI: 10.1021/acs.jproteome.7b00244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intact protein analysis by liquid chromatography-mass spectrometry (LC-MS) is now possible due to the improved capabilities of mass spectrometers yielding greater resolution, mass accuracy, and extended mass ranges. Concurrent measurement of post-translational modifications (PTMs) during LC-MS of intact proteins is advantageous while monitoring critical proteoform status, such as for clinical samples or during production of reference materials. However, difficulties exist for PTM identification when the protein is large or contains multiple modification sites. In this work, analyses of low-abundance proteoforms of proteins of clinical or therapeutic interest, including C-reactive protein, vitamin D-binding protein, transferrin, and immunoglobulin G (NISTmAb), were performed on an Orbitrap Elite mass spectrometer. This work investigated the effect of various instrument parameters including source temperatures, in-source CID, microscan type and quantity, resolution, and automatic gain control on spectral quality. The signal-to-noise ratio was found to be a suitable spectral attribute which facilitated identification of low abundance PTMs. Source temperature and CID voltage were found to require specific optimization for each protein. This study identifies key instrumental parameters requiring optimization for improved detection of a variety of PTMs by LC-MS and establishes a methodological framework to ensure robust proteoform identifications, the first step in their ultimate quantification.
Collapse
Affiliation(s)
- Lisa E Kilpatrick
- National Institute of Standards and Technology , Material Measurement Laboratory, Biomolecular Measurement Division, 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| | - Eric L Kilpatrick
- National Institute of Standards and Technology , Material Measurement Laboratory, Biomolecular Measurement Division, 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
6
|
Brokx S, Scrocchi L, Shah N, Dowd J. A demonstration of analytical similarity comparing a proposed biosimilar pegfilgrastim and reference pegfilgrastim. Biologicals 2017; 48:28-38. [PMID: 28619479 DOI: 10.1016/j.biologicals.2017.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/25/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Recombinant human granulocyte-colony stimulating factor (G-CSF, filgrastim) is used primarily to reduce incidence and duration of severe neutropenia and its associated complications in cancer patients that have received a chemotherapy regimen. The pegylated form of filgrastim, "pegfilgrastim", is a long-acting form that requires only a once-per-cycle administration for the management of chemotherapy-induced neutropenia. Apobiologix, a division of ApoPharma USA, Inc., and Intas Pharmaceuticals Limited have co-developed a proposed pegfilgrastim biosimilar to US-licensed pegfilgrastim. METHODS The analytical similarity of Apobiologix pegfilgrastim and US-licensed pegfilgrastim with respect to their physicochemical profile was established using a wide range of rigorous orthogonal analytical techniques. Biological function was compared using receptor binding analyses, in vitro proliferation assays, and in vivo hematopoietic progenitor mobilization. RESULTS Apobiologix pegfilgrastim and the US-licensed pegfilgrastim reference product were found to be highly similar analytically with respect to molecular mass, primary, secondary and tertiary protein structures, purity, charge, and hydrophobicity. No differences in receptor binding affinity were observed, and all samples demonstrated similar in vitro and in vivo bioactivity. CONCLUSION These studies provide robust evidence supporting the structural and functional similarity between Apobiologix pegfilgrastim and the US-licensed reference pegfilgrastim, and hence their biosimilarity.
Collapse
Affiliation(s)
- Stephen Brokx
- Product Development, Apobiologix, 4100 Weston Road, Toronto, Ontario M9L 2Y6, Canada
| | - Louise Scrocchi
- Product Development, Apobiologix, 4100 Weston Road, Toronto, Ontario M9L 2Y6, Canada
| | - Nirmesh Shah
- Medical Affairs US, Apobiologix, 2400 N. Commerce Parkway, Suite 400, Weston, FL 33326, USA
| | - Jason Dowd
- Product Development, Apobiologix, 4100 Weston Road, Toronto, Ontario M9L 2Y6, Canada.
| |
Collapse
|
7
|
Vandermarliere E, Stes E, Gevaert K, Martens L. Resolution of protein structure by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:653-665. [PMID: 25536908 DOI: 10.1002/mas.21450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Typically, mass spectrometry is used to identify the peptides present in a complex peptide mixture and subsequently the precursor proteins. As such, mass spectrometry focuses mainly on the primary structure, the (modified) amino acid sequence of peptides and proteins. In contrast, the three-dimensional structure of a protein is typically determined with protein X-ray crystallography or NMR. Despite the close relationship between these two aspects of protein studies (sequence and structure), mass spectrometry and structure determination are not frequently combined. Nevertheless, this combination of approaches, dubbed conformational proteomics, can offer insight into the function, working mechanism, and conformational status of a protein. In this review, we will discuss the developments at the intersection of mass spectrometry-based proteomics and protein structure determination and start from a brief overview of the classic approaches to identify protein structure along with their advantages and disadvantages. We will subsequently discuss the ability of mass spectrometry to overcome some of the hurdles of these classic methods. Finally, we will provide an outlook on the interplay of mass spectrometry and protein structure determination, and highlight several recent experiments in which mass spectrometry was successfully used to either aid or complement structure elucidation. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:653-665, 2016.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium.
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Wang EH, Nagarajan Y, Carroll F, Schug KA. Reversed-phase separation parameters for intact proteins using liquid chromatography with triple quadrupole mass spectrometry. J Sep Sci 2016; 39:3716-3727. [DOI: 10.1002/jssc.201600764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Evelyn H. Wang
- Department of Chemistry & Biochemistry; The University of Texas at Arlington; Arlington TX USA
| | - Yashaswini Nagarajan
- Department of Chemistry & Biochemistry; The University of Texas at Arlington; Arlington TX USA
| | | | - Kevin A. Schug
- Department of Chemistry & Biochemistry; The University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
9
|
A simple sheathless CE-MS interface with a sub-micrometer electrical contact fracture for sensitive analysis of peptide and protein samples. Anal Chim Acta 2016; 936:157-67. [PMID: 27566351 DOI: 10.1016/j.aca.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept of forming a sub-micrometer fracture directly in the capillary. The simple interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45-90 nL/min) for high sensitivity MS analysis of challenging samples like those containing proteins and peptides. By analysis of a model peptide (leucine enkephalin), a limit of detection (LOD) of 0.045 pmol/μL (corresponding to 67 attomol in a sample volume of ∼15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (73%) compared to a representative UPLC-MS method (77%). The CE-MS interface was subsequently used to analyse a more complex sample of pharmaceutically relevant human proteins including insulin, tissue factor and α-synuclein. Efficient separation and protein ESI mass spectra of adequate quality could be achieved using only a small amount of sample (30 fmol). In addition, analysis of ubiquitin samples under both native and denatured conditions, indicate that the CE-MS setup can facilitate native MS applications to probe the conformational properties of proteins. Thus, the described CE-MS setup should be useful for a wide range of high-sensitivity applications in protein research.
Collapse
|
10
|
Kim J. Study of the conformational change of adsorbed proteins on biomaterial surfaces using hydrogen-deuterium exchange with mass spectroscopy. Colloids Surf B Biointerfaces 2016; 141:513-518. [DOI: 10.1016/j.colsurfb.2016.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
11
|
Experimental characterization of adsorbed protein orientation, conformation, and bioactivity. Biointerphases 2015; 10:019002. [PMID: 25708632 DOI: 10.1116/1.4906485] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure-function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems.
Collapse
|
12
|
Vandermarliere E, Maddelein D, Hulstaert N, Stes E, Di Michele M, Gevaert K, Jacoby E, Brehmer D, Martens L. PepShell: Visualization of Conformational Proteomics Data. J Proteome Res 2015; 14:1987-90. [DOI: 10.1021/pr5012125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elien Vandermarliere
- Department
of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Davy Maddelein
- Department
of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Niels Hulstaert
- Department
of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Elisabeth Stes
- Department
of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Michela Di Michele
- Department
of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Kris Gevaert
- Department
of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Edgar Jacoby
- Oncology
Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Dirk Brehmer
- Oncology
Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Lennart Martens
- Department
of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Kowalski K, Goszczyński T, Leśnikowski ZJ, Boratyński J. Synthesis of lysozyme-metallacarborane conjugates and the effect of boron cluster modification on protein structure and function. Chembiochem 2015; 16:424-31. [PMID: 25589498 DOI: 10.1002/cbic.201402611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/11/2022]
Abstract
Two complementary methods, "in solution" and "in solid state", for the synthesis of lysozyme modified with metallacarborane (cobalt bis(dicarbollide), Co(C2 B9 H11 )2 (2-) ) were developed. As metallacarborane donors, oxonium adducts of cobalt bis(dicarbollide) and 1,4-dioxane or tetrahydropyran were used. The physicochemical and biochemical properties of the obtained lysozyme-metallacarborane conjugates were studied for changes in secondary and tertiary structure, aggregation behavior, and biological activity. Only minor changes in primary, secondary, and tertiary protein structure were observed, caused by the single substitution of metallacarborane on lysozyme. However, the modification produced significant changes in lysozyme enzymatic activity and a tendency toward time- and temperature-dependent aggregation.
Collapse
Affiliation(s)
- Konrad Kowalski
- "Neolek" Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Institute of Immunology and Experimental Therapy, Polish Academy of Science, 12 Rudolf Weigl Street, 53-114 Wrocław (Poland).
| | | | | | | |
Collapse
|
14
|
Huang X, Tu Z, Wang H, Zhang Q, Chen Y, Shi Y, Xiao H. Probing the conformational changes of ovalbumin after glycation using HDX-MS. Food Chem 2015; 166:62-67. [DOI: 10.1016/j.foodchem.2014.05.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 01/19/2023]
|
15
|
The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreG, an intrinsically disordered GTPase. J Biol Inorg Chem 2014; 19:1341-54. [PMID: 25200810 DOI: 10.1007/s00775-014-1191-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
Urease is an essential Ni(II) enzyme involved in the nitrogen metabolism of bacteria, plants and fungi. Ni(II) delivery into the enzyme active site requires the presence of four accessory proteins, named UreD, UreF, UreG and UreE, acting through a complex protein network regulated by metal binding and GTP hydrolysis. The GTPase activity is catalyzed by UreG, which couples this function to a non-enzymatic role as a molecular chaperone. This moonlighting activity is reflected in a flexible fold that makes UreG the first discovered intrinsically disordered enzyme. UreG binds Ni(II) and Zn(II),which in turn modulate the interactions with other urease chaperones. The aim of this study is to understand the structural implications of metal binding to Sporosarcina pasteurii UreG (SpUreG). A combination of light scattering, calorimetry, mass spectrometry, and NMR spectroscopy revealed that SpUreG exists in monomer-dimer equilibrium (K(d)= 45 µM), sampling three distinct folding populations with different degrees of compactness. Binding of Zn(II) ions, occurring in two distinct sites (K(d1) = 3 nM, K(d2) = 0.53 µM), shifts the protein conformational landscape toward the more compact population, while maintaining the overall protein structural plasticity. Differently, binding of Ni(II) ions occurs in three binding sites (K(d1(= 14 µM; K(d2) = 270 µM; K(d3)= 160 µM), with much weaker influence on the protein conformational equilibrium. These distinct conformational responses of SpUreG to Ni(II) and Zn(II) binding suggest that selective metal binding modulates protein plasticity, possibly having an impact on the protein-protein interactions and the enzymatic activity of UreG.
Collapse
|
16
|
Zinck N, Stark AK, Wilson DJ, Sharon M. An improved rapid mixing device for time-resolved electrospray mass spectrometry measurements. ChemistryOpen 2014; 3:109-14. [PMID: 25050229 PMCID: PMC4101726 DOI: 10.1002/open.201402002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Time series data can provide valuable insight into the complexity of biological reactions. Such information can be obtained by mass-spectrometry-based approaches that measure pre-steady-state kinetics. These methods are based on a mixing device that rapidly mixes the reactants prior to the on-line mass measurement of the transient intermediate steps. Here, we describe an improved continuous-flow mixing apparatus for real-time electrospray mass spectrometry measurements. Our setup was designed to minimize metal–solution interfaces and provide a sheath flow of nitrogen gas for generating stable and continuous spray that consequently enhances the signal-to-noise ratio. Moreover, the device was planned to enable easy mounting onto a mass spectrometer replacing the commercial electrospray ionization source. We demonstrate the performance of our apparatus by monitoring the unfolding reaction of cytochrome C, yielding improved signal-to-noise ratio and reduced experimental repeat errors.
Collapse
Affiliation(s)
- Nicholas Zinck
- Department of Chemistry, York University Toronto, ON M3J 1P3 (Canada)
| | - Ann-Kathrin Stark
- Department of Biological Chemistry, Weizmann Institute of Science 76100 Rehovot (Israel) E-mail:
| | - Derek J Wilson
- Department of Chemistry, York University Toronto, ON M3J 1P3 (Canada)
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science 76100 Rehovot (Israel) E-mail:
| |
Collapse
|
17
|
Thyparambil AA, Wei Y, Wu Y, Latour RA. Determination of orientation and adsorption-induced changes in the tertiary structure of proteins on material surfaces by chemical modification and peptide mapping. Acta Biomater 2014; 10:2404-14. [PMID: 24486912 DOI: 10.1016/j.actbio.2014.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
The labeling of amino acid residues followed by peptide mapping via mass spectrometry (AAL/MS) is a promising technique to provide detailed information on the adsorption-induced changes in its solvent accessibility. However, the potential of this method for the study of adsorbed protein structure is largely undeveloped at this time. The objective of this research was therefore to extend these capabilities by developing and applying AAL/MS techniques for a range of amino acid types to identify the dominant configurations of an adsorbed protein on a material surface. In this study, the configuration of hen egg white lysozyme (HEWL) adsorbed on fused silica glass, high-density polyethylene (HDPE) and poly(methyl methacrylate) (PMMA) was mapped by combining the labeling profiles obtained from five amino acid labels, which were independently applied. In order to be able to combine the results from the different amino acid labeling processes, the intensity of the HEWL segment without the target amino acids was used as an internal control to normalize the intensity shifts to an equivalent level. The resulting quantitative differences in the normalized amino acid profiles were then used to provide insights into adsorbed orientation, protein-protein interactions and adsorption-induced tertiary unfolding of HEWL, which were found to be distinctly different between the fused silica glass, HDPE and PMMA surfaces. The developed technique has the potential for broad application and for expansion to additional targeted amino acids to provide highly detailed information on the adsorbed state of any protein on any given surface.
Collapse
|
18
|
Hu B, So PK, Yao ZP. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique. Anal Chim Acta 2014; 817:1-8. [DOI: 10.1016/j.aca.2014.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/26/2014] [Accepted: 02/01/2014] [Indexed: 01/05/2023]
|
19
|
Zhang N, Cui M, Du Y, Liu Z, Liu S. Exploring the interaction of cisplatin with β2-microglobulin: new insights into a chemotherapeutic drug. RSC Adv 2014. [DOI: 10.1039/c3ra44096f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
D’Angelo G, Uemura T, Chuang CC, Polishchuk E, Santoro M, Ohvo-Rekilä H, Sato T, Di Tullio G, Varriale A, D’Auria S, Daniele T, Capuani F, Johannes L, Mattjus P, Monti M, Pucci P, Williams RL, Burke JE, Platt FM, Harada A, De Matteis MA. Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 2013; 501:116-20. [DOI: 10.1038/nature12423] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 06/25/2013] [Indexed: 11/09/2022]
|
21
|
Suvorina MY, Surin AK, Dovidchenko NV, Lobanov MY, Galzitskaya OV. Comparison of experimental and theoretical data on hydrogen-deuterium exchange for ten globular proteins. BIOCHEMISTRY (MOSCOW) 2012; 77:616-23. [PMID: 22817461 DOI: 10.1134/s0006297912060089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The number of protons available for hydrogen-deuterium exchange was predicted for ten globular proteins using a method described elsewhere by the authors. The average number of protons replaced by deuterium was also determined by mass spectrometry of the intact proteins in their native conformations. Based on these data, we find that two models proposed earlier agree with each other in estimation of the number of protons replaced by deuterium. Using a model with a probability scale for hydrogen bond formation, we estimated a number of protons replaced by deuterium that is close to the experimental data for long-term incubation in D(2)O (24 h). Using a model based on estimations with a scale of the expected number of contacts in globular proteins there is better agreement with the experimental data obtained for a short period of incubation in D(2)O (15 min). Therefore, the former model determines weakly fluctuating parts of a protein that are in contact with solvent only for a small fraction of the time. The latter model (based on the scale of expected number of contacts) predicts either flexible parts of a protein chain exposed to interactions with solvent or disordered parts of the protein.
Collapse
Affiliation(s)
- M Yu Suvorina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
22
|
Nakazawa S, Ahn J, Hashii N, Hirose K, Kawasaki N. Analysis of the local dynamics of human insulin and a rapid-acting insulin analog by hydrogen/deuterium exchange mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1210-4. [PMID: 23220415 DOI: 10.1016/j.bbapap.2012.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 11/29/2022]
Abstract
Human insulin and insulin lispro (lispro), a rapid-acting insulin analog, have identical primary structures, except for the transposition of a pair of amino acids. This mutation results in alterations in their higher order structures, with lispro dissociating more easily than human insulin. In our previous study performed using hydrogen/deuterium exchange mass spectrometry (HDX/MS), differences were observed in the rates and levels of deuteration among insulin analog products, which were found to be related to their self-association stability. In this study, we carried out peptide mapping of deuterated human insulin and lispro to determine the regions responsible for these deuteration differences and to elucidate the type of structural changes that affect their HDX reactivity. We identified A3-6 and B22-24 as the 2 regions that showed distinct differences in the number of deuterium atoms incorporated between human insulin and lispro. These regions contain residues that are thought to participate in hexamerization and dimerization, respectively. We also determined that over time, the differences in deuteration levels decreased in A3-6, whereas they increased in B22-24, suggesting a difference in the dynamics between these 2 regions. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
- Shiori Nakazawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Kinetic asymmetry of subunit exchange of homooligomeric protein as revealed by deuteration-assisted small-angle neutron scattering. Biophys J 2012; 101:2037-42. [PMID: 22004758 DOI: 10.1016/j.bpj.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/06/2011] [Indexed: 11/23/2022] Open
Abstract
We developed a novel, to our knowledge, technique for real-time monitoring of subunit exchange in homooligomeric proteins, using deuteration-assisted small-angle neutron scattering (SANS), and applied it to the tetradecamer of the proteasome α7 subunit. Isotopically normal and deuterated tetradecamers exhibited identical SANS profiles in 81% D(2)O solution. After mixing these solutions, the isotope sensitive SANS intensity in the low-q region gradually decreased, indicating subunit exchange, whereas the small-angle x-ray scattering profile remained unchanged confirming the structural integrity of the tetradecamer particles during the exchange. Kinetic analysis of zero-angle scattering intensity indicated that 1), only two of the 14 subunits were exchanged in each tetradecamer and 2), the exchange process involves at least two steps. This study underscores the usefulness of deuteration-assisted SANS, which can provide quantitative information not only on the molecular sizes and shapes of homooligomeric proteins, but also on their kinetic properties.
Collapse
|
24
|
Nakazawa S, Hashii N, Harazono A, Kawasaki N. Analysis of oligomeric stability of insulin analogs using hydrogen/deuterium exchange mass spectrometry. Anal Biochem 2012; 420:61-7. [DOI: 10.1016/j.ab.2011.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 12/01/2022]
|
25
|
Johnson P, Philo M, Watson A, Mills ENC. Rapid fingerprinting of milk thermal processing history by intact protein mass spectrometry with nondenaturing chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12420-7. [PMID: 22007861 DOI: 10.1021/jf203151e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Thermal processing of foods results in proteins undergoing conformational changes, aggregation, and chemical modification notably with sugars via the Maillard reaction. This can impact their functional, nutritional, and allergenic properties. Native size-exclusion chromatography with online electrospray mass spectrometry (SEC-ESI-MS) was used to characterize processing-induced changes in milk proteins in a range of milk products. Milk products could be readily grouped into either pasteurized liquid milks, heavily processed milks, or milk powders by SEC behavior, particularly by aggregation of whey proteins by thermal processing. Maillard modification of all major milk proteins by lactose was observed by MS and was primarily present in milk powders. The method developed is a rapid tool for fingerprinting the processing history of milk and has potential as a quality control method for food ingredient manufacture. The method described here can profile milk protein oligomeric state, aggregation, and Maillard modification in a single shot, rapid analysis.
Collapse
Affiliation(s)
- Phil Johnson
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Wyttenbach T, Bowers MT. Structural Stability from Solution to the Gas Phase: Native Solution Structure of Ubiquitin Survives Analysis in a Solvent-Free Ion Mobility–Mass Spectrometry Environment. J Phys Chem B 2011; 115:12266-75. [DOI: 10.1021/jp206867a] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Wyttenbach
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Maurizio E, Cravello L, Brady L, Spolaore B, Arnoldo L, Giancotti V, Manfioletti G, Sgarra R. Conformational Role for the C-Terminal Tail of the Intrinsically Disordered High Mobility Group A (HMGA) Chromatin Factors. J Proteome Res 2011; 10:3283-91. [DOI: 10.1021/pr200116w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elisa Maurizio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Liam Brady
- Waters Corporation, Atlas Park, Manchester, United Kingdom
| | | | - Laura Arnoldo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
28
|
Snijder J, Rose RJ, Raijmakers R, Heck AJ. Site-specific methionine oxidation in calmodulin affects structural integrity and interaction with Ca2+/calmodulin-dependent protein kinase II. J Struct Biol 2011; 174:187-95. [DOI: 10.1016/j.jsb.2010.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
|
29
|
Sun Q, Tyler RC, Volkman BF, Julian RR. Dynamic interchanging native states of lymphotactin examined by SNAPP-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:399-407. [PMID: 21472559 PMCID: PMC3061006 DOI: 10.1007/s13361-010-0042-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
The human chemokine lymphotactin (Ltn) is a remarkable protein that interconverts between two unrelated native state structures in the condensed phase. It is possible to shift the equilibrium toward either conformation with selected sequence substitutions. Previous results have shown that a disulfide-stabilized variant preferentially adopts the canonical chemokine fold (Ltn10), while a single amino acid change (W55D) favors the novel Ltn40 dimeric structure. Selective noncovalent adduct protein probing (SNAPP) is a recently developed method for examining solution phase protein structure. Herein, it is demonstrated that SNAPP can easily recognize and distinguish between the Ltn10 and Ltn40 states of lymphotactin in aqueous solution. The effects of organic denaturants, acid, and disulfide bond reduction and blocking were also examined using SNAPP for the CC3, W55D, and wild type proteins. Only disulfide reduction was shown to significantly perturb the protein, and resulted in considerably decreased adduct formation consistent with loss of tertiary/secondary structure. Cold denaturation experiments demonstrated that wild-type Ltn is the most temperature sensitive of the three proteins. Examination of the higher charge states in all experiments, which are presumed to represent transition state structures between Ltn-10 and Ltn-40, reveals increased 18C6 attachment relative to the more folded structures. This observation is consistent with increased competitive intramolecular hydrogen bonding, which may guide the transition. Experiments examining the gas phase structures revealed that all three proteins can be structurally distinguished in the gas phase. In addition, the gas phase experiments enabled identification of preferred adduct binding sites.
Collapse
Affiliation(s)
- Qingyu Sun
- Department of Chemistry, University of California, Riverside, CA 92521 USA
| | - Robert C. Tyler
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, CA 92521 USA
| |
Collapse
|
30
|
Haselberg R, Brinks V, Hawe A, de Jong GJ, Somsen GW. Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. Anal Bioanal Chem 2011; 400:295-303. [PMID: 21318246 PMCID: PMC3062027 DOI: 10.1007/s00216-011-4738-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/24/2010] [Accepted: 01/27/2011] [Indexed: 10/29/2022]
Abstract
In this work, the usefulness of capillary electrophoresis-electrospray ionization time-of-flight-mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight-mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6-7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.
Collapse
Affiliation(s)
- R Haselberg
- Department of Biomedical Analysis, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Siu KK, Asmus K, Zhang AN, Horvatin C, Li S, Liu T, Moffatt B, Woods VL, Howell PL. Mechanism of substrate specificity in 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases. J Struct Biol 2011; 173:86-98. [PMID: 20554051 PMCID: PMC3006453 DOI: 10.1016/j.jsb.2010.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5'-alkylthio binding site in Arabidopsis thalianaAtMTAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein-SAH complex at 2.2Å resolution. The lack of catalytic activity appears to be related to the enzyme's inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium-hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN.
Collapse
Affiliation(s)
- Karen K.W. Siu
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8
| | - Kyle Asmus
- Department of Medicine and Biomedical Sciences, University of California, San Diego, La Jolla, CA 92093-0656, United States
| | - Allison N. Zhang
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8
| | - Cathy Horvatin
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | - Sheng Li
- Department of Medicine and Biomedical Sciences, University of California, San Diego, La Jolla, CA 92093-0656, United States
| | - Tong Liu
- Department of Medicine and Biomedical Sciences, University of California, San Diego, La Jolla, CA 92093-0656, United States
| | - Barbara Moffatt
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Virgil L. Woods
- Department of Medicine and Biomedical Sciences, University of California, San Diego, La Jolla, CA 92093-0656, United States
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
32
|
Ziegler BE, McMahon TB. Energetics and Structural Elucidation of Mechanisms for Gas Phase H/D Exchange of Protonated Peptides. J Phys Chem A 2010; 114:11953-63. [DOI: 10.1021/jp105170f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Blake E. Ziegler
- Department of Chemistry University of Waterloo Waterloo, Ontario
| | - Terry B. McMahon
- Department of Chemistry University of Waterloo Waterloo, Ontario
| |
Collapse
|
33
|
De Riva A, Deery MJ, McDonald S, Lund T, Busch R. Measurement of protein synthesis using heavy water labeling and peptide mass spectrometry: Discrimination between major histocompatibility complex allotypes. Anal Biochem 2010; 403:1-12. [PMID: 20406617 PMCID: PMC2896473 DOI: 10.1016/j.ab.2010.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/23/2010] [Accepted: 04/15/2010] [Indexed: 01/08/2023]
Abstract
Methodological limitations have hampered the use of heavy water ((2)H(2)O), a convenient, universal biosynthetic label, for measuring protein synthesis. Analyses of (2)H-labeled amino acids are sensitive to contamination; labeling of peptides has been measured for a few serum proteins, but this approach awaits full validation. Here we describe a method for quantifying protein synthesis by peptide mass spectrometry (MS) after (2)H(2)O labeling, as applied to various proteins of the major histocompatibility complex (MHC). Human and murine antigen-presenting cells were cultured in medium containing 5% (2)H(2)O; class I and class II MHC proteins were immunoprecipitated, bands were excised, and Ala-/Gly-rich, allele-specific tryptic peptides were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass isotopomer distributions were quantified precisely by LC-MS and shifted markedly on (2)H(2)O labeling. Experimental data agreed closely with models obtained by mass isotopomer distribution analysis (MIDA) and were consistent with contributions from Ala, Gly, and other amino acids to labeling. Estimates of fractional protein synthesis from peptides of the same protein were precise and internally consistent. The method was capable of discriminating between MHC isotypes and alleles, applicable to primary cells, and readily extendable to other proteins. It simplifies measurements of protein synthesis, enabling novel applications in physiology, in genotype/phenotype interactions, and potentially in kinetic proteomics.
Collapse
Affiliation(s)
| | - Michael J. Deery
- Centre for Proteomics, University of Cambridge, Cambridge CB2 1QR, UK
| | - Sarah McDonald
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Torben Lund
- Department of Immunology and Molecular Pathology, School of Medicine, University College London, London WC1E 6BT, UK
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
34
|
Li CZ, Koter M, Ye X, Zhou SF, Chou W, Luo R, Gershon PD. Widespread but Small-Scale Changes in the Structural and Dynamic Properties of Vaccinia Virus Poly(A) Polymerase upon Association with Its Processivity Factor in Solution. Biochemistry 2010; 49:6247-62. [DOI: 10.1021/bi100166x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C.-Z. Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - M. Koter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - X. Ye
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - S.-F. Zhou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - W. Chou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - R. Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - P. D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| |
Collapse
|
35
|
Somuramasami J, Winger BE, Gillespie TA, Kenttämaa HI. Identification and counting of carbonyl and hydroxyl functionalities in protonated bifunctional analytes by using solution derivatization prior to mass spectrometric analysis via ion-molecule reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:773-784. [PMID: 20189411 DOI: 10.1016/j.jasms.2009.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/18/2009] [Accepted: 11/23/2009] [Indexed: 05/28/2023]
Abstract
A mass spectrometric method has been developed for the identification of carbonyl and hydroxyl functional groups, as well as for counting the functional groups, in previously unknown protonated bifunctional oxygen-containing analytes. This method utilizes solution reduction before mass spectrometric analysis to convert the carbonyl groups to hydroxyl groups. Gas-phase ion-molecule reactions of the protonated reduced analytes with neutral trimethylborate (TMB) in a FT-ICR mass spectrometer give diagnostic product ions. The reaction sequence likely involves three consecutive steps, proton abstraction from the protonated analyte by TMB, addition of the neutral analyte to the boron reagent, and elimination of a neutral methanol molecule. The number of methanol molecules eliminated upon reactions with TMB reveals the number of hydroxyl groups in the analyte. Comparison of the reactions of the original and reduced analytes reveals the presence and number of carbonyl and hydroxyl groups in the analyte.
Collapse
|
36
|
Li J, Dangott LJ, Fitzpatrick PF. Regulation of phenylalanine hydroxylase: conformational changes upon phenylalanine binding detected by hydrogen/deuterium exchange and mass spectrometry. Biochemistry 2010; 49:3327-35. [PMID: 20307070 PMCID: PMC2855537 DOI: 10.1021/bi1001294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phenylalanine acts as an allosteric activator of the tetrahydropterin-dependent enzyme phenylalanine hydroxylase. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into local conformational changes accompanying activation of rat phenylalanine hydroxylase by phenylalanine. Peptides in the regulatory and catalytic domains that lie in the interface between these two domains show large increases in the extent of deuterium incorporation from solvent in the presence of phenylalanine. In contrast, the effects of phenylalanine on the exchange kinetics of a mutant enzyme lacking the regulatory domain are limited to peptides surrounding the binding site for the amino acid substrate. These results support a model in which the N-terminus of the protein acts as an inhibitory peptide, with phenylalanine binding causing a conformational change in the regulatory domain that alters the interaction between the catalytic and regulatory domains.
Collapse
Affiliation(s)
- Jun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77843-2128
| | - Lawrence J. Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station TX 77843-2128
| | - Paul F. Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas, Health Science Center at San Antonio, San Antonio TX 78229-3900
| |
Collapse
|
37
|
Cheng KW, Wong CC, Wang M, He QY, Chen F. Identification and characterization of molecular targets of natural products by mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:126-155. [PMID: 19319922 DOI: 10.1002/mas.20235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Natural products, and their derivatives and mimics, have contributed to the development of important therapeutics to combat diseases such as infections and cancers over the past decades. The value of natural products to modern drug discovery is still considerable. However, its development is hampered by a lack of a mechanistic understanding of their molecular action, as opposed to the emerging molecule-targeted therapeutics that are tailored to a specific protein target(s). Recent advances in the mass spectrometry-based proteomic approaches have the potential to offer unprecedented insights into the molecular action of natural products. Chemical proteomics is established as an invaluable tool for the identification of protein targets of natural products. Small-molecule affinity selection combined with mass spectrometry is a successful strategy to "fish" cellular targets from the entire proteome. Mass spectrometry-based profiling of protein expression is also routinely employed to elucidate molecular pathways involved in the therapeutic and possible toxicological responses upon treatment with natural products. In addition, mass spectrometry is increasingly utilized to probe structural aspects of natural products-protein interactions. Limited proteolysis, photoaffinity labeling, and hydrogen/deuterium exchange in conjunction with mass spectrometry are sensitive and high-throughput strategies that provide low-resolution structural information of non-covalent natural product-protein complexes. In this review, we provide an overview on the applications of mass spectrometry-based techniques in the identification and characterization of natural product-protein interactions, and we describe how these applications might revolutionize natural product-based drug discovery.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
38
|
Nagy K, Redeuil K, Rezzi S. Online Hydrogen/Deuterium Exchange Performed in the Ion Mobility Cell of a Hybrid Mass Spectrometer. Anal Chem 2009; 81:9365-71. [DOI: 10.1021/ac901736j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kornél Nagy
- Metabonomics and Biomarkers Group, BioAnalytical Science Department, Nestlé Research Centre, Nestec Limited, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Karine Redeuil
- Metabonomics and Biomarkers Group, BioAnalytical Science Department, Nestlé Research Centre, Nestec Limited, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Serge Rezzi
- Metabonomics and Biomarkers Group, BioAnalytical Science Department, Nestlé Research Centre, Nestec Limited, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
39
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
40
|
Baek JH, Yang WS, Lee C, Yu MH. Functional unfolding of alpha1-antitrypsin probed by hydrogen-deuterium exchange coupled with mass spectrometry. Mol Cell Proteomics 2009; 8:1072-81. [PMID: 19136720 PMCID: PMC2689767 DOI: 10.1074/mcp.m800365-mcp200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 01/08/2009] [Indexed: 11/06/2022] Open
Abstract
The native state of alpha(1)-antitrypsin (alpha(1)AT), a member of the serine protease inhibitor (serpin) family, is considered a kinetically trapped folding intermediate that converts to a more stable form upon complex formation with a target protease. Although previous structural and mutational studies of alpha(1)AT revealed the structural basis of the native strain and the kinetic trap, the mechanism of how the native molecule overcomes the kinetic barrier to reach the final stable conformation during complex formation remains unknown. We hypothesized that during complex formation, a substantial portion of the molecule undergoes unfolding, which we dubbed functional unfolding. Hydrogen-deuterium exchange coupled with ESI-MS was used to analyze this serpin in three forms: native, complexing, and complexed with bovine beta-trypsin. Comparing the deuterium content at the corresponding regions of these three samples, we probed the unfolding of alpha(1)AT during complex formation. A substantial portion of the alpha(1)AT molecule unfolded transiently during complex formation, including not only the regions expected from previous structural studies, such as the reactive site loop, helix F, and the following loop, but also regions not predicted previously, such as helix A, strand 6 of beta-sheet B, and the N terminus. Such unfolding of the native interactions may elevate the free energy level of the kinetically trapped native serpin sufficiently to cross the transition state during complex formation. In the current study, we provide evidence that protein unfolding has to accompany functional execution of the protein molecule.
Collapse
Affiliation(s)
- Je-Hyun Baek
- Functional Proteomics Center and section signLife Sciences Division Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea
| | | | | | | |
Collapse
|
41
|
Coan KED, Maltby DA, Burlingame AL, Shoichet BK. Promiscuous aggregate-based inhibitors promote enzyme unfolding. J Med Chem 2009; 52:2067-75. [PMID: 19281222 PMCID: PMC2664636 DOI: 10.1021/jm801605r] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Indexed: 11/28/2022]
Abstract
One of the leading sources of false positives in early drug discovery is the formation of organic small molecule aggregates, which inhibit enzymes nonspecifically at micromolar concentrations in aqueous solution. The molecular basis for this widespread problem remains hazy. To investigate the mechanism of inhibition at a molecular level, we determined changes in solvent accessibility that occur when an enzyme binds to an aggregate using hydrogen-deuterium exchange mass spectrometry. For AmpC beta-lactamase, binding to aggregates of the small molecule rottlerin increased the deuterium exchange of all 10 reproducibly detectable peptides, which covered 41% of the sequence of beta-lactamase. This suggested a global increase in proton accessibility upon aggregate binding, consistent with denaturation. We then investigated whether enzyme-aggregate complexes were more susceptible to proteolysis than uninhibited enzyme. For five aggregators, trypsin degradation of beta-lactamase increased substantially when beta-lactamase was inhibited by aggregates, whereas uninhibited enzyme was generally stable to digestion. Combined, these results suggest that the mechanism of action of aggregate-based inhibitors proceeds via partial protein unfolding when bound to an aggregate particle.
Collapse
Affiliation(s)
| | | | - Alma L. Burlingame
- To whom correspondence should be addressed. For A.L.B.: phone, 415-476-4893; fax, 415-502-1655; e-mail, . For B.K.S.: phone, 415-514-4126; fax, 415-514-4260; e-mail,
| | - Brian K. Shoichet
- To whom correspondence should be addressed. For A.L.B.: phone, 415-476-4893; fax, 415-502-1655; e-mail, . For B.K.S.: phone, 415-514-4126; fax, 415-514-4260; e-mail,
| |
Collapse
|
42
|
Poschner BC, Quint S, Hofmann MW, Langosch D. Sequence-specific conformational dynamics of model transmembrane domains determines their membrane fusogenic function. J Mol Biol 2009; 386:733-41. [PMID: 19154744 DOI: 10.1016/j.jmb.2008.12.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
The transmembrane domains of fusion proteins are known to be functionally important and display an overabundance of helix-destabilizing Ile and Val residues. In an effort to systematically study the relationship of fusogenicity and helix stability, we previously designed LV peptides, a low-complexity model system whose hydrophobic core consists of Leu and Val residues at different ratios. The ability of LV peptides to fuse membranes increases with the content of helix-destabilizing residues. Here, we monitored the kinetics of amide deuterium/hydrogen exchange of LV-peptide helices to probe their conformational dynamics. The kinetics indeed increases strongly with the content of helix-destabilizing residues and is likely to reflect local fluctuations of the helix backbones as all peptides exhibit uncorrelated exchange and contain subpopulations of amide deuterium atoms that exchange with different velocities. Interestingly, helices whose amide deuterium atoms are shifted from slower to faster subpopulations are more fusogenic. Novel peptide variants in which Val residues are concentrated at peripheral or central domains of the hydrophobic core were designed to map functionally relevant helix subdomains. Their structural and functional analysis suggests that dynamic domains close to the helix termini are more relevant for fusogenicity than central domains but cooperate with the latter to achieve strong fusogenicity.
Collapse
Affiliation(s)
- Bernhard C Poschner
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | |
Collapse
|
43
|
Dhungana S, Fessler MB, Tomer KB. Epitope mapping by differential chemical modification of antigens. Methods Mol Biol 2009; 524:119-134. [PMID: 19377941 DOI: 10.1007/978-1-59745-450-6_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Matrix-assisted laser desorption ionization or electrospray ionization mass spectrometry combined with differential chemical modification have proven to be versatile tools for epitope mapping as well as for studying diverse protein-protein and protein-ligand interactions. Characterization of a discontinuous or a conformational epitope on an antigen demands the ability to map the three-dimensional protein surface along with the interface of two interacting proteins. Classical methods of differentially derivatizing amino acid residues have been successfully merged with highly sensitive and highly accurate mass spectrometric techniques to rapidly profile the three-dimensional protein surface and determine the surface accessibility of specific amino acid residues. Here we discuss the use of mass spectrometry to characterize discontinuous or conformational epitopes by studying antigen-antibody interactions. The steps involved in epitope mapping approaches using differential chemical modification and H/D exchange on the antigen are discussed in detail, with particular emphasis on the experimental protocols.
Collapse
Affiliation(s)
- Suraj Dhungana
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, 111 T.W. Alexander Drive, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
44
|
Sinha S, Li Y, Williams TD, Topp EM. Protein conformation in amorphous solids by FTIR and by hydrogen/deuterium exchange with mass spectrometry. Biophys J 2008; 95:5951-61. [PMID: 18835903 PMCID: PMC2599811 DOI: 10.1529/biophysj.108.139899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 09/15/2008] [Indexed: 02/03/2023] Open
Abstract
Solid-state hydrogen/deuterium exchange (ssHDX) with electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared (FTIR) spectroscopy were used to assess protein conformation in amorphous solids. Myoglobin, lysozyme, beta-lactoglobulin, ribonuclease A, E-cadherin 5, and concanavalin A were co-lyophilized with carbohydrates (trehalose, raffinose, and dextran 5000), linear polymers (polyvinyl alcohol and polyvinyl pyrrolidone) or guanidine hydrochloride (negative control). For ssHDX, samples were exposed to D2O vapor at 33% relative humidity and room temperature, and then reconstituted at low temperature (4 degrees C) and pH 2.5 and analyzed by ESI-MS. Peptic digestion of selected proteins was used to provide region-specific information on exchange. FTIR spectra were acquired using attenuated total reflectance. FTIR and ssHDX of intact proteins showed preservation of structure by raffinose and trehalose, as indicated by FTIR band intensity and protection from exchange. ssHDX of peptic digests further indicated that these protective effects were not exerted uniformly along the protein sequence but were observed primarily in alpha-helical regions, a level of structural resolution not afforded by FTIR. The results thus demonstrate the utility of HDX with ESI-MS for analyzing protein conformation in amorphous solid samples.
Collapse
Affiliation(s)
- Sandipan Sinha
- Department of Pharmaceutical Chemistry and Mass Spectrometry Service Laboratory, University of Kansas, Lawrence, Kansas 66046, USA
| | | | | | | |
Collapse
|
45
|
Konermann L, Tong X, Pan Y. Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1021-1036. [PMID: 18523973 DOI: 10.1002/jms.1435] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry (MS) plays a central role in studies on protein structure and dynamics. This review highlights some of the recent developments in this area, with focus on applications involving the use of electrospray ionization (ESI) MS. Although this technique involves the transformation of analytes into highly nonphysiological species (desolvated gas-phase ions in the vacuum), ESI-MS can provide detailed insights into the solution-phase behavior of proteins. Notably, the ionization process itself occurs in a structurally sensitive manner. An increased degree of solution-phase unfolding is correlated with a higher level of protonation. Also, ESI allows the transfer of intact noncovalent complexes into the gas phase, thereby yielding information on binding partners, stoichiometries, and even affinities. A particular focus of this article is the use of hydrogen/deuterium exchange (HDX) methods and hydroxyl radical (.OH) labeling for monitoring dynamic and structural aspect of solution-phase proteins. Conceptual similarities and differences between the two methods are discussed. We describe a simple method for the computational simulation of protein HDX patterns, a tool that can be helpful for the interpretation of isotope exchange data recorded under mixed EX1/EX2 conditions. Important aspects of .OH labeling include a striking dependence on protein concentration, and the tendency of commonly used solvent additives to act as highly effective radical scavengers. If not properly controlled, both of these factors may lead to experimental artifacts.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
46
|
A study of oxaliplatin–nucleobase interactions using ion trap electrospray mass spectrometry. Anal Bioanal Chem 2008; 391:2339-48. [DOI: 10.1007/s00216-008-2128-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/28/2008] [Accepted: 04/10/2008] [Indexed: 11/25/2022]
|
47
|
Sequence-specific conformational flexibility of SNARE transmembrane helices probed by hydrogen/deuterium exchange. Biophys J 2008; 95:1326-35. [PMID: 18456822 DOI: 10.1529/biophysj.108.132928] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SNARE proteins mediate fusion of intracellular eukaryotic membranes and their alpha-helical transmembrane domains are known to contribute to lipid bilayer mixing. Synthetic transmembrane domain peptides were previously shown to mimic the function of SNARE proteins in that they trigger liposome fusion in a sequence-specific fashion. Here, we performed a detailed investigation of the conformational dynamics of the transmembrane helices of the presynaptic SNAREs synaptobrevin II and syntaxin 1a. To this end, we recorded deuterium/hydrogen-exchange kinetics in isotropic solution as well as in the membrane-embedded state. In solution, the exchange kinetics of each peptide can be described by three different classes of amide deuteriums that exchange with different rate constants. These are likely to originate from exchange at different domains of the helices. Interestingly, the rate constants of each class vary with the TMD sequence. Thus, the exchange rate is position-specific and sequence-specific. Further, the rate constants correlate with the previously determined membrane fusogenicities. In membranes, exchange is retarded and a significant proportion of amide hydrogens are protected from exchange. We conclude that the conformational dynamics of SNARE TMD helices is mechanistically linked to their ability to drive lipid mixing.
Collapse
|
48
|
Jalili PR, Dass C. Determination of the structure of lipid vesicle-bound angiotensin II and angiotensin I. Anal Biochem 2007; 374:346-57. [PMID: 18162166 DOI: 10.1016/j.ab.2007.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 11/28/2022]
Abstract
A mass spectrometry (MS)-based strategy was developed to determine the structure of lipid vesicle-bound angiotensin II (AII) and angiotensin I (AI). It involves hydrogen-deuterium exchange (HDX), chemical modifications (e.g., nitration of tyrosine, acetylation of free amino group), and ladder sequencing. HDX is also combined with tandem mass spectrometry (MS/MS) to provide structural details at individual amino acid residues. It was observed that a major portion of both of these peptide hormones interacts with the phospholipid head groups on the surface of the vesicles and that Tyr residue is embedded in the vesicles. Both peptides have a U-shaped structure in the lipid environment.
Collapse
Affiliation(s)
- Pegah R Jalili
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | | |
Collapse
|
49
|
Pluym M, Muryoi N, Heinrichs DE, Stillman MJ. Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus. J Inorg Biochem 2007; 102:480-8. [PMID: 18194816 DOI: 10.1016/j.jinorgbio.2007.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
Absorption, magnetic circular dichroism (MCD), and electrospray mass spectral (ESI-MS) data are reported for the heme binding NEAr iron Transporter (NEAT) domains of IsdA and IsdC, two proteins involved in heme scavenging by Staphylococcus aureus. The mass spectrometry data show that the NEAT domains are globular in structure and efficiently bind a single heme molecule. In this work, the IsdA NEAT domain is referred to as NEAT-A, the IsdC NEAT domain is referred to as NEAT-C, heme-free NEAT-C is NEAT-A and NEAT-C are inaccessible to small anionic ligands. Reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-A results in coordination by histidine and opens access, allowing for CO axial ligation, yielding 6-coordinate low-spin Fe(II) heme. In contrast, reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-C results in loss of the heme from the binding site of the protein due to the absence of a proximal histidine. The absorption and MCD data for NEAT-A closely match those previously reported for the whole IsdA protein, providing evidence that heme binding is primarily a property of the NEAT domain.
Collapse
Affiliation(s)
- Mark Pluym
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | |
Collapse
|
50
|
Full SJ, Deinzer ML, Ho PS, Greenwood JA. Phosphoinositide binding regulates alpha-actinin CH2 domain structure: analysis by hydrogen/deuterium exchange mass spectrometry. Protein Sci 2007; 16:2597-604. [PMID: 17965186 PMCID: PMC2190733 DOI: 10.1110/ps.073146807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.
Collapse
Affiliation(s)
- Stephen J Full
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|