1
|
Maulana T, Said S, Arifiantini RI, Jakaria J, Gunawan A. Proteomic analysis of Toraya buffalo seminal plasma and sperm: uncovering insights to optimize reproductive success. Front Vet Sci 2025; 12:1492135. [PMID: 40276155 PMCID: PMC12019854 DOI: 10.3389/fvets.2025.1492135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
The characterization of sperm and seminal plasma proteins is essential for understanding bull fertility and optimizing reproductive success in buffalo bulls. Despite its importance, the reproductive proteomic of Toraya buffalo, an indigenous breed in Indonesia, remains largely unexplored. This study aimed to examine the seminal plasma and sperm proteins of Toraya buffalo to uncover those critical for reproductive functions. Semen samples were collected from eight Toraya buffalo bulls aged 4 to 10 years. Protein profiling was performed using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D-SDS-PAGE), followed by in-gel digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Bioinformatics tools, including UniProt, PANTHER, DAVID, and STRING, were utilized to identify and annotate the detected proteins. This study successfully identified four key reproductive proteins: ADAM32 in seminal plasma and ZPBP, SPACA3, and CCDC136 in sperm. These proteins are essential for sperm motility, energy production, and acrosome formation, which are critical processes for fertilization. Additionally, many identified proteins were associated with metabolic pathways, particularly the tricarboxylic acid (TCA) cycle, which plays a fundamental role in energy supply for sperm function. In conclusion, this study offers the first comprehensive proteomic identification of seminal plasma and sperm proteins associated with reproductive functions in the Toraya buffalo. The findings highlight the presence of key proteins in sperm, including ZPBP, SPACA3, and CCDC136, as well as the identification of ADAM32 in seminal plasma, contributing to a deeper understanding of buffalo reproductive biology.
Collapse
Affiliation(s)
- Tulus Maulana
- Graduate School of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Raden Iis Arifiantini
- Division of Veterinary Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Jakaria Jakaria
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| |
Collapse
|
2
|
Dai P, Chen C, Yu J, Ma C, Zhang X. New insights into sperm physiology regulation: Enlightenment from G-protein-coupled receptors. Andrology 2024; 12:1253-1271. [PMID: 38225815 DOI: 10.1111/andr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND G-protein-coupled receptors are critical in many physiological and pathological processes in various organs. Serving as the control panel for sensing extracellular stimuli, G-protein-coupled receptors recognise various ligands, including light, temperature, odours, pheromones, hormones, neurotransmitters, chemokines, etc. Most recently, G-protein-coupled receptors residing in spermatozoa have been found to be indispensable for sperm function. OBJECTIVE Here, we have summarised cutting-edge findings on the functional mechanisms of G-protein-coupled receptors that are known to be associated with sperm functions and the activation of their downstream effectors, providing new insights into the roles of G-protein-coupled receptors in sperm physiology. RESULTS Emerging studies hint that alterations in G-protein-coupled receptors could affect sperm function, implicating their role in fertility, but solid evidence needs to be continuing excavated with various means. Several members of the G-protein-coupled receptor superfamily, including olfactory receptors, opsins, orphan G-protein-coupled receptors, CXC chemokine receptor 4, CC chemokine receptor 5 and CC chemokine receptor 6 as well as their downstream effector β-arrestins, etc., were suggested to be essential for sperm motility, capacitation, thermotaxis, chemotaxis, Ca2+ influx through CatSper channel and fertilisation capacity. CONCLUSION The present review provides a comprehensive overview of studies describing G-protein-coupled receptors and their potential action in sperm function. We also present a critical discussion of these issues, and a possible framework for future investigations on the diverse ligands, biological functions and cell signalling of G-protein-coupled receptors in spermatozoa. Here, the G-protein-coupled receptors and their related G proteins that specifically were identified in spermatozoa were summarised, and provided references valuable for further illumination, despite the evidence that is not overwhelming in most cases.
Collapse
Affiliation(s)
- Pengyuan Dai
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Jingyan Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chaoye Ma
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| |
Collapse
|
3
|
Pokhrel R, Morgan AL, Robinson HR, Stone MJ, Foster SR. Unravelling G protein-coupled receptor signalling networks using global phosphoproteomics. Br J Pharmacol 2024; 181:2359-2370. [PMID: 36772927 DOI: 10.1111/bph.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
G protein-coupled receptor (GPCR) activation initiates signalling via a complex network of intracellular effectors that combine to produce diverse cellular and tissue responses. Although we have an advanced understanding of the proximal events following receptor stimulation, the molecular detail of GPCR signalling further downstream often remains obscure. Unravelling these GPCR-mediated signalling networks has important implications for receptor biology and drug discovery. In this context, phosphoproteomics has emerged as a powerful approach for investigating global GPCR signal transduction. Here, we provide a brief overview of the phosphoproteomic workflow and discuss current limitations and future directions for this technology. By highlighting some of the novel insights into GPCR signalling networks gained using phosphoproteomics, we demonstrate the utility of global phosphoproteomics to dissect GPCR signalling networks and to accelerate discovery of new targets for therapeutic development. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Rina Pokhrel
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Alexandra L Morgan
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Martin J Stone
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Chen H, Xing G, Xu W, Chen Y, Xia L, Huang H, Huang J, Hong Q, Luo T, Wang H, Wu Q. The adenosine A2A receptor in human sperm: its role in sperm motility and association with in vitro fertilization outcomes. Front Endocrinol (Lausanne) 2024; 15:1410370. [PMID: 38872963 PMCID: PMC11169588 DOI: 10.3389/fendo.2024.1410370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Background The involvement of ATP and cAMP in sperm function has been extensively documented, but the understanding of the role of adenosine and adenosine receptors remains incomplete. This study aimed to examine the presence of adenosine A2A receptor (A2AR) and study the functional role of A2AR in human sperm. Methods The presence and localization of A2AR in human sperm were examined by western blotting and immunofluorescence assays. The functional role of A2AR in sperm was assessed by incubating human sperm with an A2AR agonist (regadenoson) and an A2AR antagonist (SCH58261). The sperm level of A2AR was examined by western blotting in normozoospermic and asthenozoospermic men to evaluate the association of A2AR with sperm motility and in vitro fertilization (IVF) outcomes. Results A2AR with a molecular weight of 43 kDa was detected in the tail of human sperm. SCH58261 decreased the motility, penetration ability, intracellular Ca2+ concentration, and CatSper current of human sperm. Although regadenoson did not affect these sperm parameters, it alleviated the adverse effects of SCH58261 on these parameters. In addition, the mean level of A2AR in sperm from asthenozoospermic men was lower than that in sperm from normozoospermic men. The sperm level of A2AR was positively correlated with progressive motility. Furthermore, the fertilization rate during IVF was lower in men with decreased sperm level of A2AR than in men with normal sperm level of A2AR. Conclusions These results indicate that A2AR is important for human sperm motility and is associated with IVF outcome.
Collapse
Affiliation(s)
- Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Genbao Xing
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Wenqing Xu
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Chen
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Leizhen Xia
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Hua Huang
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Jialv Huang
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Qing Hong
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| | - Tao Luo
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hao Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiongfang Wu
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Reproductive Health, Nanchang, China
| |
Collapse
|
5
|
Zang S, Yang X, Ye J, Mo X, Zhou G, Fang Y. Quantitative phosphoproteomics explain cryopreservation-induced reductions in ram sperm motility. J Proteomics 2024; 298:105153. [PMID: 38438079 DOI: 10.1016/j.jprot.2024.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Sperm cryopreservation decreases motility, probably due to changes in protein phosphorylation. Our objective was to use quantitative phosphoproteomics for systematic comparative analyses of fresh versus frozen-thawed sperm to identify factors causing cryo-injury. Ejaculates were collected (artificial vagina) from six Dorper rams, pooled, extended, and frozen over liquid nitrogen. Overall, 915, 3382, and 6875 phosphorylated proteins, phosphorylated peptides, and phosphorylation sites, respectively, were identified. At least two modified sites were present in 57.94% of the 6875 phosphosites identified, of which AKAP4 protein contained up to 331 modified sites. There were 732 phosphorylated peptides significantly up-regulated and 909 significantly down-regulated in frozen-thawed versus fresh sperm. Moreover, the conserved motif [RxxS] was significantly down-regulated in frozen-thawed sperm. Phosphorylation of sperm-specific proteins, e.g., AKAP3/4, CABYR, FSIP2, GSK3A/B, GPI, and ODF1/2 make them potential biomarkers to assess the quality of frozen-thawed ram sperm. Furthermore, these differentially phosphorylated proteins and modification sites were implicated in cryopreservation-induced changes in sperm energy production, fiber sheath composition, and various biological processes. We concluded that abnormal protein phosphorylation modifications are key regulators of reduced sperm motility. These novel findings implicated specific protein phosphorylation modifications in sperm cryo-injury. SIGNIFICANCE: This study used phosphorylated TMT quantitative proteomics to explore regulation of epigenetic modifications in frozen-thawed ram sperm. This experiment demonstrated that ram sperm freezing affects phosphorylation site modifications of proteins, especially those related to functions such as sperm motility and energy production. Furthermore, it is important to link functions of phosphorylated proteins with changes in sperm quality after freezing and thawing, and to clarify intrinsic reasons for sperm quality changes, which is of great importance for elucidating mechanisms of sperm freezing damage. Based on these protein markers and combined with cryoprotectant design theory, it provides a theoretical basis and data reference to study sperm cryoprotectants.
Collapse
Affiliation(s)
- Shengqin Zang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xianhong Mo
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, PR China
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China.
| |
Collapse
|
6
|
Zhang X, Xue J, Jiang S, Zheng H, Wang C. Forkhead-associated phosphopeptide binding domain 1 (FHAD1) deficiency impaired murine sperm motility. PeerJ 2024; 12:e17142. [PMID: 38563001 PMCID: PMC10984166 DOI: 10.7717/peerj.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background Genetic knockout-based studies conducted in mice provide a powerful means of assessing the significance of a gene for fertility. Forkhead-associated phosphopeptide binding domain 1 (FHAD1) contains a conserved FHA domain, that is present in many proteins with phospho-threonine reader activity. How FHAD1 functions in male fertility, however, remains uncertain. Methods Fhad1-/- mice were generated by CRISPR/Cas9-mediated knockout, after which qPCR was used to evaluate changes in gene expression, with subsequent analyses of spermatogenesis and fertility. The testis phenotypes were also examined using immunofluorescence and histological staining, while sperm concentrations and motility were quantified via computer-aided sperm analysis. Cellular apoptosis was assessed using a TUNEL staining assay. Results The Fhad1-/-mice did not exhibit any abnormal changes in fertility or testicular morphology compared to wild-type littermates. Histological analyses confirmed that the testicular morphology of both Fhad1-/-and Fhad1+/+ mice was normal, with both exhibiting intact seminiferous tubules. Relative to Fhad1+/+ mice, however, Fhad1-/-did exhibit reductions in the total and progressive motility of epididymal sperm. Analyses of meiotic division in Fhad1-/-mice also revealed higher levels of apoptotic death during the first wave of spermatogenesis. Discussion The findings suggest that FHAD1 is involved in both meiosis and the modulation of sperm motility.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Reproductive Health and Infertility Clinic, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangyang Xue
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shan Jiang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haoyu Zheng
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gynaecology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Chang Wang
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Sinclair P, Kabbani N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 197:106975. [PMID: 38032294 DOI: 10.1016/j.phrs.2023.106975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.
Collapse
Affiliation(s)
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, Fairfax, VA, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
8
|
Gardner CC, James PF. Na +/H + Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility. Int J Mol Sci 2023; 24:14981. [PMID: 37834431 PMCID: PMC10573352 DOI: 10.3390/ijms241914981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
9
|
Lee W, Zamudio-Ochoa A, Buchel G, Podlesniy P, Marti Gutierrez N, Puigròs M, Calderon A, Tang HY, Li L, Mikhalchenko A, Koski A, Trullas R, Mitalipov S, Temiakov D. Molecular basis for maternal inheritance of human mitochondrial DNA. Nat Genet 2023; 55:1632-1639. [PMID: 37723262 PMCID: PMC10763495 DOI: 10.1038/s41588-023-01505-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Uniparental inheritance of mitochondrial DNA (mtDNA) is an evolutionary trait found in nearly all eukaryotes. In many species, including humans, the sperm mitochondria are introduced to the oocyte during fertilization1,2. The mechanisms hypothesized to prevent paternal mtDNA transmission include ubiquitination of the sperm mitochondria and mitophagy3,4. However, the causative mechanisms of paternal mtDNA elimination have not been defined5,6. We found that mitochondria in human spermatozoa are devoid of intact mtDNA and lack mitochondrial transcription factor A (TFAM)-the major nucleoid protein required to protect, maintain and transcribe mtDNA. During spermatogenesis, sperm cells express an isoform of TFAM, which retains the mitochondrial presequence, ordinarily removed upon mitochondrial import. Phosphorylation of this presequence prevents mitochondrial import and directs TFAM to the spermatozoon nucleus. TFAM relocalization from the mitochondria of spermatogonia to the spermatozoa nucleus directly correlates with the elimination of mtDNA, thereby explaining maternal inheritance in this species.
Collapse
Affiliation(s)
- William Lee
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gina Buchel
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Petar Podlesniy
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Calderon
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Hsin-Yao Tang
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Li Li
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Sahoo B, Gupta MK. Effect of arginine-induced motility and capacitation on RNA population in goat spermatozoa. Vet Res Commun 2023; 47:1427-1444. [PMID: 37162640 DOI: 10.1007/s11259-023-10092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/26/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION In vitro capacitation is essential in assisted reproductive technologies (ART) for embryo production. Recently, arginine has been proven to enhance capacitation in mammalian spermatozoa. However, the detailed mechanism of action of arginine remains elusive. AIM This study investigated the effect of arginine-induced capacitation and motility enhancement on the spermatozoal RNA (spRNA) population in goats. MATERIAL AND METHODS Goat spermatozoa were treated with arginine for up to six hours and compared with non-treated or PHE (penicillamine, hypotaurine, and epinephrine)-treated spermatozoa at different intervals (0, 1, 2, 4, and 6 hours). Sperm parameters, including viability, individual motility, capacitation, acrosome reaction, and ROS production, were evaluated. The spRNA population was analyzed by short-read RNA sequencing (RNA-seq). RESULTS The percentage of capacitated (73.21 ± 4.22%) and acrosome reacted (18.35 ± 0.56%) spermatozoa was highest in arginine treatment, while PHE treatment showed the highest percentage (79.82 ± 4.31%) of motile spermatozoa from 0 to 4 hours of incubation. RNA-seq analysis identified 1,321 differentially expressed genes (DEGs) in arginine-treated spermatozoa compared to the control. The PGK2, RNASE10, ODF1, and ROPN1L genes involved in sperm motility and ACR, DKKL1, KCNJ11, and PRND genes involved in the capacitation process were upregulated in arginine-treated spermatozoa. The DEGs regulate sperm capacitation-related cAMP-PKA, PI3-Akt, calcium, and MAPK signaling pathways. CONCLUSION The arginine-induced capacitation and enhanced sperm motility were associated with the upregulation of several genes involved in sperm motility and capacitation pathways. The comparative study also suggests that arginine may be used in lieu of PHE for motility enhancement and in vitro capacitation of goat spermatozoa.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Gene Manipulation Laboratory, Centre for Bioinformatics and Computational Biology, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Centre for Bioinformatics and Computational Biology, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
11
|
Miyazaki MA, Guilharducci RL, Intasqui P, Bertolla RP. Mapping the human sperm proteome - novel insights into reproductive research. Expert Rev Proteomics 2023; 20:19-45. [PMID: 37140161 DOI: 10.1080/14789450.2023.2210764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Spermatozoa are highly specialized cells with unique morphology. In addition, spermatozoa lose a considerable amount of cytoplasm during spermiogenesis, when they also compact their DNA, resulting in a transcriptionally quiescent cell. Throughout the male reproductive tract, sperm will acquire proteins that enable them to interact with the female reproductive tract. After ejaculation, proteins undergo post-translational modifications for sperm to capacitate, hyperactivate and fertilize the oocyte. Many proteins have been identified as predictors of male infertility, and also investigated in diseases that compromise reproductive potential. AREAS COVERED In this review we proposed to summarize the recent findings about the sperm proteome and how they affect sperm structure, function, and fertility. A literature search was performed using PubMed and Google Scholar databases within the past 5 years until August 2022. EXPERT OPINION Sperm function depends on protein abundance, conformation, and PTMs; understanding the sperm proteome may help to identify pathways essential to fertility, even making it possible to unravel the mechanisms involved in idiopathic infertility. In addition, proteomics evaluation offers knowledge regarding alterations that compromise the male reproductive potential.
Collapse
Affiliation(s)
- Mika Alexia Miyazaki
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Raquel Lozano Guilharducci
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Intasqui
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Ren C, Chen Y, Tang J, Wang P, Zhang Y, Li C, Zhang Z, Cheng X. TMT-Based Comparative Proteomic Analysis of the Spermatozoa of Buck (Capra hircus) and Ram (Ovis aries). Genes (Basel) 2023; 14:genes14050973. [PMID: 37239333 DOI: 10.3390/genes14050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are unique cells that carry a library of proteins that regulate the functions of molecules to achieve functional capabilities. Currently, large amounts of protein have been identified in spermatozoa from different species using proteomic approaches. However, the proteome characteristics and regulatory mechanisms of spermatozoa in bucks versus rams have not been fully unraveled. In this study, we performed a tandem mass tag (TMT)-labeled quantitative proteomic analysis to investigate the protein profiles in the spermatozoa of buck (Capra hircus) and ram (Ovis aries), two important economic livestock species with different fertility potentials. Overall, 2644 proteins were identified and quantified via this approach. Thus, 279 differentially abundant proteins (DAPs) were filtered with a p-value < 0.05, and a quantitative ratio of >2.0 or <0.5 (fold change, FC) in bucks versus rams, wherein 153 were upregulated and 126 were downregulated. Bioinformatics analysis revealed that these DAPs were mainly localized in the mitochondria, extracellular and in the nucleus, and were involved in sperm motility, membrane components, oxidoreductase activity, endopeptidase complex and proteasome-mediated ubiquitin-dependent protein catabolism. Specifically, partial DAPs, such as heat shock protein 90 α family class a member 1 (HSP90AA1), adenosine triphosphate citrate lyase (ACLY), proteasome 26S subunit and non-ATPase 4 (PSMD4), act as "cross-talk" nodes in protein-protein networks as key intermediates or enzymes, which are mainly involved in responses to stimuli, catalytic activity and molecular function regulator pathways that are strictly related to spermatozoa function. The results of our study offer valuable insights into the molecular mechanisms of ram spermatozoa function, and also promote an efficient spermatozoa utilization link to fertility or specific biotechnologies for bucks and rams.
Collapse
Affiliation(s)
- Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yan Zhang
- Yunnan Academy of Animal Husbandry Veterinary Sciences, Kunming 650224, China
| | - Chunyan Li
- Yunnan Academy of Animal Husbandry Veterinary Sciences, Kunming 650224, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Modern Agricultural Technology Cooperation and Popularization Center of Dingyuan County, Chuzhou 233200, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
13
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
14
|
The SLC9C2 Gene Product (Na+/H+ Exchanger Isoform 11; NHE11) Is a Testis-Specific Protein Localized to the Head of Mature Mammalian Sperm. Int J Mol Sci 2023; 24:ijms24065329. [PMID: 36982403 PMCID: PMC10049371 DOI: 10.3390/ijms24065329] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are a family of ion transporters that regulate the pH of various cell compartments across an array of cell types. In eukaryotes, NHEs are encoded by the SLC9 gene family comprising 13 genes. SLC9C2, which encodes the NHE11 protein, is the only one of the SLC9 genes that is essentially uncharacterized. Here, we show that SLC9C2 exhibits testis/sperm-restricted expression in rats and humans, akin to its paralog SLC9C1 (NHE10). Similar to NHE10, NHE11 is predicted to contain an NHE domain, a voltage sensing domain, and finally an intracellular cyclic nucleotide binding domain. An immunofluorescence analysis of testis sections reveals that NHE11 localizes with developing acrosomal granules in spermiogenic cells in both rat and human testes. Most interestingly, NHE11 localizes to the sperm head, likely the plasma membrane overlaying the acrosome, in mature sperm from rats and humans. Therefore, NHE11 is the only known NHE to localize to the acrosomal region of the head in mature sperm cells. The physiological role of NHE11 has yet to be demonstrated but its predicted functional domains and unique localization suggests that it could modulate intracellular pH of the sperm head in response to changes in membrane potential and cyclic nucleotide concentrations that are a result of sperm capacitation events. If NHE11 is shown to be important for male fertility, it will be an attractive target for male contraceptive drugs due to its exclusive testis/sperm-specific expression.
Collapse
|
15
|
Proteomic Landscape of Human Spermatozoa: Optimized Extraction Method and Application. Cells 2022; 11:cells11244064. [PMID: 36552826 PMCID: PMC9776871 DOI: 10.3390/cells11244064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Human spermatozoa proteomics exposed to some physical, biological or chemical stressors is being explored. However, there is a lack of optimized sample preparation methods to achieve in-depth protein coverage for sperm cells. Meanwhile, it is not clear whether antibiotics can regulate proteins to affect sperm quality. Here, we systematically compared a total of six different protein extraction methods based the combination of three commonly used lysis buffers and physical lysis strategies. The urea buffer combined with ultrasonication (UA-ultrasonication) produced the highest protein extraction rate, leading to the deepest coverage of human sperm proteome (5685 protein groups) from healthy human sperm samples. Since the antibiotics, amoxicillin and clarithromycin, have been widely used against H. pylori infection, we conduct a longitudinal study of sperm proteome via data-independent acquisition tandem mass spectrometry (DIA-MS/MS) on an infected patient during on and off therapy with these two drugs. The semen examination and morphological analysis were performed combined with proteomics analysis. Our results indicated that antibiotics may cause an increase in the sperm concentration and the rate of malformed sperm and disrupt proteome expression in sperm. This work provides an optimized extraction method to characterize the in-depth human sperm proteome and to extend its clinical applications.
Collapse
|
16
|
Nikitkina EV, Dementieva NV, Shcherbakov YS, Atroshchenko MM, Kudinov AA, Samoylov OI, Pozovnikova MV, Dysin AP, Krutikova AA, Musidray AA, Mitrofanova OV, Plemyashov KV, Griffin DK, Romanov MN. Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds. Anim Biosci 2022; 35:1827-1838. [PMID: 35240017 PMCID: PMC9659452 DOI: 10.5713/ab.21.0504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The semen quality of stallions including sperm motility is an important target of selection as it has a high level of individual variability. However, effects of the molecular architecture of the genome on the mechanisms of sperm formation and their preservation after thawing have been poorly investigated. Here, we conducted a genome-wide association study (GWAS) for the sperm motility of cryopreserved semen in stallions of various breeds. METHODS Semen samples were collected from the stallions of 23 horse breeds. The following semen characteristics were examined: progressive motility (PM), progressive motility after freezing (FPM), and the difference between PM and FPM. The respective DNA samples from these stallions were genotyped using Axiom Equine Genotyping Array. RESULTS We performed a GWAS search for single nucleotide polymorphism (SNP) markers and potential genes related to motility properties of frozen-thawed semen in the stallions of various breeds. As a result of the GWAS analysis, two SNP markers, rs1141327473 and rs1149048772, were identified that were associated with preservation of the frozen-thawed stallion sperm motility, the relevant putative candidate genes being NME/NM23 family member 8 (NME8), olfactory receptor family 2 subfamily AP member 1 (OR2AP1), and olfactory receptor family 6 subfamily C member 4 (OR6C4). Potential implications of effects of these genes on sperm motility are herein discussed. CONCLUSION The GWAS results enabled us to localize novel SNPs and candidate genes for sperm motility in stallions. Implications of the study for horse breeding and genetics are a better understanding of genomic regions and candidate genes underlying stallion sperm quality, and improvement in horse reproduction and breeding techniques. The identified markers and genes for sperm cryotolerance and the respective genomic regions are promising candidates for further studying the biological processes in the formation and function of the stallion reproductive system.
Collapse
Affiliation(s)
- Elena V. Nikitkina
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Natalia V. Dementieva
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Yuri S. Shcherbakov
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Mikhail M. Atroshchenko
- All-Russian Research Institute for Horse Breeding, Rybnovsky District, Ryazan Oblast, 391105,
Russia
| | - Andrei A. Kudinov
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Oleg I. Samoylov
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Marina V. Pozovnikova
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Artem P. Dysin
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Anna A. Krutikova
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Artem A. Musidray
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Olga V. Mitrofanova
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | - Kirill V. Plemyashov
- Russian Research Institute for Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, Tyarlevo, Pushkin, St. Petersburg, 196625,
Russia
| | | | | |
Collapse
|
17
|
Zhang R, Liang C, Guo X, Bao P, Pei J, Wu F, Yin M, Chu M, Yan P. Quantitative phosphoproteomics analyses reveal the regulatory mechanisms related to frozen-thawed sperm capacitation and acrosome reaction in yak (Bos grunniens). Front Physiol 2022; 13:1013082. [PMID: 36277216 PMCID: PMC9583833 DOI: 10.3389/fphys.2022.1013082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian spermatozoa are not mature after ejaculation and must undergo additional functional and structural changes within female reproductive tracts to achieve subsequent fertilization, including both capacitation and acrosome reaction (AR), which are dominated by post-translational modifications (PTMs), especially phosphorylation. However, the mechanism of protein phosphorylation during frozen-thawed sperm capacitation and AR has not been well studied. In this study, the phosphoproteomics approach was employed based on tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy to analyze frozen-thawed sperm in Ashidan yak under three sequential conditions (density gradient centrifugation-based purification, incubation in the capacitation medium and induction of AR processes by the calcium ionophore A23187 treatment). The identification of 1,377 proteins with 5,509 phosphorylation sites revealed changes in phosphorylation levels of sperm-specific proteins involved in regulation of spermatogenesis, sperm motility, energy metabolism, cilium movement, capacitation and AR. Some phosphorylated proteins, such as AKAP3, AKAP4, SPA17, PDMD11, CABYR, PRKAR1A, and PRKAR2A were found to regulate yak sperm capacitation and AR though the cAMP/PKA signaling pathway cascades. Notably, the phosphorylation level of SPA17 at Y156 increased in capacitated sperm, suggesting that it is also a novel functional protein besides AKAPs during sperm capacitation. Furthermore, the results of this study suggested that the phosphorylation of PRKAR1A and PRKAR2A, and the dephosphorylation of CABYR both play key regulatory role in yak sperm AR process. Protein-protein interaction analysis revealed that differentially phosphorylated proteins (AKAP3, AKAP4, FSIP2, PSMD11, CABYR, and TPPP2) related to capacitation and AR process played a key role in protein kinase A binding, sperm motility, reproductive process, cytoskeleton and sperm flagella function. Taken together, these data provide not only a solid foundation for further exploring phosphoproteome of sperm in yak, but an efficient way to identify sperm fertility-related marker phosphorylated proteins.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| |
Collapse
|
18
|
Loers JU, Vermeirssen V. SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks. BMC Bioinformatics 2022; 23:363. [PMID: 36064320 PMCID: PMC9442970 DOI: 10.1186/s12859-022-04908-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Representing the complex interplay between different types of biomolecules across different omics layers in multi-omics networks bears great potential to gain a deep mechanistic understanding of gene regulation and disease. However, multi-omics networks easily grow into giant hairball structures that hamper biological interpretation. Module detection methods can decompose these networks into smaller interpretable modules. However, these methods are not adapted to deal with multi-omics data nor consider topological features. When deriving very large modules or ignoring the broader network context, interpretability remains limited. To address these issues, we developed a SUbgraph BAsed mulTi-OMIcs Clustering framework (SUBATOMIC), which infers small and interpretable modules with a specific topology while keeping track of connections to other modules and regulators. RESULTS SUBATOMIC groups specific molecular interactions in composite network subgraphs of two and three nodes and clusters them into topological modules. These are functionally annotated, visualized and overlaid with expression profiles to go from static to dynamic modules. To preserve the larger network context, SUBATOMIC investigates statistically the connections in between modules as well as between modules and regulators such as miRNAs and transcription factors. We applied SUBATOMIC to analyze a composite Homo sapiens network containing transcription factor-target gene, miRNA-target gene, protein-protein, homologous and co-functional interactions from different databases. We derived and annotated 5586 modules with diverse topological, functional and regulatory properties. We created novel functional hypotheses for unannotated genes. Furthermore, we integrated modules with condition specific expression data to study the influence of hypoxia in three cancer cell lines. We developed two prioritization strategies to identify the most relevant modules in specific biological contexts: one considering GO term enrichments and one calculating an activity score reflecting the degree of differential expression. Both strategies yielded modules specifically reacting to low oxygen levels. CONCLUSIONS We developed the SUBATOMIC framework that generates interpretable modules from integrated multi-omics networks and applied it to hypoxia in cancer. SUBATOMIC can infer and contextualize modules, explore condition or disease specific modules, identify regulators and functionally related modules, and derive novel gene functions for uncharacterized genes. The software is available at https://github.com/CBIGR/SUBATOMIC .
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
19
|
Sperm Phosphoproteome: Unraveling Male Infertility. BIOLOGY 2022; 11:biology11050659. [PMID: 35625387 PMCID: PMC9137924 DOI: 10.3390/biology11050659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Infertility affects approximately 15% of couples worldwide of childbearing age, and in many cases the etiology of male infertility is unknown. The current standard evaluation of semen is insufficient to establish an accurate diagnosis. Proteomics techniques, such as phosphoproteomics, applied in this field are a powerful tool to understand the mechanisms that regulate sperm functions such as motility, which is essential for successful fertilization. Among the post-translational modifications of sperm proteins, this review summarizes, from a proteomic perspective, the updated knowledge of protein phosphorylation, in human spermatozoa, as a relevant molecular mechanism involved in the regulation of sperm physiology. Specifically, the role of sperm protein phosphorylation in motility and, consequently, in sperm quality is highlighted. Additionally, through the analysis of published comparative phosphoproteomic studies, some candidate human sperm phosphoproteins associated with low sperm motility are proposed. Despite the remarkable advances in phosphoproteomics technologies, the relatively low number of studies performed in human spermatozoa suggests that phosphoproteomics has not been applied to its full potential in studying male infertility yet. Therefore, further studies will improve the application of this procedure and overcome the limitations, increasing the understanding of regulatory mechanisms underlying protein phosphorylation in sperm motility and, consequently, in male fertility.
Collapse
|
20
|
Sun L, Mo A, Lu P. Proteomic-, Phosphoproteomic-, and Acetylomic-Based Mass Spectrometry to Identify Tissue-Specific Protein Complexes and Phosphorylation in Plant Gametogenesis. Methods Mol Biol 2022; 2484:13-22. [PMID: 35461441 DOI: 10.1007/978-1-0716-2253-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using proteomics to analyze phosphorylation, acetylation, and other posttranslational modifications has been a very important method in biological research. Here we take the rice meiotic anther as an example to introduce the experimentally verified proteomic analysis methods of plant tissue-specific phosphorylation and acetylation, including total protein extraction, trypsin digestion, phosphopeptide enrichment by TiO2 microcolumn, affinity enrichment of lysine-acetylated peptides, desalting, Nano UHPLC-MS/MS analysis, database search and data analysis, and bioinformatic analysis.
Collapse
Affiliation(s)
- Lu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
21
|
Occurrence of Calcium Oscillations in Human Spermatozoa Is Based on Spatial Signaling Enzymes Distribution. Int J Mol Sci 2021; 22:ijms22158018. [PMID: 34360784 PMCID: PMC8347727 DOI: 10.3390/ijms22158018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
In human spermatozoa, calcium dynamics control most of fertilization events. Progesterone, present in the female reproductive system, can trigger several types of calcium responses, such as low-frequency oscillations. Here we aimed to identify the mechanisms of progesterone-induced calcium signaling in human spermatozoa. Progesterone-induced activation of fluorophore-loaded spermatozoa was studied by fluorescent microscopy. Two computational models were developed to describe the spermatozoa calcium responses: a homogeneous one based on a system of ordinary differential equations and a three-dimensional one with added space dimensions and diffusion for the cytosolic species. In response to progesterone, three types of calcium responses were observed in human spermatozoa: a single transient rise of calcium concentration in cytosol, a steady elevation, or low-frequency oscillations. The homogenous model provided qualitative description of the oscillatory and the single spike responses, while the three-dimensional model captured the calcium peak shape and the frequency of calcium oscillations. The model analysis demonstrated that an increase in the calcium diffusion coefficient resulted in the disappearance of the calcium oscillations. Additionally, in silico analysis suggested that the spatial distribution of calcium signaling enzymes governs the appearance of calcium oscillations in progesterone-activated human spermatozoa.
Collapse
|
22
|
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, Cheng X, Xu H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front Cell Dev Biol 2021; 9:652809. [PMID: 34336820 PMCID: PMC8322956 DOI: 10.3389/fcell.2021.652809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Chaofeng Ma
- Xinyang Animal Disease Control and Prevention Center, Xinyang, China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
23
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
24
|
Baumert R, Ji H, Paulucci-Holthauzen A, Wolfe A, Sagum C, Hodgson L, Arikkath J, Chen X, Bedford MT, Waxham MN, McCrea PD. Novel phospho-switch function of delta-catenin in dendrite development. J Cell Biol 2021; 219:152151. [PMID: 33007084 PMCID: PMC7534926 DOI: 10.1083/jcb.201909166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/27/2019] [Accepted: 08/21/2020] [Indexed: 11/22/2022] Open
Abstract
In neurons, dendrites form the major sites of information receipt and integration. It is thus vital that, during development, the dendritic arbor is adequately formed to enable proper neural circuit formation and function. While several known processes shape the arbor, little is known of those that govern dendrite branching versus extension. Here, we report a new mechanism instructing dendrites to branch versus extend. In it, glutamate signaling activates mGluR5 receptors to promote Ckd5-mediated phosphorylation of the C-terminal PDZ-binding motif of delta-catenin. The phosphorylation state of this motif determines delta-catenin's ability to bind either Pdlim5 or Magi1. Whereas the delta:Pdlim5 complex enhances dendrite branching at the expense of elongation, the delta:Magi1 complex instead promotes lengthening. Our data suggest that these complexes affect dendrite development by differentially regulating the small-GTPase RhoA and actin-associated protein Cortactin. We thus reveal a "phospho-switch" within delta-catenin, subject to a glutamate-mediated signaling pathway, that assists in balancing the branching versus extension of dendrites during neural development.
Collapse
Affiliation(s)
- Ryan Baumert
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX
| | - Hong Ji
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Aaron Wolfe
- Computational Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | | | - Xiaojiang Chen
- Computational Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX.,Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Science, Houston, TX
| | - M Neal Waxham
- Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX.,Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX
| | - Pierre D McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX.,Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Science, Houston, TX
| |
Collapse
|
25
|
Liu JJ, Chiu YT, Chen C, Huang P, Mann M, Liu-Chen LY. Pharmacological and phosphoproteomic approaches to roles of protein kinase C in kappa opioid receptor-mediated effects in mice. Neuropharmacology 2020; 181:108324. [PMID: 32976891 DOI: 10.1016/j.neuropharm.2020.108324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Kappa opioid receptor (KOR) agonists possess adverse dysphoric and psychotomimetic effects, thus limiting their applications as non-addictive anti-pruritic and analgesic agents. Here, we showed that protein kinase C (PKC) inhibition preserved the beneficial antinociceptive and antipruritic effects of KOR agonists, but attenuated the adverse condition placed aversion (CPA), sedation, and motor incoordination in mice. Using a large-scale mass spectrometry-based phosphoproteomics of KOR-mediated signaling in the mouse brain, we observed PKC-dependent modulation of G protein-coupled receptor kinases and Wnt pathways at 5 min; stress signaling, cytoskeleton, mTOR signaling and receptor phosphorylation, including cannabinoid receptor CB1 at 30 min. We further demonstrated that inhibition of CB1 attenuated KOR-mediated CPA. Our results demonstrated the feasibility of in vivo biochemical dissection of signaling pathways that lead to side effects.
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Yi-Ting Chiu
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Chongguang Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Peng Huang
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
26
|
Phosphoproteomics and Bioinformatics Analyses Reveal Key Roles of GSK-3 and AKAP4 in Mouse Sperm Capacitation. Int J Mol Sci 2020; 21:ijms21197283. [PMID: 33023073 PMCID: PMC7582274 DOI: 10.3390/ijms21197283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Protein phosphorylation can induce signal transduction to change sperm motility patterns during sperm capacitation. However, changes in the phosphorylation of sperm proteins in mice are still incompletely understood. Here, capacitation-related phosphorylation in mouse sperms were firstly investigated by label-free quantitative (LFQ) phosphoproteomics coupled with bioinformatics analysis using ingenuity pathway analysis (IPA) methods such as canonical pathway, upstream regulator, and network analysis. Among 1632 phosphopeptides identified at serine, threonine, and tyrosine residues, 1050 novel phosphosites, corresponding to 402 proteins, were reported. Gene heatmaps for IPA canonical pathways showed a novel role for GSK-3 in GP6 signaling pathways associated with capacitation for 60 min. At the same time, the reduction of the abundant isoform-specific GSK-3α expression was shown by western blot (WB) while the LFQ pY of this isoform slightly decreased and then increased. The combined results from WB and LFQ methods explain the less inhibitory phosphorylation of GSK-3α during capacitation and also support the predicted increases in its activity. In addition, pAKAP4 increased at the Y156 site but decreased at the Y811 site in a capacitated state, even though IPA network analysis and WB analysis for overall pAKAP revealed upregulated trends. The potential roles of GSK-3 and AKAP4 in fertility are discussed.
Collapse
|
27
|
Urizar-Arenaza I, Osinalde N, Akimov V, Puglia M, Muñoa-Hoyos I, Gómez-Giménez B, Gianzo M, Ganzabal T, Blagoev B, Kratchmarova I, Subiran N. Kappa- opioid receptor regulates human sperm functions via SPANX-A/D protein family. Reprod Biol 2020; 20:300-306. [PMID: 32684427 DOI: 10.1016/j.repbio.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
The kappa-opioid receptor (KOR) is involved in the regulation of the fertilizing capacity of human sperm. Recently, a testicular-specific protein family, SPANX-A/D, has also been found to be involved in regulating this process. In order to determine if KOR has a role in the regulation of sperm fertility through the SPANX-A/D protein family, we activated the kappa opioid receptor adding its selective agonist, U50488H to normozoospermic human spermatozoa. Then, we performed immunofluorescence assays and immunoprecipitation experiments followed by LC-MS/MS. According to our results, KOR activation may cause the translocation of SPANX-A/D into the nucleus of human spermatozoa. Phosphoproteomic studies show that KOR does not cause phosphorylation changes in SPANX-A/D residues. However, interactome assays demonstrate that KOR activation provokes changes in SPANX-A/D potential interactors involved in sperm motility, energy metabolism and nuclear processes. Taking these results into account, KOR may regulate human sperm fertility through SPANX-A/D protein family, modifying its subcellular location and interactions. Although further studies are needed, this finding could help us describing the molecular mechanisms underlying sperm fertility as well as developing new strategies for treating infertility.
Collapse
Affiliation(s)
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology. University of Southern Denmark. Odense. Denmark
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology. University of Southern Denmark. Odense. Denmark
| | - Iraia Muñoa-Hoyos
- Department of Physiology. University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Belén Gómez-Giménez
- Department of Physiology. University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Gianzo
- Department of Physiology. University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Teresa Ganzabal
- Center for Reproductive Medicine and Infertility Quirón Bilbao, Bilbao, Spain
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology. University of Southern Denmark. Odense. Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology. University of Southern Denmark. Odense. Denmark
| | - Nerea Subiran
- Department of Physiology. University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
28
|
Olabarrieta E, Totorikaguena L, Romero-Aguirregomezcorta J, Agirregoitia N, Agirregoitia E. Delta and kappa opioid receptors on mouse sperm cells: Expression, localization and involvement on in vitro fertilization. Reprod Toxicol 2020; 93:211-218. [PMID: 32145291 DOI: 10.1016/j.reprotox.2020.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
The endogenous opioid peptides have been reported to be involved in the regulation of reproductive physiology. Many of the studies conclude with sentences around the harmful effect of opioids in male fertility but, actually, there is only one study regarding the real fertility potential of spermatozoa that have been exposed to mu specific opioids. The aim of the present study was to see if the modulation of delta (OPRD1) and kappa (OPRK1) opioid receptors in mouse sperm during capacitation was able to vary the embryo production after in vitro fertilization (IVF). The presence of OPRD1 and OPRK1 in mouse mature spermatozoa was analyzed by RT-PCR and immunofluorescence. Incubating the sperm with, on one hand, the delta specific agonist DPDPE and/or antagonist naltrindole, and, on the other hand, the kappa specific agonist U-50488 and antagonist nor-binaltorphimine, we analyzed the involvement of OPRD1 and OPRK1 on IVF and preimplantational embryo development. We verified the presence of OPRD1 and OPRK1 in mouse mature spermatozoa, not only at the mRNA level but also at protein level. Moreover, the sperm incubation with DPDPE, before the IVF, had an effect on the fertilization rate of sperm and reduced the number of reached blastocysts, which was reverted by naltrindole. Instead, the use of the kappa agonist U-50488 and the antagonist nor-binaltophimine did not have any effect on the amount and the quality of the achieved blastocysts. Although nowadays the pure delta or kappa opioid ligands are not used for the clinic, clinical trials are being conducted to be used in the near future, so it would be interesting to know if the modulation of these receptors in sperm would generate any consequence in relation to fertilization capacity.
Collapse
Affiliation(s)
- Estibaliz Olabarrieta
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | - Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | | | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain.
| |
Collapse
|
29
|
Martin-Hidalgo D, Serrano R, Zaragoza C, Garcia-Marin LJ, Bragado MJ. Human sperm phosphoproteome reveals differential phosphoprotein signatures that regulate human sperm motility. J Proteomics 2020; 215:103654. [DOI: 10.1016/j.jprot.2020.103654] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
|
30
|
Wang Z, Kim U, Jiao Y, Li C, Guo Y, Ma X, Jiang M, Jiang Z, Hou Y, Bai G. Quantitative Proteomics Combined with Affinity MS Revealed the Molecular Mechanism of Ginsenoside Antitumor Effects. J Proteome Res 2019; 18:2100-2108. [PMID: 30860844 DOI: 10.1021/acs.jproteome.8b00972] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ginsenosides have previously been demonstrated to effectively inhibit cancer cell growth and survival in both animal models and cell lines. However, the specific ginsenoside component that is the active ingredient for cancer treatment through interaction with a target protein remains unknown. By an integrated quantitative proteomics approach via affinity mass spectrum (MS) technology, we deciphered the core structure of the ginsenoside active ingredient derived from crude extracts of ginsenosides and progressed toward identifying the target protein that mediates its anticancer activity. The Tandem Mass Tag (TMT) labeling quantitative proteomics technique acquired 55620 MS/MS spectra that identified 5499 proteins and 3045 modified proteins. Of these identified proteins, 224 differentially expressed proteins and modified proteins were significantly altered in nonsmall cell lung cancer cell lines. Bioinformatics tools for comprehensive analysis revealed that the Ras protein played a general regulatory role in many functional pathways and was probably the direct target protein of a compound in ginsenosides. Then, affinity MS screening based on the Ras protein identified 20(s)-protopanaxadiol, 20(s)-Ginsenoside Rh2, and 20(s)-Ginsenoside Rg3 had affinity with Ras protein under different conditions. In particular, 20(s)-protopanaxadiol, whose derivatives are the reported antitumor compounds 20(s)-Ginsenoside Rh2 and 20(s)-Ginsenoside Rg3 that have a higher affinity for Ras via a low KD of 1.22 μM and the mutation sites of G12 and G60, was demonstrated to play a core role in those interactions. Moreover, the molecular mechanism and bioactivity assessment results confirmed the identity of the chemical ligand that was directly acting on the GTP binding pocket of Ras and shown to be effective in cancer cell bioactivity profiles.
Collapse
Affiliation(s)
- Zhihua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin 300353 , People's Republic of China
| | - Unchol Kim
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin 300353 , People's Republic of China
| | - Yanting Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin 300353 , People's Republic of China
| | - Chaowen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin 300353 , People's Republic of China
| | - Yingying Guo
- School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Nankai District, 312 Anshan Road , Tianjin 300193 , People's Republic of China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin 300353 , People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin 300353 , People's Republic of China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine , Macau University of Science and Technology , Avenida Wai Long , Taipa, Macau , People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin 300353 , People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Haihe Education Park, 38 Tongyan Road , Tianjin 300353 , People's Republic of China
| |
Collapse
|
31
|
Affiliation(s)
- Timothy L Karr
- From the Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona.
| |
Collapse
|