1
|
Meadow ME, Broas S, Hoare M, Ahmed M, Alimohammadi F, Welle KA, Swovick K, Hryhorenko JR, Jain A, Martinez JC, Seluanov A, Gorbunova V, Buchwalter A, Ghaemmaghami S. Proteome Birthdating: A Single-Sample Approach for Measuring Global Turnover Dynamics and "Protein Age". Bio Protoc 2025; 15:e5296. [PMID: 40364976 PMCID: PMC12067312 DOI: 10.21769/bioprotoc.5296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
Within a cell, proteins have distinct and highly variable half-lives. As a result, the molecular ages of proteins can range from seconds to years. How the age of a protein influences its environmental interactions is a largely unexplored area of biology. To facilitate such studies, we recently developed a technique termed "proteome birthdating" that differentially labels proteins based on their time of synthesis. Proteome birthdating enables analyses of age distributions of the proteome by tandem mass spectrometry (LC-MS/MS) and provides a methodology for investigating the protein age selectivity of diverse cellular pathways. Proteome birthdating can also provide measurements of protein turnover kinetics from single, sequentially labeled samples. Here, we provide a practical guide for conducting proteome birthdating in in vitro model systems. The outlined workflow covers cell culture, isotopic labeling, protein extraction, enzymatic digestion, peptide cleanup, mass spectrometry, data processing, and theoretical considerations for interpretation of the resulting data. Key features • Proteome birthdating barcodes the proteome with isotopically labeled precursors based on time of synthesis or "age." • Global protein turnover kinetics can be analyzed from single, sequentially labeled biological samples. • Protein age distributions of subsets of the proteome can be analyzed (e.g., ubiquitinated proteins). • Age selectivity of protein properties, cellular pathways, or disease states can be investigated.
Collapse
Affiliation(s)
- Michael E. Meadow
- Department of Biology, University of Rochester, NY, USA
- Medical Scientist Training Program, University of Rochester, NY, USA
| | - Sarah Broas
- Department of Biology, University of Rochester, NY, USA
| | | | - Maria Ahmed
- Department of Biology, University of Rochester, NY, USA
| | - Fatemeh Alimohammadi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kevin A. Welle
- University of Rochester Mass Spectrometry Resource Laboratory, NY, USA
| | - Kyle Swovick
- University of Rochester Mass Spectrometry Resource Laboratory, NY, USA
| | | | - Anushka Jain
- Department of Biology, University of Rochester, NY, USA
| | | | - Andrei Seluanov
- Department of Biology, University of Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, NY, USA
- University of Rochester Mass Spectrometry Resource Laboratory, NY, USA
| |
Collapse
|
2
|
Obata F, Miura M. Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Annu Rev Genet 2024; 58:19-41. [PMID: 38857535 DOI: 10.1146/annurev-genet-111523-102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.
Collapse
Affiliation(s)
- Fumiaki Obata
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan;
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
3
|
Cavarischia-Rega C, Sharma K, Fitzgerald JC, Macek B. Proteome Dynamics in iPSC-Derived Human Dopaminergic Neurons. Mol Cell Proteomics 2024; 23:100838. [PMID: 39251023 PMCID: PMC11474371 DOI: 10.1016/j.mcpro.2024.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
Dopaminergic neurons participate in fundamental physiological processes and are the cell type primarily affected in Parkinson's disease. Their analysis is challenging due to the intricate nature of their function, involvement in diverse neurological processes, and heterogeneity and localization in deep brain regions. Consequently, most of the research on the protein dynamics of dopaminergic neurons has been performed in animal cells ex vivo. Here we use iPSC-derived human mid-brain-specific dopaminergic neurons to study general features of their proteome biology and provide datasets for protein turnover and dynamics, including a human axonal translatome. We cover the proteome to a depth of 9409 proteins and use dynamic SILAC to measure the half-life of more than 4300 proteins. We report uniform turnover rates of conserved cytosolic protein complexes such as the proteasome and map the variable rates of turnover of the respiratory chain complexes in these cells. We use differential dynamic SILAC labeling in combination with microfluidic devices to analyze local protein synthesis and transport between axons and soma. We report 105 potentially novel axonal markers and detect translocation of 269 proteins between axons and the soma in the time frame of our analysis (120 h). Importantly, we provide evidence for local synthesis of 154 proteins in the axon and their retrograde transport to the soma, among them several proteins involved in RNA editing such as ADAR1 and the RNA helicase DHX30, involved in the assembly of mitochondrial ribosomes. Our study provides a workflow and resource for the future applications of quantitative proteomics in iPSC-derived human neurons.
Collapse
Affiliation(s)
- Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Karan Sharma
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Abstract
Organismal development requires the reproducible unfolding of an ordered sequence of discrete steps (cell fate determination, migration, tissue folding, etc.) in both time and space. Here, we review the mechanisms that grant temporal specificity to developmental steps, including molecular clocks and timers. Individual timing mechanisms must be coordinated with each other to maintain the overall developmental sequence. However, phenotypic novelties can also arise through the modification of temporal patterns over the course of evolution. Two main types of variation in temporal patterning characterize interspecies differences in developmental time: allochrony, where the overall developmental sequence is either accelerated or slowed down while maintaining the relative duration of individual steps, and heterochrony, where the duration of specific developmental steps is altered relative to the rest. New advances in in vitro modeling of mammalian development using stem cells have recently enabled the revival of mechanistic studies of allochrony and heterochrony. In both cases, differences in the rate of basic cellular functions such as splicing, translation, protein degradation, and metabolism seem to underlie differences in developmental time. In the coming years, these studies should identify the genetic differences that drive divergence in developmental time between species.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Zhang H, Ji S, Zhang K, Chen Y, Ming J, Kong F, Wang L, Wang S, Zou Z, Xiong Z, Xu K, Lin Z, Huang B, Liu L, Fan Q, Jin S, Deng H, Xie W. Stable maternal proteins underlie distinct transcriptome, translatome, and proteome reprogramming during mouse oocyte-to-embryo transition. Genome Biol 2023; 24:166. [PMID: 37443062 PMCID: PMC10347836 DOI: 10.1186/s13059-023-02997-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The oocyte-to-embryo transition (OET) converts terminally differentiated gametes into a totipotent embryo and is critically controlled by maternal mRNAs and proteins, while the genome is silent until zygotic genome activation. How the transcriptome, translatome, and proteome are coordinated during this critical developmental window remains poorly understood. RESULTS Utilizing a highly sensitive and quantitative mass spectrometry approach, we obtain high-quality proteome data spanning seven mouse stages, from full-grown oocyte (FGO) to blastocyst, using 100 oocytes/embryos at each stage. Integrative analyses reveal distinct proteome reprogramming compared to that of the transcriptome or translatome. FGO to 8-cell proteomes are dominated by FGO-stockpiled proteins, while the transcriptome and translatome are more dynamic. FGO-originated proteins frequently persist to blastocyst while corresponding transcripts are already downregulated or decayed. Improved concordance between protein and translation or transcription is observed for genes starting translation upon meiotic resumption, as well as those transcribed and translated only in embryos. Concordance between protein and transcription/translation is also observed for proteins with short half-lives. We built a kinetic model that predicts protein dynamics by incorporating both initial protein abundance in FGOs and translation kinetics across developmental stages. CONCLUSIONS Through integrative analyses of datasets generated by ultrasensitive methods, our study reveals that the proteome shows distinct dynamics compared to the translatome and transcriptome during mouse OET. We propose that the remarkably stable oocyte-originated proteome may help save resources to accommodate the demanding needs of growing embryos. This study will advance our understanding of mammalian OET and the fundamental principles governing gene expression.
Collapse
Affiliation(s)
- Hongmei Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shuyan Ji
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lijuan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shun Wang
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China
| | - Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhuqing Xiong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310002, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
6
|
Gabrielsson J, Hjorth S. Turn On, Tune In, Turnover! Target Biology Impacts In Vivo Potency, Efficacy, and Clearance. Pharmacol Rev 2023; 75:416-462. [PMID: 36627211 DOI: 10.1124/pharmrev.121.000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 01/11/2023] Open
Abstract
Even though significant efforts have been spent in recent years to understand and define the determinants of in vivo potency and clearance, important pieces of information are still lacking. By introducing target turnover into the reasoning, we open up to further the understanding of central factors important to the optimization of translational dose-concentration-response predictions. We describe (i) new (open model) expressions of the in vivo potency and efficacy parameters, which embody target turnover, binding, and complex kinetics, also capturing full, partial, and inverse agonism and antagonism; (ii) a detailed examination of open models to show what potency and efficacy parameters have in common and how they differ; and (iii) a comprehensive literature review showing that target turnover rate varies with age, species, tissue/subregion, treatment, disease state, hormonal and nutritional state, and day-night cycle. The new open model expression, which integrates system and drug properties, shows the following. Fractional turnover rates rather than the absolute target or ligand-target complex expression determine necessary drug exposure via in vivo potency. Absolute ligand-target expression determines the need of a drug, based on the transduction ρ and in vivo efficacy parameters. The free enzyme concentration determines clearance and maximum metabolic rate. The fractional turnover rate determines time to equilibrium between substrate, free enzyme, and complex.The properties of substrate, target, and the complex demonstrate nonsaturable metabolic behavior at equilibrium. Nonlinear processes, previously referred to as capacity- and time-dependent kinetics, may occasionally have been disequilibria. Finally, the open model may pinpoint why some subjects differ in their demand of drug. SIGNIFICANCE STATEMENT: Understanding the target turnover is a central tenet in many translational dose-concentration-response predictions. New open model expressions of in vivo potency, efficacy parameter, and clearance are derived and anchored onto a comprehensive literature review showing that target turnover rate varies with age, species, tissue/subregion, treatment, disease, hormonal and nutritional state, day-night cycle, and more. Target turnover concepts will therefore significantly impact fundamental aspects of pharmacodynamics and pharmacokinetics, thereby also the basics of drug discovery, development, and optimization of clinical dosing.
Collapse
Affiliation(s)
- Johan Gabrielsson
- MedDoor AB, Gothenburg, Sweden (J.G.) and Pharmacilitator AB, Vallda, Sweden (S.H.)
| | - Stephan Hjorth
- MedDoor AB, Gothenburg, Sweden (J.G.) and Pharmacilitator AB, Vallda, Sweden (S.H.)
| |
Collapse
|
7
|
Hasper J, Welle K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Turnover and replication analysis by isotope labeling (TRAIL) reveals the influence of tissue context on protein and organelle lifetimes. Mol Syst Biol 2023; 19:e11393. [PMID: 36929723 PMCID: PMC10090950 DOI: 10.15252/msb.202211393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
The lifespans of proteins range from minutes to years within mammalian tissues. Protein lifespan is relevant to organismal aging, as long-lived proteins accrue damage over time. It is unclear how protein lifetime is shaped by tissue context, where both cell turnover and proteolytic degradation contribute to protein turnover. We develop turnover and replication analysis by 15 N isotope labeling (TRAIL) to quantify protein and cell lifetimes with high precision and demonstrate that cell turnover, sequence-encoded features, and environmental factors modulate protein lifespan across tissues. Cell and protein turnover flux are comparable in proliferative tissues, while protein turnover outpaces cell turnover in slowly proliferative tissues. Physicochemical features such as hydrophobicity, charge, and disorder influence protein turnover in slowly proliferative tissues, but protein turnover is much less sequence-selective in highly proliferative tissues. Protein lifetimes vary nonrandomly across tissues after correcting for cell turnover. Multiprotein complexes such as the ribosome have consistent lifetimes across tissues, while mitochondria, peroxisomes, and lipid droplets have variable lifetimes. TRAIL can be used to explore how environment, aging, and disease affect tissue homeostasis.
Collapse
Affiliation(s)
- John Hasper
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Welle
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY, USA
| | - Jennifer Hryhorenko
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY, USA
| | - Sina Ghaemmaghami
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY, USA.,Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
8
|
Mota-Martorell N, Jové M, Berdún R, Òbis È, Barja G, Pamplona R. Methionine Metabolism Is Down-Regulated in Heart of Long-Lived Mammals. BIOLOGY 2022; 11:biology11121821. [PMID: 36552330 PMCID: PMC9775425 DOI: 10.3390/biology11121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Methionine constitutes a central hub of intracellular metabolic adaptations leading to an extended longevity (maximum lifespan). The present study follows a comparative approach analyzing methionine and related metabolite and amino acid profiles using an LC-MS/MS platform in the hearts of seven mammalian species with a longevity ranging from 3.8 to 57 years. Our findings demonstrate the existence of species-specific heart phenotypes associated with high longevity characterized by: (i) low concentration of methionine and its related sulphur-containing metabolites; (ii) low amino acid pool; and (iii) low choline concentration. Our results support the existence of heart metabotypes characterized by a down-regulation in long-lived species, supporting the idea that in longevity, less is more.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Èlia Òbis
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University, 28040 Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
- Correspondence:
| |
Collapse
|
9
|
Ba Q, Hei Y, Dighe A, Li W, Maziarz J, Pak I, Wang S, Wagner GP, Liu Y. Proteotype coevolution and quantitative diversity across 11 mammalian species. SCIENCE ADVANCES 2022; 8:eabn0756. [PMID: 36083897 PMCID: PMC9462687 DOI: 10.1126/sciadv.abn0756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary profiling has been largely limited to the nucleotide level. Using consistent proteomic methods, we quantified proteomic and phosphoproteomic layers in fibroblasts from 11 common mammalian species, with transcriptomes as reference. Covariation analysis indicates that transcript and protein expression levels and variabilities across mammals remarkably follow functional role, with extracellular matrix-associated expression being the most variable, demonstrating strong transcriptome-proteome coevolution. The biological variability of gene expression is universal at both interindividual and interspecies scales but to a different extent. RNA metabolic processes particularly show higher interspecies versus interindividual variation. Our results further indicate that while the ubiquitin-proteasome system is strongly conserved in mammals, lysosome-mediated protein degradation exhibits remarkable variation between mammalian lineages. In addition, the phosphosite profiles reveal a phosphorylation coevolution network independent of protein abundance.
Collapse
Affiliation(s)
- Qian Ba
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Yuanyuan Hei
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Anasuya Dighe
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Irene Pak
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Shisheng Wang
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Günter P. Wagner
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
10
|
Kluever V, Russo B, Mandad S, Kumar NH, Alevra M, Ori A, Rizzoli SO, Urlaub H, Schneider A, Fornasiero EF. Protein lifetimes in aged brains reveal a proteostatic adaptation linking physiological aging to neurodegeneration. SCIENCE ADVANCES 2022; 8:eabn4437. [PMID: 35594347 PMCID: PMC9122331 DOI: 10.1126/sciadv.abn4437] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Aging is a prominent risk factor for neurodegenerative disorders (NDDs); however, the molecular mechanisms rendering the aged brain particularly susceptible to neurodegeneration remain unclear. Here, we aim to determine the link between physiological aging and NDDs by exploring protein turnover using metabolic labeling and quantitative pulse-SILAC proteomics. By comparing protein lifetimes between physiologically aged and young adult mice, we found that in aged brains protein lifetimes are increased by ~20% and that aging affects distinct pathways linked to NDDs. Specifically, a set of neuroprotective proteins are longer-lived in aged brains, while some mitochondrial proteins linked to neurodegeneration are shorter-lived. Strikingly, we observed a previously unknown alteration in proteostasis that correlates to parsimonious turnover of proteins with high biosynthetic costs, revealing an overall metabolic adaptation that preludes neurodegeneration. Our findings suggest that future therapeutic paradigms, aimed at addressing these metabolic adaptations, might be able to delay NDD onset.
Collapse
Affiliation(s)
- Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Belisa Russo
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mihai Alevra
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
11
|
Rolfs Z, Frey BL, Shi X, Kawai Y, Smith LM, Welham NV. An atlas of protein turnover rates in mouse tissues. Nat Commun 2021; 12:6778. [PMID: 34836951 PMCID: PMC8626426 DOI: 10.1038/s41467-021-26842-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 01/25/2023] Open
Abstract
Protein turnover is critical to cellular physiology as well as to the growth and maintenance of tissues. The unique synthesis and degradation rates of each protein help to define tissue phenotype, and knowledge of tissue- and protein-specific half-lives is directly relevant to protein-related drug development as well as the administration of medical therapies. Using stable isotope labeling and mass spectrometry, we determine the in vivo turnover rates of thousands of proteins-including those of the extracellular matrix-in a set of biologically important mouse tissues. We additionally develop a data visualization platform, named ApplE Turnover, that enables facile searching for any protein of interest in a tissue of interest and then displays its half-life, confidence interval, and supporting measurements. This extensive dataset and the corresponding visualization software provide a reference to guide future studies of mammalian protein turnover in response to physiologic perturbation, disease, or therapeutic intervention.
Collapse
Affiliation(s)
- Zach Rolfs
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Brian L. Frey
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Xudong Shi
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA
| | - Yoshitaka Kawai
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA ,grid.258799.80000 0004 0372 2033Present Address: Department of Otolaryngology–Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Lloyd M. Smith
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Nathan V. Welham
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
12
|
Narayan V, McMahon M, O'Brien JJ, McAllister F, Buffenstein R. Insights into the Molecular Basis of Genome Stability and Pristine Proteostasis in Naked Mole-Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:287-314. [PMID: 34424521 DOI: 10.1007/978-3-030-65943-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is the longest-lived rodent, with a maximal reported lifespan of 37 years. In addition to its long lifespan - which is much greater than predicted based on its small body size (longevity quotient of ~4.2) - naked mole-rats are also remarkably healthy well into old age. This is reflected in a striking resistance to tumorigenesis and minimal declines in cardiovascular, neurological and reproductive function in older animals. Over the past two decades, researchers have been investigating the molecular mechanisms regulating the extended life- and health- span of this animal, and since the sequencing and assembly of the naked mole-rat genome in 2011, progress has been rapid. Here, we summarize findings from published studies exploring the unique molecular biology of the naked mole-rat, with a focus on mechanisms and pathways contributing to genome stability and maintenance of proteostasis during aging. We also present new data from our laboratory relevant to the topic and discuss our findings in the context of the published literature.
Collapse
Affiliation(s)
| | - Mary McMahon
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | | | | | - Rochelle Buffenstein
- Calico Life Sciences, LLC, South San Francisco, CA, USA. .,Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
13
|
Plasma methionine metabolic profile is associated with longevity in mammals. Commun Biol 2021; 4:725. [PMID: 34117367 PMCID: PMC8196171 DOI: 10.1038/s42003-021-02254-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 05/20/2021] [Indexed: 01/28/2023] Open
Abstract
Methionine metabolism arises as a key target to elucidate the molecular adaptations underlying animal longevity due to the negative association between longevity and methionine content. The present study follows a comparative approach to analyse plasma methionine metabolic profile using a LC-MS/MS platform from 11 mammalian species with a longevity ranging from 3.5 to 120 years. Our findings demonstrate the existence of a species-specific plasma profile for methionine metabolism associated with longevity characterised by: i) reduced methionine, cystathionine and choline; ii) increased non-polar amino acids; iii) reduced succinate and malate; and iv) increased carnitine. Our results support the existence of plasma longevity features that might respond to an optimised energetic metabolism and intracellular structures found in long-lived species. Mota-Martorell and colleagues use a comparative metabolomics approach to examine plasma metabolite levels associated with methionine metabolism in 11 mammalian species. They identify species specific plasma profiles indicative of a link between lifetime longevity and methionine metabolism.
Collapse
|
14
|
Rayon T, Briscoe J. Cross-species comparisons and in vitro models to study tempo in development and homeostasis. Interface Focus 2021; 11:20200069. [PMID: 34055305 PMCID: PMC8086913 DOI: 10.1098/rsfs.2020.0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Time is inherent to biological processes. It determines the order of events and the speed at which they take place. However, we still need to refine approaches to measure the course of time in biological systems and understand what controls the pace of development. Here, we argue that the comparison of biological processes across species provides molecular insight into the timekeeping mechanisms in biology. We discuss recent findings and the open questions in the field and highlight the use of in vitro systems as tools to investigate cell-autonomous control as well as the coordination of temporal mechanisms within tissues. Further, we discuss the relevance of studying tempo for tissue transplantation, homeostasis and lifespan.
Collapse
|
15
|
Busby L, Steventon B. Tissue tectonics and the multi-scale regulation of developmental timing. Interface Focus 2021; 11:20200057. [PMID: 34055304 PMCID: PMC8086930 DOI: 10.1098/rsfs.2020.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Development encompasses processes that occur at multiple length scales, including gene-regulatory interactions, cell movements and reorganization, cell signalling and growth. It is essential that the timing of events in all of these different processes is coordinated to generate well-patterned tissues and organs. However, how the timing of intrinsic cell state changes is coordinated with events occurring at the multi-tissue and whole-organism level is unknown. Here, we argue that an important mechanism that accounts for the integration of timing across levels of organization is provided by tissue tectonics, i.e. how morphogenetic events driving tissue shape changes result in the relative displacement of signalling and responding tissues and coordinate developmental timing across scales. In doing so, tissue tectonics provides a mechanism by which the cell specification events intrinsic to cells can be modulated by the temporal exposure to extracellular signals. This exposure is in turn regulated by higher-order properties of the embryo, such as their physical properties, rates of growth and the combination of dynamic cell behaviours, impacting tissue morphogenesis. Tissue tectonics creates a downward flow of information from higher to lower levels of biological organization, providing an instance of downward causation in development.
Collapse
Affiliation(s)
- Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
16
|
A systematic review and meta-analysis of studies comparing muscle-in-vein conduits with autologous nerve grafts for nerve reconstruction. Sci Rep 2021; 11:11691. [PMID: 34083605 PMCID: PMC8175734 DOI: 10.1038/s41598-021-90956-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The gold-standard method for reconstruction of segmental nerve defects, the autologous nerve graft, has several drawbacks in terms of tissue availability and donor site morbidity. Therefore, feasible alternatives to autologous nerve grafts are sought. Muscle-in-vein conduits have been proposed as an alternative to autologous nerve grafts almost three decades ago, given the abundance of both tissues throughout the body. Based on the anti-inflammatory effects of veins and the proregenerative environment established by muscle tissue, this approach has been studied in various preclinical and some clinical trials. There is still no comprehensive systematic summary to conclude efficacy and feasibility of muscle-in-vein conduits for reconstruction of segmental nerve defects. Given this lack of a conclusive summary, we performed a meta-analysis to evaluate the potential of muscle-in-vein conduits. This work’s main findings are profound discrepancies regarding the results following nerve repair by means of muscle-in-vein conduits in a preclinical or clinical setting. We identified differences in study methodology, inter-species neurobiology and the limited number of clinical studies to be the main reasons for the still inconclusive results. In conclusion, we advise for large animal studies to elucidate the feasibility of muscle-in-vein conduits for repair of segmental defects of critical size in mixed nerves.
Collapse
|
17
|
Banasiak K, Szulc NA, Pokrzywa W. The Dose-Dependent Pleiotropic Effects of the UBB +1 Ubiquitin Mutant. Front Mol Biosci 2021; 8:650730. [PMID: 33842548 PMCID: PMC8032880 DOI: 10.3389/fmolb.2021.650730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
The proteolytic machinery activity diminishes with age, leading to abnormal accumulation of aberrant proteins; furthermore, a decline in protein degradation capacity is associated with multiple age-related proteinopathies. Cellular proteostasis can be maintained via the removal of ubiquitin (Ub)-tagged damaged and redundant proteins by the ubiquitin-proteasome system (UPS). However, during aging, central nervous system (CNS) cells begin to express a frameshift-mutated Ub, UBB+1. Its accumulation is a neuropathological hallmark of tauopathy, including Alzheimer’s disease and polyglutamine diseases. Mechanistically, in cell-free and cell-based systems, an increase in the UBB+1 concentration disrupts proteasome processivity, leading to increased aggregation of toxic proteins. On the other hand, a low level of UBB+1 improves stress resistance and extends lifespan. Here we summarize recent findings regarding the impact of UBB+1 on Ub signaling and neurodegeneration. We also review the molecular basis of how UBB+1 affects UPS components as well as its dose-dependent switch between cytoprotective and cytotoxic roles.
Collapse
Affiliation(s)
- Katarzyna Banasiak
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Natalia A Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Abstract
Degradation of intracellular proteins in Gram-negative bacteria regulates various cellular processes and serves as a quality control mechanism by eliminating damaged proteins. To understand what causes the proteolytic machinery of the cell to degrade some proteins while sparing others, we employed a quantitative pulsed-SILAC (stable isotope labeling with amino acids in cell culture) method followed by mass spectrometry analysis to determine the half-lives for the proteome of exponentially growing Escherichia coli, under standard conditions. We developed a likelihood-based statistical test to find actively degraded proteins and identified dozens of fast-degrading novel proteins. Finally, we used structural, physicochemical, and protein-protein interaction network descriptors to train a machine learning classifier to discriminate fast-degrading proteins from the rest of the proteome, achieving an area under the receiver operating characteristic curve (AUC) of 0.72.IMPORTANCE Bacteria use protein degradation to control proliferation, dispose of misfolded proteins, and adapt to physiological and environmental shifts, but the factors that dictate which proteins are prone to degradation are mostly unknown. In this study, we have used a combined computational-experimental approach to explore protein degradation in E. coli We discovered that the proteome of E. coli is composed of three protein populations that are distinct in terms of stability and functionality, and we show that fast-degrading proteins can be identified using a combination of various protein properties. Our findings expand the understanding of protein degradation in bacteria and have implications for protein engineering. Moreover, as rapidly degraded proteins may play an important role in pathogenesis, our findings may help to identify new potential antibacterial drug targets.
Collapse
|
19
|
Swovick K, Firsanov D, Welle KA, Hryhorenko JR, Wise JP, George C, Sformo TL, Seluanov A, Gorbunova V, Ghaemmaghami S. Interspecies Differences in Proteome Turnover Kinetics Are Correlated With Life Spans and Energetic Demands. Mol Cell Proteomics 2021; 20:100041. [PMID: 33639418 PMCID: PMC7950207 DOI: 10.1074/mcp.ra120.002301] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.
Collapse
Affiliation(s)
- Kyle Swovick
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA
| | - Jennifer R Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Craig George
- North Slope Borough Department of Wildlife Management, Barrow, Alaska, USA
| | - Todd L Sformo
- North Slope Borough Department of Wildlife Management, Barrow, Alaska, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, New York, USA; Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
20
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
Ross AB, Langer JD, Jovanovic M. Proteome Turnover in the Spotlight: Approaches, Applications, and Perspectives. Mol Cell Proteomics 2020; 20:100016. [PMID: 33556866 PMCID: PMC7950106 DOI: 10.1074/mcp.r120.002190] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023] Open
Abstract
In all cells, proteins are continuously synthesized and degraded to maintain protein homeostasis and modify gene expression levels in response to stimuli. Collectively, the processes of protein synthesis and degradation are referred to as protein turnover. At a steady state, protein turnover is constant to maintain protein homeostasis, but in dynamic responses, proteins change their rates of synthesis and degradation to adjust their proteomes to internal or external stimuli. Thus, probing the kinetics and dynamics of protein turnover lends insight into how cells regulate essential processes such as growth, differentiation, and stress response. Here, we outline historical and current approaches to measuring the kinetics of protein turnover on a proteome-wide scale in both steady-state and dynamic systems, with an emphasis on metabolic tracing using stable isotope-labeled amino acids. We highlight important considerations for designing proteome turnover experiments, key biological findings regarding the conserved principles of proteome turnover regulation, and future perspectives for both technological and biological investigation.
Collapse
Affiliation(s)
- Alison Barbara Ross
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Julian David Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany; Proteomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
22
|
Global analysis of protein degradation in prion infected cells. Sci Rep 2020; 10:10800. [PMID: 32612191 PMCID: PMC7329860 DOI: 10.1038/s41598-020-67505-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/06/2020] [Indexed: 12/02/2022] Open
Abstract
Prion diseases are rare, neurological disorders caused by the misfolding of the cellular prion protein (PrPC) into cytotoxic fibrils (PrPSc). Intracellular PrPSc aggregates primarily accumulate within late endosomes and lysosomes, organelles that participate in the degradation and turnover of a large subset of the proteome. Thus, intracellular accumulation of PrPSc aggregates has the potential to globally influence protein degradation kinetics within an infected cell. We analyzed the proteome-wide effect of prion infection on protein degradation rates in N2a neuroblastoma cells by dynamic stable isotopic labeling with amino acids in cell culture (dSILAC) and bottom-up proteomics. The analysis quantified the degradation rates of more than 4,700 proteins in prion infected and uninfected cells. As expected, the degradation rate of the prion protein is significantly decreased upon aggregation in infected cells. In contrast, the degradation kinetics of the remainder of the N2a proteome generally increases upon prion infection. This effect occurs concurrently with increases in the cellular activities of autophagy and some lysosomal hydrolases. The resulting enhancement in proteome flux may play a role in the survival of N2a cells upon prion infection.
Collapse
|
23
|
Multifaceted deregulation of gene expression and protein synthesis with age. Proc Natl Acad Sci U S A 2020; 117:15581-15590. [PMID: 32576685 DOI: 10.1073/pnas.2001788117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis represents a major metabolic activity of the cell. However, how it is affected by aging and how this in turn impacts cell function remains largely unexplored. To address this question, herein we characterized age-related changes in both the transcriptome and translatome of mouse tissues over the entire life span. We showed that the transcriptome changes govern those in the translatome and are associated with altered expression of genes involved in inflammation, extracellular matrix, and lipid metabolism. We also identified genes that may serve as candidate biomarkers of aging. At the translational level, we uncovered sustained down-regulation of a set of 5'-terminal oligopyrimidine (5'-TOP) transcripts encoding protein synthesis and ribosome biogenesis machinery and regulated by the mTOR pathway. For many of them, ribosome occupancy dropped twofold or even more. Moreover, with age, ribosome coverage gradually decreased in the vicinity of start codons and increased near stop codons, revealing complex age-related changes in the translation process. Taken together, our results reveal systematic and multidimensional deregulation of protein synthesis, showing how this major cellular process declines with age.
Collapse
|
24
|
Choi H, Simpson D, Wang D, Prescott M, Pitsillides AA, Dudhia J, Clegg PD, Ping P, Thorpe CT. Heterogeneity of proteome dynamics between connective tissue phases of adult tendon. eLife 2020; 9:e55262. [PMID: 32393437 PMCID: PMC7217697 DOI: 10.7554/elife.55262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Maintenance of connective tissue integrity is fundamental to sustain function, requiring protein turnover to repair damaged tissue. However, connective tissue proteome dynamics remain largely undefined, as do differences in turnover rates of individual proteins in the collagen and glycoprotein phases of connective tissue extracellular matrix (ECM). Here, we investigate proteome dynamics in the collagen and glycoprotein phases of connective tissues by exploiting the spatially distinct fascicular (collagen-rich) and interfascicular (glycoprotein-rich) ECM phases of tendon. Using isotope labelling, mass spectrometry and bioinformatics, we calculate turnover rates of individual proteins within rat Achilles tendon and its ECM phases. Our results demonstrate complex proteome dynamics in tendon, with ~1000 fold differences in protein turnover rates, and overall faster protein turnover within the glycoprotein-rich interfascicular matrix compared to the collagen-rich fascicular matrix. These data provide insights into the complexity of proteome dynamics in tendon, likely required to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Howard Choi
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Deborah Simpson
- Centre for Proteome Research, Biosciences Building, Institute of Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Ding Wang
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Mark Prescott
- Centre for Proteome Research, Biosciences Building, Institute of Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeLondonUnited Kingdom
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary CollegeHatfieldUnited Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of LiverpoolLiverpoolUnited Kingdom
| | - Peipei Ping
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Chavaunne T Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeLondonUnited Kingdom
| |
Collapse
|
25
|
Basisty N, Holtz A, Schilling B. Accumulation of "Old Proteins" and the Critical Need for MS-based Protein Turnover Measurements in Aging and Longevity. Proteomics 2020; 20:e1800403. [PMID: 31408259 PMCID: PMC7015777 DOI: 10.1002/pmic.201800403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Indexed: 12/31/2022]
Abstract
Aging and age-related diseases are accompanied by proteome remodeling and progressive declines in cellular machinery required to maintain protein homeostasis (proteostasis), such as autophagy, ubiquitin-mediated degradation, and protein synthesis. While many studies have focused on capturing changes in proteostasis, the identification of proteins that evade these cellular processes has recently emerged as an approach to studying the aging proteome. With advances in proteomic technology, it is possible to monitor protein half-lives and protein turnover at the level of individual proteins in vivo. For large-scale studies, these technologies typically include the use of stable isotope labeling coupled with MS and comprehensive assessment of protein turnover rates. Protein turnover studies have revealed groups of highly relevant long-lived proteins (LLPs), such as the nuclear pore complexes, extracellular matrix proteins, and protein aggregates. Here, the role of LLPs during aging and age-related diseases and the methods used to identify and quantify their changes are reviewed. The methods available to conduct studies of protein turnover, used in combination with traditional proteomic methods, will enable the field to perform studies in a systems biology context, as changes in proteostasis may not be revealed in studies that solely measure differential protein abundances.
Collapse
Affiliation(s)
| | - Anja Holtz
- The Buck Institute for Research on AgingNovatoCAUSA
| | | |
Collapse
|
26
|
Tombline G, Gigas J, Macoretta N, Zacher M, Emmrich S, Zhao Y, Seluanov A, Gorbunova V. Proteomics of Long-Lived Mammals. Proteomics 2020; 20:e1800416. [PMID: 31737995 PMCID: PMC7117992 DOI: 10.1002/pmic.201800416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Indexed: 12/29/2022]
Abstract
Mammalian species differ up to 100-fold in their aging rates and maximum lifespans. Long-lived mammals appear to possess traits that extend lifespan and healthspan. Genomic analyses have not revealed a single pro-longevity function that would account for all longevity effects. In contrast, it appears that pro-longevity mechanisms may be complex traits afforded by connections between metabolism and protein functions that are impossible to predict by genomic approaches alone. Thus, metabolomics and proteomics studies will be required to understand the mechanisms of longevity. Several examples are reviewed that demonstrate the naked mole rat (NMR) shows unique proteomic signatures that contribute to longevity by overcoming several hallmarks of aging. SIRT6 is also discussed as an example of a protein that evolves enhanced enzymatic function in long-lived species. Finally, it is shown that several longevity-related proteins such as Cip1/p21, FOXO3, TOP2A, AKT1, RICTOR, INSR, and SIRT6 harbor posttranslational modification (PTM) sites that preferentially appear in either short- or long-lived species and provide examples of crosstalk between PTM sites. Prospects of enhancing lifespan and healthspan of humans by altering metabolism and proteoforms with drugs that mimic changes observed in long-lived species are discussed.
Collapse
Affiliation(s)
- Gregory Tombline
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Jonathan Gigas
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Nicholas Macoretta
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Max Zacher
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Stephan Emmrich
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Yang Zhao
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Andrei Seluanov
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Vera Gorbunova
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| |
Collapse
|
27
|
Changes in the proteome of sea urchin Paracentrotus lividus coelomocytes in response to LPS injection into the body cavity. PLoS One 2020; 15:e0228893. [PMID: 32074628 PMCID: PMC7030939 DOI: 10.1371/journal.pone.0228893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background The immune system of echinoderm sea urchins is characterised by a high degree of complexity that is not completely understood. The Mediterranean sea urchin Paracentrotus lividus coelomocytes mediate immune responses through phagocytosis, encapsulation of non-self particles, and production of diffusible factors including antimicrobial molecules. Details of these processes, and molecular pathways driving these mechanisms, are still to be fully elucidated. Principal findings In the present study we treated the sea urchin P. lividus with the bacterial lipopolysaccharide (LPS) and collected coelomocytes at different time-points (1, 3, 6 and 24 hours). We have shown, using label-free quantitative mass spectrometry, how LPS is able to modulate the coelomocyte proteome and to effect cellular pathways, such as endocytosis and phagocytosis, as soon as the immunomodulating agent is injected. The present study has also shown that treatment can modulate various cellular processes such as cytoskeleton reorganisation, and stress and energetic homeostasis. Conclusions Our data demonstrates, through mass spectrometry and the following functional annotation bioinformatics analysis, how the bacterial wall constituent is sufficient to set off an immune response inducing cytoskeleton reorganisation, the appearance of clusters of heat shock proteins (Hsp) and histone proteins and the activation of the endocytic and phagocytic pathways. Data are available via ProteomeXchange with identifier PXD008439.
Collapse
|
28
|
Aging and Caloric Restriction Modulate the DNA Methylation Profile of the Ribosomal RNA Locus in Human and Rat Liver. Nutrients 2020; 12:nu12020277. [PMID: 31973116 PMCID: PMC7070571 DOI: 10.3390/nu12020277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
A growing amount of evidence suggests that the downregulation of protein synthesis is an adaptive response during physiological aging, which positively contributes to longevity and can be modulated by nutritional interventions like caloric restriction (CR). The expression of ribosomal RNA (rRNA) is one of the main determinants of translational rate, and epigenetic modifications finely contribute to its regulation. Previous reports suggest that hypermethylation of ribosomal DNA (rDNA) locus occurs with aging, although with some species- and tissue- specificity. In the present study, we experimentally measured DNA methylation of three regions (the promoter, the 5′ of the 18S and the 5′ of 28S sequences) in the rDNA locus in liver tissues from rats at two, four, 10, and 18 months. We confirm previous findings, showing age-related hypermethylation, and describe, for the first time, that this gain in methylation also occurs in human hepatocytes. Furthermore, we show that age-related hypermethylation is enhanced in livers of rat upon CR at two and 10 months, and that at two months a trend towards the reduction of rRNA expression occurs. Collectively, our results suggest that CR modulates age-related regulation of methylation at the rDNA locus, thus providing an epigenetic readout of the pro-longevity effects of CR.
Collapse
|
29
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
30
|
Belouah I, Nazaret C, Pétriacq P, Prigent S, Bénard C, Mengin V, Blein-Nicolas M, Denton AK, Balliau T, Augé S, Bouchez O, Mazat JP, Stitt M, Usadel B, Zivy M, Beauvoit B, Gibon Y, Colombié S. Modeling Protein Destiny in Developing Fruit. PLANT PHYSIOLOGY 2019; 180:1709-1724. [PMID: 31015299 PMCID: PMC6752906 DOI: 10.1104/pp.19.00086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 05/18/2023]
Abstract
Protein synthesis and degradation are essential processes that regulate cell status. Because labeling in bulky organs, such as fruits, is difficult, we developed a modeling approach to study protein turnover at the global scale in developing tomato (Solanum lycopersicum) fruit. Quantitative data were collected for transcripts and proteins during fruit development. Clustering analysis showed smaller changes in protein abundance compared to mRNA abundance. Furthermore, protein and transcript abundance were poorly correlated, and the coefficient of correlation decreased during fruit development and ripening, with transcript levels decreasing more than protein levels. A mathematical model with one ordinary differential equation was used to estimate translation (kt ) and degradation (kd ) rate constants for almost 2,400 detected transcript-protein pairs and was satisfactorily fitted for >1,000 pairs. The model predicted median values of ∼2 min for the translation of a protein, and a protein lifetime of ∼11 d. The constants were validated and inspected for biological relevance. Proteins involved in protein synthesis had higher kt and kd values, indicating that the protein machinery is particularly flexible. Our model also predicts that protein concentration is more strongly affected by the rate of translation than that of degradation.
Collapse
Affiliation(s)
- Isma Belouah
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Christine Nazaret
- Institut de Mathématiques de Bordeaux, Ecole Nationale Supérieure de Technologie des Biomolécules de Bordeaux-Institut Polytechnique de Bordeaux, 33400 Talence, France
| | - Pierre Pétriacq
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Sylvain Prigent
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Camille Bénard
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Virginie Mengin
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mélisande Blein-Nicolas
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Alisandra K Denton
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany
| | - Thierry Balliau
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Ségolène Augé
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Olivier Bouchez
- Institut National de la Recherche Agronomique, US1426, Service Génome et Transcriptome, Plateforme Génomique, Genotoul, 31326 Castanet-Tolosan, France
| | - Jean-Pierre Mazat
- Institute for Cellular Biochemistry and Genetics-Centre National de la Recherche Scientifique, F-33077 Bordeaux Cedex, France
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany
| | - Michel Zivy
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Bertrand Beauvoit
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Yves Gibon
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Sophie Colombié
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| |
Collapse
|
31
|
Tsolis KC, Hamed MB, Simoens K, Koepff J, Busche T, Rückert C, Oldiges M, Kalinowski J, Anné J, Kormanec J, Bernaerts K, Karamanou S, Economou A. Secretome Dynamics in a Gram-Positive Bacterial Model. Mol Cell Proteomics 2019; 18:423-436. [PMID: 30498012 PMCID: PMC6398212 DOI: 10.1074/mcp.ra118.000899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is a central biological process in all organisms. Most studies dissecting bacterial secretion mechanisms have focused on Gram-negative cell envelopes such as that of Escherichia coli However, proteomics analyses in Gram negatives is hampered by their outer membrane. Here we studied protein secretion in the Gram-positive bacterium Streptomyces lividans TK24, in which most of the secretome is released in the growth medium. We monitored changes of the secretome as a function of growth phase and medium. We determined distinct protein classes of "house-keeping" secreted proteins that do not change their appearance or abundance in the various media and growth phases. These comprise mainly enzymes involved in cell wall maintenance and basic transport. In addition, we detected significant abundance and content changes to a sub-set of the proteome, as a function of growth in the different media. These did not depend on the media being minimal or rich. Transcriptional regulation but not changes in export machinery components can explain some of these changes. However, additional downstream mechanisms must be important for selective secretome funneling. These observations lay the foundations of using S. lividans as a model organism to study how metabolism is linked to optimal secretion and help develop rational optimization of heterologous protein production.
Collapse
Affiliation(s)
- Konstantinos C Tsolis
- From the ‡KU Leuven, Rega Institute, Dpt of Microbiology and Immunology, Herestraat 49, B-3000 Leuven, Belgium
| | - Mohamed Belal Hamed
- From the ‡KU Leuven, Rega Institute, Dpt of Microbiology and Immunology, Herestraat 49, B-3000 Leuven, Belgium
- ‡‡Molecular Biology Dpt, National Research Centre, Dokki, Giza, Egypt
| | - Kenneth Simoens
- §KU Leuven, Bio- & chemical systems Technology, Reactor Engineering and Safety Section, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Joachim Koepff
- ¶Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Leo-Brandt-Straβe, 52428, Jülich, Germany
| | - Tobias Busche
- ‖Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- **Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Christian Rückert
- ‖Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Marco Oldiges
- ¶Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Leo-Brandt-Straβe, 52428, Jülich, Germany
| | - Jörn Kalinowski
- ‖Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jozef Anné
- From the ‡KU Leuven, Rega Institute, Dpt of Microbiology and Immunology, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan Kormanec
- §§Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 84551 Bratislava, Slovakia
| | - Kristel Bernaerts
- §KU Leuven, Bio- & chemical systems Technology, Reactor Engineering and Safety Section, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Spyridoula Karamanou
- From the ‡KU Leuven, Rega Institute, Dpt of Microbiology and Immunology, Herestraat 49, B-3000 Leuven, Belgium
| | - Anastassios Economou
- From the ‡KU Leuven, Rega Institute, Dpt of Microbiology and Immunology, Herestraat 49, B-3000 Leuven, Belgium;
| |
Collapse
|