1
|
Meinke P, Kerr ARW, Czapiewski R, de Las Heras JI, Dixon CR, Harris E, Kölbel H, Muntoni F, Schara U, Straub V, Schoser B, Wehnert M, Schirmer EC. A multistage sequencing strategy pinpoints novel candidate alleles for Emery-Dreifuss muscular dystrophy and supports gene misregulation as its pathomechanism. EBioMedicine 2019; 51:102587. [PMID: 31862442 PMCID: PMC7000448 DOI: 10.1016/j.ebiom.2019.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Background As genome-wide approaches prove difficult with genetically heterogeneous orphan diseases, we developed a new approach to identify candidate genes. We applied this to Emery-Dreifuss muscular dystrophy (EDMD), characterised by early onset contractures, slowly progressive muscular wasting, and life-threatening heart conduction disturbances with wide intra- and inter-familial clinical variability. Roughly half of EDMD patients are linked to six genes encoding nuclear envelope proteins, but the disease mechanism remains unclear because the affected proteins function in both cell mechanics and genome regulation. Methods A primer library was generated to test for mutations in 301 genes from four categories: (I) all known EDMD-linked genes; (II) genes mutated in related muscular dystrophies; (III) candidates generated by exome sequencing in five families; (IV) functional candidates — other muscle nuclear envelope proteins functioning in mechanical/genome processes affected in EDMD. This was used to sequence 56 unlinked patients with EDMD-like phenotype. Findings Twenty-one patients could be clearly assigned: 18 with mutations in genes of similar muscular dystrophies; 3 with previously missed mutations in EDMD-linked genes. The other categories yielded novel candidate genes, most encoding nuclear envelope proteins with functions in gene regulation. Interpretation Our multi-pronged approach identified new disease alleles and many new candidate EDMD genes. Their known functions strongly argue the EDMD pathomechanism is from altered gene regulation and mechanotransduction due to connectivity of candidates from the nuclear envelope to the plasma membrane. This approach highlights the value of testing for related diseases using primer libraries and may be applied for other genetically heterogeneous orphan diseases. Funding The Wellcome Trust, Muscular Dystrophy UK, Medical Research Council, European Community's Seventh Framework Programme “Integrated European –omics research project for diagnosis and therapy in rare neuromuscular and neurodegenerative diseases (NEUROMICS)”.
Collapse
Affiliation(s)
- Peter Meinke
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Germany
| | - Alastair R W Kerr
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rafal Czapiewski
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Charles R Dixon
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Elizabeth Harris
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK; 1 NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Benedikt Schoser
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Germany
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald (retired), Greifswald, Germany
| | - Eric C Schirmer
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Tharkeshwar AK, Gevaert K, Annaert W. Organellar Omics-A Reviving Strategy to Untangle the Biomolecular Complexity of the Cell. Proteomics 2017; 18:e1700113. [PMID: 29125683 DOI: 10.1002/pmic.201700113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/23/2017] [Indexed: 12/18/2022]
Abstract
A eukaryotic cell encompasses many membrane-enclosed organelles, each of these holding several types of biomolecules that exhibit tremendous diversity in terms of their localization and expression. Despite the development of increasingly sensitive analytical tools, the enormous biomolecular complexity that exists within a cell cannot yet be fully resolved as low abundant molecules often remain unrecognized. Moreover, a drawback of whole cell analysis is that it does not provide spatial information and therefore it is not capable of assigning distinct biomolecules to specific compartments or analyzing changes in the composition of these compartments. Reduction of the biomolecular complexity of a sample helps to identify low abundant molecules, but such a reductionist approach requires methods that enable proper isolation and purification of individual cellular organelles. Decades of research have led to the development of a plethora of isolation methods for a broad range of subcellular organelles; yet, in particular, intrinsically dynamic compartments belonging to the endocytic machinery, including the plasma membrane, remain difficult to isolate in a sufficiently pure fraction. In this review, we discuss various methods that are commonly used to isolate subcellular organelles from cells and evaluate their advantages and disadvantages.
Collapse
Affiliation(s)
- Arun Kumar Tharkeshwar
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium.,Laboratory for Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium.,Laboratory for Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Roos A, Buchkremer S, Kollipara L, Labisch T, Gatz C, Zitzelsberger M, Brauers E, Nolte K, Schröder JM, Kirschner J, Jesse CM, Goebel HH, Goswami A, Zimmermann R, Zahedi RP, Senderek J, Weis J. Myopathy in Marinesco-Sjögren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology. Acta Neuropathol 2014; 127:761-77. [PMID: 24362440 DOI: 10.1007/s00401-013-1224-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
Marinesco-Sjögren syndrome (MSS) features cerebellar ataxia, mental retardation, cataracts, and progressive vacuolar myopathy with peculiar myonuclear alterations. Most MSS patients carry homozygous or compound heterozygous SIL1 mutations. SIL1 is a nucleotide exchange factor for the endoplasmic reticulum resident chaperone BiP which controls a plethora of essential processes in the endoplasmic reticulum. In this study we made use of the spontaneous Sil1 mouse mutant woozy to explore pathomechanisms leading to Sil1 deficiency-related skeletal muscle pathology. We found severe, progressive myopathy characterized by alterations of the sarcoplasmic reticulum, accumulation of autophagic vacuoles, mitochondrial changes, and prominent myonuclear pathology including nuclear envelope and nuclear lamina alterations. These abnormalities were remarkably similar to the myopathy in human patients with MSS. In particular, the presence of perinuclear membranous structures which have been reported as an ultrastructural hallmark of MSS-related myopathy could be confirmed in woozy muscles. We found that these structures are derived from the nuclear envelope and nuclear lamina and associate with proliferations of the sarcoplasmic reticulum. In line with impaired function of BiP secondary to loss of its nucleotide exchange factor Sil1, we observed activation of the unfolded protein response and the endoplasmic-reticulum-associated protein degradation-pathway. Despite initiation of the autophagy-lysosomal system, autophagic clearance was found ineffective which is in agreement with the formation of autophagic vacuoles. This report identifies woozy muscle as a faithful phenocopy of the MSS myopathy. Moreover, we provide a link between two well-established disease mechanisms in skeletal muscle, dysfunction of chaperones and nuclear envelope pathology.
Collapse
|
4
|
Martínez V, Cano C, Blanco A. ProphNet: a generic prioritization method through propagation of information. BMC Bioinformatics 2014; 15 Suppl 1:S5. [PMID: 24564336 PMCID: PMC4015146 DOI: 10.1186/1471-2105-15-s1-s5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Prioritization methods have become an useful tool for mining large amounts of data to suggest promising hypotheses in early research stages. Particularly, network-based prioritization tools use a network representation for the interactions between different biological entities to identify novel indirect relationships. However, current network-based prioritization tools are strongly tailored to specific domains of interest (e.g. gene-disease prioritization) and they do not allow to consider networks with more than two types of entities (e.g. genes and diseases). Therefore, the direct application of these methods to accomplish new prioritization tasks is limited. Results This work presents ProphNet, a generic network-based prioritization tool that allows to integrate an arbitrary number of interrelated biological entities to accomplish any prioritization task. We tested the performance of ProphNet in comparison with leading network-based prioritization methods, namely rcNet and DomainRBF, for gene-disease and domain-disease prioritization, respectively. The results obtained by ProphNet show a significant improvement in terms of sensitivity and specificity for both tasks. We also applied ProphNet to disease-gene prioritization on Alzheimer, Diabetes Mellitus Type 2 and Breast Cancer to validate the results and identify putative candidate genes involved in these diseases. Conclusions ProphNet works on top of any heterogeneous network by integrating information of different types of biological entities to rank entities of a specific type according to their degree of relationship with a query set of entities of another type. Our method works by propagating information across data networks and measuring the correlation between the propagated values for a query and a target sets of entities. ProphNet is available at: http://genome2.ugr.es/prophnet. A Matlab implementation of the algorithm is also available at the website.
Collapse
|
5
|
de Las Heras JI, Meinke P, Batrakou DG, Srsen V, Zuleger N, Kerr AR, Schirmer EC. Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus 2013; 4:460-77. [PMID: 24213376 PMCID: PMC3925691 DOI: 10.4161/nucl.26872] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution.
Collapse
Affiliation(s)
- Jose I de Las Heras
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Peter Meinke
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Dzmitry G Batrakou
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Vlastimil Srsen
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Nikolaj Zuleger
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Alastair Rw Kerr
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| |
Collapse
|
6
|
Li Q, Jain MR, Chen W, Li H. A multidimensional approach to an in-depth proteomics analysis of transcriptional regulators in neuroblastoma cells. J Neurosci Methods 2013; 216:118-27. [PMID: 23558336 DOI: 10.1016/j.jneumeth.2013.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 12/13/2022]
Abstract
The dynamic regulation of transcriptional events is fundamental to many aspects of neuronal cell functions. However, proteomics methods have not been routinely used in global neuroproteomics analyses of transcriptional regulators because they are much less abundant than the "house-keeping" proteins in cells and tissues. Recent improvements in both biochemical preparations of nuclear proteins and detection sensitivities of proteomics technologies have made the global analysis of nuclear transcriptional regulators possible. We report here an optimised neuroproteomic method for the analysis of transcriptional regulators in the nuclear extracts of SHSY-5Y neuroblastoma cells by combining an improved nuclear protein extraction procedure with multidimensional peptide separation approaches. We found that rigorous removal of cytoplasmic proteins and solubilisation of DNA-associated proteins improved the number of nuclear proteins identified. Furthermore, we discovered that multidimensional peptide separations by either strong cation exchange (SCX) chromatography or electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) analysis detected more than 1800 nuclear proteins, which constitutes one of the largest datasets of nuclear proteins reported for a neuronal cell. Thus, in-depth analysis of transcriptional regulators for studying neurological diseases are increasingly feasible.
Collapse
Affiliation(s)
- Qing Li
- Center for Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, 205 S. Orange Avenue, F-1226, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
7
|
Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las Heras J, Batrakou DG, Malik P, Zuleger N, Kerr ARW, Florens L, Schirmer EC. The nuclear envelope proteome differs notably between tissues. Nucleus 2012; 3:552-64. [PMID: 22990521 PMCID: PMC3515538 DOI: 10.4161/nucl.22257] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One hypothesis to explain how mutations in the same nuclear envelope proteins yield pathologies focused in distinct tissues is that as yet unidentified tissue-specific partners mediate the disease pathologies. The nuclear envelope proteome was recently determined from leukocytes and muscle. Here the same methodology is applied to liver and a direct comparison of the liver, muscle and leukocyte data sets is presented. At least 74 novel transmembrane proteins identified in these studies have been directly confirmed at the nuclear envelope. Within this set, RT-PCR, western blot and staining of tissue cryosections confirms that the protein complement of the nuclear envelope is clearly distinct from one tissue to another. Bioinformatics reveals similar divergence between tissues across the larger data sets. For proteins acting in complexes according to interactome data, the whole complex often exhibited the same tissue-specificity. Other tissue-specific nuclear envelope proteins identified were known proteins with functions in signaling and gene regulation. The high tissue specificity in the nuclear envelope likely underlies the complex disease pathologies and argues that all organelle proteomes warrant re-examination in multiple tissues.
Collapse
Affiliation(s)
- Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Burns LT, Wente SR. Trafficking to uncharted territory of the nuclear envelope. Curr Opin Cell Biol 2012; 24:341-9. [PMID: 22326668 DOI: 10.1016/j.ceb.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
The nuclear envelope (NE) in eukaryotic cells serves as the physical barrier between the nucleus and cytoplasm. Until recently, mechanisms for establishing the composition of the inner nuclear membrane (INM) remained uncharted. Current findings uncover multiple pathways for trafficking of integral and peripheral INM proteins. A major route for INM protein transport occurs through the nuclear pore complexes (NPCs) with additional requirements for nuclear localization sequences, transport receptors, and Ran-GTP. Studies also reveal a putative NPC-independent vesicular pathway for NE trafficking. INM perturbations lead to changes in nuclear physiology highlighting the potential human disease impacts of continued NE discoveries.
Collapse
Affiliation(s)
- Laura T Burns
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | | |
Collapse
|
9
|
Murphy SP, Simmons CR, Bass HW. Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants. BMC PLANT BIOLOGY 2010; 10:269. [PMID: 21143845 PMCID: PMC3017857 DOI: 10.1186/1471-2229-10-269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 12/08/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84) domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy. RESULTS We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5), which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses). The first (ZmSUN1, 2), here designated canonical C-terminal SUN-domain (CCSD), includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5), here designated plant-prevalent mid-SUN 3 transmembrane (PM3), includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million) in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery. CONCLUSIONS The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3 subfamily may represent a novel class of proteins with possible new and intriguing roles within the plant nuclear envelope. Expression levels for ZmSUN1-4 are consistent with basic cellular functions, whereas ZmSUN5 expression levels indicate a role in pollen. Models for possible topological arrangements of the CCSD-type and PM3-type SUN-domain proteins are presented.
Collapse
Affiliation(s)
- Shaun P Murphy
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA 32306-4370
| | | | - Hank W Bass
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA 32306-4370
- Department of Biological Science, The Florida State University, Tallahassee, FL, USA 32306-4370
| |
Collapse
|
10
|
Lee YH, Tan HT, Chung MCM. Subcellular fractionation methods and strategies for proteomics. Proteomics 2010; 10:3935-56. [DOI: 10.1002/pmic.201000289] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Wilkie GS, Korfali N, Swanson SK, Malik P, Srsen V, Batrakou DG, de las Heras J, Zuleger N, Kerr ARW, Florens L, Schirmer EC. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations. Mol Cell Proteomics 2010; 10:M110.003129. [PMID: 20876400 PMCID: PMC3016689 DOI: 10.1074/mcp.m110.003129] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights.
Collapse
Affiliation(s)
- Gavin S Wilkie
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Lett 2010; 584:3013-20. [PMID: 20561986 DOI: 10.1016/j.febslet.2010.05.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 02/05/2023]
Abstract
Nucleoporin 153 (Nup153), a component of the nuclear pore complex (NPC), has been implicated in the interaction of the NPC with the nuclear lamina. Here we show that depletion of Nup153 by RNAi results in alteration of the organization of the nuclear lamina and the nuclear lamin-binding protein Sun1. More striking, Nup153 depletion induces a dramatic cytoskeletal rearrangement that impairs cell migration in human breast carcinoma cells. Our results point to a very prominent role of Nup153 in connection to cell motility that could be exploited in order to develop novel anti-cancer therapy.
Collapse
|
14
|
Nuclear envelope proteins and their role in nuclear positioning and replication. Biochem Soc Trans 2010; 38:741-6. [DOI: 10.1042/bst0380741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Controlled movement of the nucleus is important in a wide variety of plant cellular events. Positioning involving intact nuclei occurs in cell division, development, tip growing systems such as the root hair and in response to stimuli, including light, touch and infection. Positioning is also essential in the division and replication of nuclear components, ranging from chromosome attachment to the breakdown and reformation of the nuclear envelope. Although description and understanding of the processes involved have advanced rapidly in recent years, significant gaps remain in our knowledge, especially concerning nuclear proteins involved in anchoring and interacting with cytoskeletal and nucleoskeletal elements involved in movement. In the present review, processes involving the movement and positioning of nuclei and nuclear components are described together with novel proteins implicated in nucleoskeletal and cytoskeletal interactions.
Collapse
|
15
|
Fischer AH, Zhao C, Li QK, Gustafson KS, Eltoum IE, Tambouret R, Benstein B, Savaloja LC, Kulesza P. The cytologic criteria of malignancy. J Cell Biochem 2010; 110:795-811. [DOI: 10.1002/jcb.22585] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Malik P, Korfali N, Srsen V, Lazou V, Batrakou DG, Zuleger N, Kavanagh DM, Wilkie GS, Goldberg MW, Schirmer EC. Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope. Cell Mol Life Sci 2010; 67:1353-69. [PMID: 20091084 PMCID: PMC2839517 DOI: 10.1007/s00018-010-0257-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/21/2009] [Accepted: 01/05/2010] [Indexed: 12/20/2022]
Abstract
Nuclear envelope complexity is expanding with respect to identification of protein components. Here we test the validity of proteomics results that identified 67 novel predicted nuclear envelope transmembrane proteins (NETs) from liver by directly comparing 30 as tagged fusions using targeting assays. This confirmed 21 as NETs, but 4 only targeted in certain cell types, underscoring the complexity of interactions that tether NETs to the nuclear envelope. Four NETs accumulated at the nuclear rim in normal fibroblasts but not in fibroblasts lacking lamin A, suggesting involvement of lamin A in tethering them in the nucleus. However, intriguingly, for the NETs tested alternative mechanisms for nuclear envelope retention could be found in Jurkat cells that normally lack lamin A. This study expands by a factor of three the number of liver NETs analyzed, bringing the total confirmed to 31, and shows that several have multiple mechanisms for nuclear envelope retention.
Collapse
Affiliation(s)
- Poonam Malik
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Vlastimil Srsen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Vassiliki Lazou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Dzmitry G. Batrakou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Nikolaj Zuleger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Deirdre M. Kavanagh
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Gavin S. Wilkie
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - Eric C. Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| |
Collapse
|
17
|
Abstract
During mitosis in metazoans, the nuclear envelope (NE) breaks down at prophase and reassembles at telophase. The regulation of NE assembly is essential to correct cell functioning. The complex issue of the regulation of NE formation remains to be solved. It is still uncertain that a single mechanism depicts NE formation during mitosis. The aim of this review is to address some of the cytological, biophysical, and molecular aspects of models of NE formation. Our emphasis is on the role of lipids and their modifying enzymes in envelope assembly. We consider how the NE can be used as a model in characterizing membrane dynamics during membrane fusion. Fusion mechanisms that give insight into the formation of the double membrane of the envelope are summarized. We speculate on the possible roles of phosphoinositides in membrane fusion and NE formation.
Collapse
Affiliation(s)
- Banafshé Larijani
- Lincoln's Inn Fields Laboratories, Cancer Research UK, London WC2A 3PX, UK.
| | | |
Collapse
|
18
|
|
19
|
Gauthier DJ, Lazure C. Complementary methods to assist subcellular fractionation in organellar proteomics. Expert Rev Proteomics 2008; 5:603-17. [PMID: 18761470 DOI: 10.1586/14789450.5.4.603] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Organellar proteomics aims to describe the full complement of proteins of subcellular structures and organelles. When compared with whole-cell or whole-tissue proteomes, the more focused results from subcellular proteomic studies have yielded relatively simpler datasets from which biologically relevant information can be more easily extracted. In every proteomic study, the quality and purity of the biological sample to be investigated is of the utmost importance for a successful analysis. In organellar proteomics, one of the most crucial steps in sample preparation is the initial subcellular fractionation procedure by which the enriched preparation of the sought-after organelle is obtained. In nearly all available organellar proteomic studies, the method of choice relies on one or several rounds of density-based gradient centrifugation. Although this method has been recognized for decades as yielding relatively pure preparations of organelles, recent technological advances in protein separation and identification can now reveal even minute amounts of contamination, which in turn can greatly complicate data interpretation. The scope of this review focuses on recently published innovative complementary or alternative methods to perform subcellular fractionation, which can further refine the way in which sample preparation is accomplished in organellar proteomics.
Collapse
Affiliation(s)
- Daniel J Gauthier
- Neuropeptides Structure and Metabolism Research Unit, Institut de Recherches Cliniques de Montréal, University of Montréal, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7.
| | | |
Collapse
|
20
|
Batrakou DG, Kerr ARW, Schirmer EC. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions. J Proteomics 2008; 72:56-70. [PMID: 18852071 DOI: 10.1016/j.jprot.2008.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/26/2008] [Accepted: 09/18/2008] [Indexed: 12/31/2022]
Abstract
Since the discovery of several inherited diseases linked to the nuclear envelope the number of functions ascribed to this subcellular organelle has skyrocketed. However the molecular pathways underlying these functions are not clear in most cases, perhaps because of missing components. Several recent proteomic analyses of the nuclear envelope and nuclear pore complex proteomes have yielded not only enough missing components to potentially elucidate these pathways, but suggest an exponentially greater number of functions at the nuclear periphery than ever imagined. Many of these functions appear to derive from recapitulation of pathways utilized at the plasma membrane and from other membrane systems. Additionally, many proteins identified in the comparative nuclear envelope studies have sequence characteristics suggesting that they might also contribute to nuclear pore complex functions. In particular, the striking enrichment for proteins in the nuclear envelope fractions that carry phenylalanine-glycine (FG) repeats may be significant for the mechanism of nuclear transport. In retrospect, these findings are only surprising in context of the notion held for many years that the nuclear envelope was only a barrier protecting the genome. In fact, it is arguably the most complex membrane organelle in the cell.
Collapse
Affiliation(s)
- Dzmitry G Batrakou
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
21
|
Purification of Nuclei and Preparation of Nuclear Envelopes from Skeletal Muscle. THE NUCLEUS 2008; 463:23-41. [DOI: 10.1007/978-1-59745-406-3_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Andersen JS, Mann M. Organellar proteomics: turning inventories into insights. EMBO Rep 2006; 7:874-9. [PMID: 16953200 PMCID: PMC1559674 DOI: 10.1038/sj.embor.7400780] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 07/07/2006] [Indexed: 11/08/2022] Open
Abstract
Subcellular organization is yielding to large-scale analysis. Researchers are now applying robust mass-spectrometry-based proteomics methods to obtain an inventory of biochemically isolated organelles that contain hundreds of proteins. High-resolution methods allow accurate protein identification, and novel algorithms can distinguish genuine from co-purifying components. Organellar proteomes have been analysed by bioinformatic methods and integrated with other large-scale data sets. The dynamics of organelles can also be studied by quantitative proteomics, which offers powerful methods that are complementary to fluorescence-based microscopy. Here, we review the emerging trends in this rapidly expanding area and discuss the role of organellar proteomics in the context of functional genomics and systems biology.
Collapse
Affiliation(s)
- Jens S Andersen
- Centre for Experimental Bioinformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
Tel: +45 6550 2365; Fax: +45 6593 3018
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
Tel: +49 89 8578 2557; Fax: +49 89 8578 2219;
| |
Collapse
|
23
|
Natalie Randles K, Morris GE. Workshop on the nuclear envelope and Emery-Dreifuss muscular dystrophy 29th March 2006, Oswestry, UK. Neuromuscul Disord 2006; 16:608-12. [PMID: 16945535 DOI: 10.1016/j.nmd.2006.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 07/12/2006] [Accepted: 07/12/2006] [Indexed: 11/18/2022]
MESH Headings
- Animals
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Models, Biological
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Emery-Dreifuss/genetics
- Muscular Dystrophy, Emery-Dreifuss/metabolism
- Muscular Dystrophy, Emery-Dreifuss/physiopathology
- Nuclear Envelope/metabolism
- Nuclear Envelope/pathology
- Nuclear Envelope/ultrastructure
- Signal Transduction/physiology
- United Kingdom
Collapse
Affiliation(s)
- K Natalie Randles
- Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK
| | | |
Collapse
|