1
|
Wiersema AF, Rennenberg A, Smith G, Varderidou-Minasian S, Pasterkamp RJ. Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases. Cell Mol Life Sci 2024; 81:479. [PMID: 39627617 PMCID: PMC11615177 DOI: 10.1007/s00018-024-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
Collapse
Affiliation(s)
- Anna F Wiersema
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alyssa Rennenberg
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Grace Smith
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Yang J, Shen N, Shen J, Yang Y, Li HL. Complicated Role of Post-translational Modification and Protease-Cleaved Fragments of Tau in Alzheimer's Disease and Other Tauopathies. Mol Neurobiol 2024; 61:4712-4731. [PMID: 38114762 PMCID: PMC11236937 DOI: 10.1007/s12035-023-03867-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Tau, a microtubule-associated protein predominantly localized in neuronal axons, plays a crucial role in promoting microtubule assembly, stabilizing their structure, and participating in axonal transport. Perturbations in tau's structure and function are implicated in the pathogenesis of neurodegenerative diseases collectively known as tauopathies, the most common disorder of which is Alzheimer's disease (AD). In tauopathies, it has been found that tau has a variety of post-translational modification (PTM) abnormalities and/or tau is cleaved into a variety of fragments by some specific proteolytic enzymes; however, the precise contributions of these abnormal modifications and fragments to disease onset and progression remain incompletely understood. Herein, we provide an overview about the involvement of distinctive abnormal tau PTMs and different tau fragments in the pathogenesis of AD and other tauopathies and discuss the involvement of proteolytic enzymes such as caspases, calpains, and asparagine endopeptidase in mediating tau cleavage while also addressing the intercellular transmission role played by tau. We anticipate that further exploration into PTMs and fragmented forms of tau will yield valuable insights for diagnostic approaches and therapeutic interventions targeting AD and other related disorders.
Collapse
Affiliation(s)
- Jie Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianying Shen
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, Martins-de-Souza D. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration. Biochem Soc Trans 2024; 52:163-176. [PMID: 38288874 DOI: 10.1042/bst20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lívia Ramos-da-Silva
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aline Valéria Sousa Santos
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D)
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
4
|
Na L, Sun L, Yu M, Zhang Y, Zhang Y, Zhang Z, Zhang H, Qi T, Guo W, Guo X, Wang S, Wang J, Lin Y, Wang X. Avian ANP32A incorporated in avian influenza A virions promotes interspecies transmission by priming early viral replication in mammals. SCIENCE ADVANCES 2024; 10:eadj4163. [PMID: 38295177 PMCID: PMC10830118 DOI: 10.1126/sciadv.adj4163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Species-specific differences in acidic nuclear phosphoprotein 32 family member A (ANP32A) determine the restriction of avian-signature polymerase in mammalian cells. Mutations that evade this restriction, such as PB2-E627K, are frequently acquired when avian influenza A viruses jump from avian hosts to mammalian hosts. However, the mechanism underlying this adaptation process is still unclear. Here, we report that host factor ANP32 proteins can be incorporated into influenza viral particles through combination with the viral RNA polymerase (vPol) and then transferred into targeted cells where they support virus replication. The packaging of the ANP32 proteins into influenza viruses is dependent on their affinity with the vPol. Avian ANP32A (avANP32A) delivered by avian influenza A virions primes early viral replication in mammalian cells, thereby favoring the downstream interspecies transmission event by increasing the total amount of virus carrying adaptive mutations. Our study clarifies one role of avANP32A where it is used by avian influenza virus to help counteract the restriction barrier in mammals.
Collapse
Affiliation(s)
- Lei Na
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liuke Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mengmeng Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yingzhi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhenyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ting Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wei Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xing Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shida Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jingfei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuezhi Lin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
5
|
Xu X, Iqbal Z, Xu L, Wen C, Duan L, Xia J, Yang N, Zhang Y, Liang Y. Brain-derived extracellular vesicles: Potential diagnostic biomarkers for central nervous system diseases. Psychiatry Clin Neurosci 2024; 78:83-96. [PMID: 37877617 DOI: 10.1111/pcn.13610] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanovesicles secreted by cells into the extracellular space and contain functional biomolecules, e.g. signaling receptors, bioactive lipids, nucleic acids, and proteins, which can serve as biomarkers. Neurons and glial cells secrete EVs, contributing to various physiological and pathological aspects of brain diseases. EVs confer their role in the bidirectional crosstalk between the central nervous system (CNS) and the periphery owing to their distinctive ability to cross the unique blood-brain barrier (BBB). Thus, EVs in the blood, cerebrospinal fluid (CSF), and urine can be intriguing biomarkers, enabling the minimally invasive diagnosis of CNS diseases. Although there has been an enormous interest in evaluating EVs as promising biomarkers, the lack of ultra-sensitive approaches for isolating and detecting brain-derived EVs (BDEVs) has hindered the development of efficient biomarkers. This review presents the recent salient findings of exosomal biomarkers, focusing on brain disorders. We summarize highly sensitive sensors for EV detection and state-of-the-art methods for single EV detection. Finally, the prospect of developing advanced EV analysis approaches for the non-invasive diagnosis of brain diseases is presented.
Collapse
Affiliation(s)
- Xiao Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Limei Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Caining Wen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ningning Yang
- Lake Erie College of Osteopathic Medicine School of Pharmacy, Bradenton, Florida, USA
| | - Yuanmin Zhang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yujie Liang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Hook V, Podvin S, Mosier C, Boyarko B, Seyffert L, Stringer H, Rissman RA. Emerging evidence for dysregulated proteome cargoes of tau-propagating extracellular vesicles driven by familial mutations of tau and presenilin. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:588-598. [PMID: 38125374 PMCID: PMC10732590 DOI: 10.20517/evcna.2023.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tau propagation, pathogenesis, and neurotoxicity are hallmarks of neurodegenerative diseases that result in cognitive impairment. Tau accumulates in Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), chronic traumatic encephalopathy (CTE), progressive supranuclear palsy, and related tauopathies. Knowledge of the mechanisms for tau propagation in neurodegeneration is necessary for understanding the development of dementia. Exosomes, known as extracellular vesicles (EVs), have emerged as participants in promoting tau propagation. Recent findings show that EVs generated by neurons expressing familial mutations of tauopathies of FTDP-17 (P301L and V337M) (mTau) and presenilin (A246E) (mPS1) in AD induce tau propagation and accumulation after injection into rodent brain. To gain knowledge of the proteome cargoes of the mTau and mPS1 EVs that promote tau pathogenesis, this review compares the proteomes of these EVs, which results in important new questions concerning EV mechanisms of tau pathogenesis. Proteomics data show that EVs produced by mTau- and mPS1-expressing iPSC neurons share proteins involved in exocytosis and vesicle secretion and, notably, these EVs also possess differences in protein components of vesicle-mediated transport, extracellular functions, and cell adhesion. It will be important for future studies to gain an understanding of the breadth of familial genetic mutations of tau, presenilin, and other genes in promoting EV initiation of tau propagation and pathogenesis. Furthermore, elucidation of EV cargo components that mediate tau propagation will have potential as biomarkers and therapeutic strategies to ameliorate dementia of tauopathies.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Laura Seyffert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Haley Stringer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- Veterans Affairs San Diego Health System, San Diego, CA 92093, USA
| |
Collapse
|
7
|
Loh YP, Xiao L, Park JJ. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:568-587. [PMID: 38435713 PMCID: PMC10906782 DOI: 10.20517/evcna.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.
Collapse
Affiliation(s)
- Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Scientific Review Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Zhou AK, Jou E, Lu V, Zhang J, Chabra S, Abishek J, Wong E, Zeng X, Guo B. Using Pre-Clinical Studies to Explore the Potential Clinical Uses of Exosomes Secreted from Induced Pluripotent Stem Cell-Derived Mesenchymal Stem cells. Tissue Eng Regen Med 2023; 20:793-809. [PMID: 37651091 PMCID: PMC10519927 DOI: 10.1007/s13770-023-00557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent studies of exosomes derived from mesenchymal stem cells (MSCs) have indicated high potential clinical applications in many diseases. However, the limited source of MSCs impedes their clinical research and application. Most recently, induced pluripotent stem cells (iPSCs) have become a promising source of MSCs. Exosome therapy based on iPSC-derived MSCs (iMSCs) is a novel technique with much of its therapeutic potential untapped. Compared to MSCs, iMSCs have proved superior in cell proliferation, immunomodulation, generation of exosomes capable of controlling the microenvironment, and bioactive paracrine factor secretion, while also theoretically eliminating the dependence on immunosuppression drugs. The therapeutic effects of iMSC-derived exosomes are explored in many diseases and are best studied in wound healing, cardiovascular disease, and musculoskeletal pathology. It is pertinent clinicians have a strong understanding of stem cell therapy and the latest advances that will eventually translate into clinical practice. In this review, we discuss the various applications of exosomes derived from iMSCs in clinical medicine.
Collapse
Affiliation(s)
- Andrew Kailin Zhou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- Watford General Hospital, London, UK
| | - Eric Jou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Victor Lu
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - James Zhang
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Shirom Chabra
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | | | | | - Xianwei Zeng
- Beijing Rehabilitation Hospital Affiliated to National Research Centre for Rehabilitation Technical Aids, Ministry of Civil Affairs of China, Beijing, China.
- Weifang People's Hospital, Weifang City, Shandong Province, China.
| | - Baoqiang Guo
- Department of Life Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
9
|
Yoon M, Phan V, Podvin S, Mosier C, O’Donoghue AJ, Hook V. Distinct Cleavage Properties of Cathepsin B Compared to Cysteine Cathepsins Enable the Design and Validation of a Specific Substrate for Cathepsin B over a Broad pH Range. Biochemistry 2023; 62:2289-2300. [PMID: 37459182 PMCID: PMC10399199 DOI: 10.1021/acs.biochem.3c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/11/2023] [Indexed: 08/02/2023]
Abstract
The biological and pathological functions of cathepsin B occur in acidic lysosomes and at the neutral pH of cytosol, nuclei, and extracellular locations. Importantly, cathepsin B displays different substrate cleavage properties at acidic pH compared to neutral pH conditions. It is, therefore, desirable to develop specific substrates for cathepsin B that measure its activity over broad pH ranges. Current substrates used to monitor cathepsin B activity consist of Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, but they lack specificity since they are cleaved by other cysteine cathepsins. Furthermore, Z-Arg-Arg-AMC monitors cathepsin B activity at neutral pH and displays minimal activity at acidic pH. Therefore, the purpose of this study was to design and validate specific fluorogenic peptide substrates that can monitor cathepsin B activity over a broad pH range from acidic to neutral pH conditions. In-depth cleavage properties of cathepsin B were compared to those of the cysteine cathepsins K, L, S, V, and X via multiplex substrate profiling by mass spectrometry at pH 4.6 and pH 7.2. Analysis of the cleavage preferences predicted the tripeptide Z-Nle-Lys-Arg-AMC as a preferred substrate for cathepsin B. Significantly, Z-Nle-Lys-Arg-AMC displayed the advantageous properties of measuring high cathepsin B specific activity over acidic to neutral pHs and was specifically cleaved by cathepsin B over the other cysteine cathepsins. Z-Nle-Lys-Arg-AMC specifically monitored cathepsin B activity in neuronal and glial cells which were consistent with relative abundances of cathepsin B protein. These findings validate Z-Nle-Lys-Arg-AMC as a novel substrate that specifically monitors cathepsin B activity over a broad pH range.
Collapse
Affiliation(s)
- Michael
C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Von Phan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
- Department
of Neurosciences and Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
10
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Matos BMD, Stimamiglio MA, Correa A, Robert AW. Human pluripotent stem cell-derived extracellular vesicles: From now to the future. World J Stem Cells 2023; 15:453-465. [PMID: 37342215 PMCID: PMC10277970 DOI: 10.4252/wjsc.v15.i5.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived bioactive molecules in a lipid bilayer and serve as intercellular communication tools. Accordingly, in various biological contexts, EVs are reported to engage in immune modulation, senescence, and cell proliferation and differentiation. Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. Little has been studied regarding EVs derived from human pluripotent stem cells (hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue regeneration and unlimited proliferative ability. In this review article, we provide an overview of studies using hPSC-EVs, focusing on identifying the conditions in which the cells are cultivated for the isolation of EVs, how they are characterized, and applications already demonstrated. The topics reported in this article highlight the incipient status of the studies in the field and the significance of hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.
Collapse
Affiliation(s)
- Bruno Moises de Matos
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | | | - Alejandro Correa
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| |
Collapse
|
12
|
Chow JC, Hormozdiari F. Prediction of Neurodevelopmental Disorders Based on De Novo Coding Variation. J Autism Dev Disord 2023; 53:963-976. [PMID: 35596027 PMCID: PMC9986216 DOI: 10.1007/s10803-022-05586-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/27/2022]
Abstract
The early detection of neurodevelopmental disorders (NDDs) can significantly improve patient outcomes. The differential burden of non-synonymous de novo mutation among NDD cases and controls indicates that de novo coding variation can be used to identify a subset of samples that will likely display an NDD phenotype. Thus, we have developed an approach for the accurate prediction of NDDs with very low false positive rate (FPR) using de novo coding variation for a small subset of cases. We use a shallow neural network that integrates de novo likely gene-disruptive and missense variants, measures of gene constraint, and conservation information to predict a small subset of NDD cases at very low FPR and prioritizes NDD risk genes for future clinical study.
Collapse
Affiliation(s)
- Julie C Chow
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
| | - Fereydoun Hormozdiari
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
- MIND Institute, University of California, Davis, 95817, USA.
- Biochemistry and Molecular Medicine, University of California, Davis, 95616, USA.
| |
Collapse
|
13
|
Zhao Y, Gu Y, Zhang Q, Liu H, Liu Y. The Potential Roles of Exosomes Carrying APP and Tau Cleavage Products in Alzheimer's Disease. J Clin Med 2023; 12:jcm12051883. [PMID: 36902671 PMCID: PMC10003549 DOI: 10.3390/jcm12051883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia throughout the world. It is characterized by major amyloid plaques and neurofibrillary tangles (NFTs), which are composed of amyloid-β (Aβ) peptide and hyperphosphorylated Tau (p-Tau), respectively. Exosomes, which are secreted by cells, are single-membrane lipid bilayer vesicles found in bodily fluids and they have a diameter of 30-150 nm. Recently, they have been considered as critical carriers and biomarkers in AD, as they facilitate communication between cells and tissues by delivering proteins, lipids, and nucleic acids. This review demonstrates that exosomes are natural nanocontainers that carry APP as well as Tau cleavage products secreted by neuronal cells and that their formation is associated with the endosomal-lysosomal pathway. Moreover, these exosomes can transfer AD pathological molecules and participate in the pathophysiological process of AD; therefore, they have potential diagnostic and therapeutic value for AD and might also provide novel insights for screening and prevention of the disease.
Collapse
Affiliation(s)
- Yanfang Zhao
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
- Correspondence:
| | - Yujin Gu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Qili Zhang
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Hongliang Liu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| |
Collapse
|
14
|
The Roles of Exosomal Proteins: Classification, Function, and Applications. Int J Mol Sci 2023; 24:ijms24043061. [PMID: 36834471 PMCID: PMC9961790 DOI: 10.3390/ijms24043061] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Exosome, a subpopulation of extracellular vesicles, plays diverse roles in various biological processes. As one of the most abundant components of exosomes, exosomal proteins have been revealed to participate in the development of many diseases, such as carcinoma, sarcoma, melanoma, neurological disorders, immune responses, cardiovascular diseases, and infection. Thus, understanding the functions and mechanisms of exosomal proteins potentially assists clinical diagnosis and targeted delivery of therapies. However, current knowledge about the function and application of exosomal proteins is still limited. In this review, we summarize the classification of exosomal proteins, and the roles of exosomal proteins in exosome biogenesis and disease development, as well as in the clinical applications.
Collapse
|
15
|
Polanco JC, Götz J. Exosomal and vesicle-free tau seeds-propagation and convergence in endolysosomal permeabilization. FEBS J 2022; 289:6891-6907. [PMID: 34092031 DOI: 10.1111/febs.16055] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
In Alzheimer's disease (AD), β-amyloid peptides aggregate to form amyloid plaques, and the microtubule-associated protein tau forms neurofibrillary tangles. However, severity and duration of AD correlate with the stereotypical emergence of tau tangles throughout the brain, suggestive of a gradual region-to-region spreading of pathological tau. The current notion in the field is that misfolded tau seeds propagate transsynaptically and corrupt the proper folding of soluble tau in recipient neurons. This is supported by accumulating evidence showing that in AD, functional connectivity and not proximity predicts the spreading of tau pathology. Tau seeds can be found in two flavors, vesicle-free, that is, naked as in oligomers and fibrils, or encapsulated by membranes of secreted vesicles known as exosomes. Both types of seeds have been shown to propagate between interconnected neurons. Here, we describe potential ways of how their propagation can be controlled in several subcellular compartments by manipulating mechanisms affecting production, neuron-to-neuron transmission, internalization, endosomal escape, and autophagy. We emphasize that although vesicle-free tau seeds and exosomes differ, they share the ability to trigger endolysosomal permeabilization. Such a mechanistic convergence in endolysosomal permeabilization presents itself as a unique opportunity to target both types of tau seeding. We discuss the cellular response to endolysosomal damage that might be key to control permeabilization, and the significant overlap in the seeding mechanism of proteopathic agents other than tau, which suggests that targeting the endolysosomal pathway could pave the way toward developing broad-spectrum treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Effect of cell culture media on extracellular vesicle secretion from mesenchymal stromal cells and neurons. Eur J Cell Biol 2022; 101:151270. [PMID: 35987046 DOI: 10.1016/j.ejcb.2022.151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) secreted by neuronal cells in vitro have promising therapeutic potential for brain diseases. Optimization of cell culture conditions and methodologies for high-yield isolation of EVs for preclinical and clinical applications, however, remains a challenge. OBJECTIVE To probe the cell culture conditions required for optimal EV secretion by human-derived neuronal cells. METHODOLOGY First, we optimized the EV purification protocol using human mesenchymal stromal cell (MSC) cultures. Next, we compared the effects of different variables in human pluripotent stem cell (hPSC)-derived neuronal cultures on EV secretion. EVs were isolated from cell conditioned media (CCM) and control media with no cells (NCC) using ultrafiltration combined with size-exclusion chromatography (SEC). The hPSC neurons were cultured in 2 different media from which EVs were collected at 2 maturation time-points (days 46 and 60). Stimulation with 25 mM KCl was also evaluated as an activator of EV secretion by neurons. The collected SEC fractions were analyzed by nanoparticle tracking analysis (NTA), protein concentration assay, and blinded transmission electron microscopy (TEM). RESULTS A peak in cup-shaped particles was observed in SEC fractions 7-10 of MSC samples, but not corresponding media controls, indicating successful isolation of EVs. Culture medium had no significant effect on EV yield. The EV yield of the samples did not differ significantly according to the culture media used or the cell maturation time-points. Stimulation of neurons with KCl for 3 h reduced rather than increased the EV yield. CONCLUSIONS We demonstrated successful EV isolation from MSC and neuronal cells using an ultrafiltration-SEC method. The EV yield from MSC and neuronal cultures exhibited a large batch effect, apparently related to the culture media used, highlighting the importance of including NCC as a negative control in all cell culture experiments.
Collapse
|
17
|
Liu C, Guo X, Chang X. Intestinal Flora Balance Therapy Based on Probiotic Support Improves Cognitive Function and Symptoms in Patients with Alzheimer's Disease: A Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4806163. [PMID: 36017397 PMCID: PMC9398783 DOI: 10.1155/2022/4806163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective The clinical value of intestinal flora balance therapy based on probiotic support in improving cognitive function and symptoms of patients with Alzheimer's disease was to systematically evaluate, so as to provide evidence-based medicine basis for the promotion and use of this therapy. Methods The randomized controlled trials (RCTs) were searched for the improvement of cognitive function and symptoms of patients with Alzheimer's disease by intestinal flora balance therapy supported mainly by probiotics in PubMed, EMBASE, ScienceDirect, Cochrane Library, China Knowledge Network Database (CNKI), China VIP database, Wanfang database, and China Biomedical Literature Database (CBM) online database (RCT). Data were extracted independently by two researchers, and the literature was assessed for risk of bias according to the Cochrane Handbook 5.1.0 criteria. The data were meta-analyzed using RevMan 5.4 statistical software. Results Finally, 5 randomized controlled trials were included, with a total sample size of 386 cases. The results of meta-analysis showed that Chi2 = 13.14, df = 2, P = 0.001, and I 2 = 85% showed significant heterogeneity in the inclusion of the study data. Probiotic-supported intestinal microflora balance therapy improves cognitive function in patients with Alzheimer's disease. Through meta-analysis of transient memory scores, it is concluded that intestinal flora balance therapy based on probiotic support can improve transient memory in patients with Alzheimer's disease. Meta-analysis of ADAS-COG score showed that intestinal flora balance therapy supported by probiotics could improve the cognitive function of patients with Alzheimer's disease. The ADL score was analyzed by meta, and the heterogeneity test result was Chi2 = 0.79, df = 1, P = 0.37 > 0.05, and I 2 = 0%, indicating that the intestinal flora balance therapy supported by probiotics can improve the ability of daily living of patients with Alzheimer's disease. Conclusion Intestinal flora balance therapy based on probiotic support can effectively improve cognitive function, instantaneous memory, and ability of daily life in patients with Alzheimer's disease. However, more studies and long-term follow-up studies with higher methodological quality are needed to further verify.
Collapse
Affiliation(s)
- Changxing Liu
- Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xinyi Guo
- Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xiang Chang
- Xi'an Hospital of Traditional Chinese Medicine, Shaanxi Province 710016, China
| |
Collapse
|
18
|
Podvin S, Jiang Z, Boyarko B, Rossitto LA, O’Donoghue A, Rissman RA, Hook V. Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer's Disease Brain. ACS Chem Neurosci 2022; 13:1992-2005. [PMID: 35758417 PMCID: PMC9264367 DOI: 10.1021/acschemneuro.2c00222] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Synaptic dysfunction and loss occur in Alzheimer's disease (AD) brains, which results in cognitive deficits and brain neurodegeneration. Neuropeptides comprise the major group of synaptic neurotransmitters in the nervous system. This study evaluated neuropeptide signatures that are hypothesized to differ in human AD brain compared to age-matched controls, achieved by global neuropeptidomics analysis of human brain cortex synaptosomes. Neuropeptidomics demonstrated distinct profiles of neuropeptides in AD compared to controls consisting of neuropeptides derived from chromogranin A (CHGA) and granins, VGF (nerve growth factor inducible), cholecystokinin, and others. The differential neuropeptide signatures indicated differences in proteolytic processing of their proneuropeptides. Analysis of cleavage sites showed that dibasic residues at the N-termini and C-termini of neuropeptides were the main sites for proneuropeptide processing, and data also showed that the AD group displayed differences in preferred residues adjacent to the cleavage sites. Notably, tau peptide signatures differed in the AD compared to age-matched control human brain cortex synaptosomes. Unique tau peptides were derived from the tau protein through proteolysis using similar and differential cleavage sites in the AD brain cortex compared to the control. Protease profiles differed in the AD compared to control, indicated by proteomics data. Overall, these results demonstrate that dysregulation of neuropeptides and tau peptides occurs in AD brain cortex synaptosomes compared to age-matched controls, involving differential cleavage site properties for proteolytic processing of precursor proteins. These dynamic changes in neuropeptides and tau peptide signatures may be associated with the severe cognitive deficits of AD.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Ben Boyarko
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Leigh-Ana Rossitto
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Anthony O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Robert A. Rissman
- Department
of Neurosciences, University of California
San Diego, La Jolla, California 92093, United States
- Veterans
Affairs San Diego Health System, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Proteomics for comprehensive characterization of extracellular vesicles in neurodegenerative disease. Exp Neurol 2022; 355:114149. [PMID: 35732219 DOI: 10.1016/j.expneurol.2022.114149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles ubiquitously released by almost every cell type. A specific and selective constituents of EVs loaded with variety of proteins, lipids, small noncoding RNAs, and long non-coding RNAs are reflective of cellular events, type, and physiologic/pathophysiologic status of the cell of origin. Moreover, these molecular contents carry information from the cell of origin to recipient cells, modulating intercellular communication. Recent studies demonstrated that EVs not only play a neuroprotective role by mediating the removal of toxic proteins, but also emerge as an important player in various neurodegenerative disease onset and progression through facilitating of misfolded proteins propagation. For this reason, neurodegenerative disease-associated differences in EV proteome relative to normal EVs can be used to fulfil diagnostic, prognostic, and therapeutic purposes. Nonetheless, characterizing EV proteome obtained from biological samples (brain tissue and body fluids, including urea, blood, saliva, and CSF) is a challenging task. Herein, we review the status of EV proteome profiling and the updated discovery of potential biomarkers for the diagnosis of neurodegenerative disease with an emphasis on the integration of high-throughput advanced mass spectrometry (MS) technologies for both qualitative and quantitative analysis of EVs in different clinical tissue/body fluid samples in past five years.
Collapse
|
20
|
Zhang N, He F, Li T, Chen J, Jiang L, Ouyang XP, Zuo L. Role of Exosomes in Brain Diseases. Front Cell Neurosci 2021; 15:743353. [PMID: 34588957 PMCID: PMC8473913 DOI: 10.3389/fncel.2021.743353] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles that act as messengers to facilitate communication between cells. Non-coding RNAs, proteins, lipids, and microRNAs are delivered by the exosomes to target molecules (such as proteins, mRNAs, or DNA) of host cells, thereby playing a key role in the maintenance of normal brain function. However, exosomes are also involved in the occurrence, prognosis, and clinical treatment of brain diseases, such as Alzheimer's disease, Parkinson's disease, stroke, and traumatic brain injury. In this review, we have summarized novel findings that elucidate the role of exosomes in the occurrence, prognosis, and treatment of brain diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| | - Fengling He
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| | - Ting Li
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| | - Jinzhi Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| | - Liping Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China.,Hunan Taihe Hospital, Changsha, China
| | - Xin-Ping Ouyang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lielian Zuo
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| |
Collapse
|
21
|
Ledreux A, Thomas S, Hamlett ED, Trautman C, Gilmore A, Rickman Hager E, Paredes DA, Margittai M, Fortea J, Granholm AC. Small Neuron-Derived Extracellular Vesicles from Individuals with Down Syndrome Propagate Tau Pathology in the Wildtype Mouse Brain. J Clin Med 2021; 10:3931. [PMID: 34501378 PMCID: PMC8432237 DOI: 10.3390/jcm10173931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) pathology at a young age, including amyloid plaques and neurofibrillary tangles (NFTs). Tau pathology can spread via extracellular vesicles, such as exosomes. The cargo of neuron-derived small extracellular vesicles (NDEVs) from individuals with DS contains p-Tau at an early age. The goal of the study was to investigate whether NDEVs isolated from the blood of individuals with DS can spread Tau pathology in the brain of wildtype mice. We purified NDEVs from the plasma of patients with DS-AD and controls and injected small quantities using stereotaxic surgery into the dorsal hippocampus of adult wildtype mice. Seeding competent Tau conformers were amplified in vitro from DS-AD NDEVs but not NDEVs from controls. One month or 4 months post-injection, we examined Tau pathology in mouse brains. We found abundant p-Tau immunostaining in the hippocampus of the mice injected with DS-AD NDEVs compared to injections of age-matched control NDEVs. Double labeling with neuronal and glial markers showed that p-Tau staining was largely found in neurons and, to a lesser extent, in glial cells and that p-Tau immunostaining was spreading along the corpus callosum and the medio-lateral axis of the hippocampus. These studies demonstrate that NDEVs from DS-AD patients exhibit Tau seeding capacity and give rise to tangle-like intracellular inclusions.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Sarah Thomas
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Camille Trautman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Emily Rickman Hager
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Daniel A. Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Juan Fortea
- Hospital de la Santa Creu i Sant Pau and Catalan Down Syndrome Foundation, 08041 Barcelona, Spain;
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| |
Collapse
|
22
|
Vavougios GD, Nday C, Pelidou SH, Gourgoulianis KI, Stamoulis G, Doskas T, Zarogiannis SG. Outside-in induction of the IFITM3 trafficking system by infections, including SARS-CoV-2, in the pathobiology of Alzheimer's disease. Brain Behav Immun Health 2021; 14:100243. [PMID: 33817671 PMCID: PMC7997139 DOI: 10.1016/j.bbih.2021.100243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND IFITM3 is a viral restriction protein that enables sequestration of viral particles and subsequent trafficking to lysosomes. Recently, IFITM3 upregulation was found to induce gamma - secretase activity and the production of amyloid beta. The purpose of this study was to determine whether dysregulation of IFITM3-dependent pathways was present in neurons and peripheral immune cells donated by AD patients. As a secondary aim, we sought to determine whether these perturbations could be induced by viruses, including SARS-CoV-2. METHODS Gene set enrichment analyses (GSEA) previously performed on publicly available transcriptomic data from tissues donated by AD patients were screened for enriched pathways containing IFITM3. Subsequently, signature containing IFITM3, derived from entorhinal cortex (EC) neurons containing neurofibrillary tangles (NFT) was screened for overlap with curated, publicly available, viral infection-induced gene signatures (including SARS-CoV-2). RESULTS GSEA determined that IFITM3 gene networks are significantly enriched both in CNS sites (entorhinal and hippocampal cortices) and in peripheral blood mononuclear cells (PBMCs) donated by AD patients. Overlap screening revealed that IFITM3 signatures are induced by several viruses, including SARS-CoV, MERS-CoV, SARS-CoV-2 and HIV-1 (adjusted p-value <0.001; Enrichr Database). DISCUSSION A data-driven analysis of AD tissues revealed IFITM3 gene signatures both in the CNS and in peripheral immune cells. GSEA revealed that an IFITM3 derived gene signature extracted from EC/NFT neurons overlapped with those extracted from publicly available viral infection datasets, including SARS-CoV-2. Our results are in line with currently emerging evidence on IFITM3's role in AD, and SARS-CoV-2's potential contribution in the setting of an expanded antimicrobial protection hypothesis.
Collapse
Affiliation(s)
- George D. Vavougios
- Neuroimmunology Laboratory, Department of Neurology, Athens Naval Hospital, P.C., 115 21, Athens, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C., 41500, Larissa, Greece
- Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 – 4, P.C., 35 131, Galaneika, Lamia, Greece
| | - Christiane Nday
- Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, P.C., 5414, Thessaloniki, Greece
| | | | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C., 41500, Larissa, Greece
| | - George Stamoulis
- Department of Electrical and Computer Engineering, University of Thessaly, 37 Glavani – 28th October Str, Deligiorgi Building, 4th Floor, P.C., 382 21, Volos, Greece
- Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 – 4, P.C., 35 131, Galaneika, Lamia, Greece
| | - Triantafyllos Doskas
- Neuroimmunology Laboratory, Department of Neurology, Athens Naval Hospital, P.C., 115 21, Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| |
Collapse
|
23
|
Meldolesi J. Extracellular vesicles (exosomes and ectosomes) play key roles in the pathology of brain diseases. MOLECULAR BIOMEDICINE 2021; 2:18. [PMID: 35006460 PMCID: PMC8607397 DOI: 10.1186/s43556-021-00040-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Last century, neurons and glial cells were mostly believed to play distinct functions, relevant for the brain. Progressively, however, it became clear that neurons, astrocytes and microglia co-operate intensely with each other by release/binding of signaling factors, direct surface binding and generation/release of extracellular vesicles, the exosomes and ectosomes, called together vesicles in this abstract. The present review is focused on these vesicles, fundamental in various brain diseases. Their properties are extraordinary. The specificity of their membrane governs their fusion with distinct target cells, variable depending on the state and specificity of their cells of origin and target. Result of vesicle fusion is the discharge of their cargos into the cytoplasm of target cells. Cargos are composed of critical molecules, from proteins (various nature and function) to nucleotides (especially miRNAs), playing critical roles in immune and neurodegenerative diseases. Among immune diseases is multiple sclerosis, affected by extensive dysregulation of co-trafficking neural and glial vesicles, with distinct miRNAs inducing severe or reducing effects. The vesicle-dependent differences between progressive and relapsing-remitting forms of the disease are relevant for clinical developments. In Alzheimer’s disease the vesicles can affect the brain by changing their generation and inducing co-release of effective proteins, such Aβ and tau, from neurons and astrocytes. Specific miRNAs can delay the long-term development of the disease. Upon their traffic through the blood-brainbarrier, vesicles of various origin reach fluids where they are essential for the identification of biomarkers, important for diagnostic and therapeutic innovations, critical for the future of many brain patients.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Division of Neuroscience, San Raffaele Institute and Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
24
|
Xiao L, Hareendran S, Loh YP. Function of exosomes in neurological disorders and brain tumors. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:55-79. [PMID: 34368812 PMCID: PMC8341051 DOI: 10.20517/evcna.2021.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Exosomes are a subtype of extracellular vesicles released from different cell types including those in the nervous system, and are enriched in a variety of bioactive molecules such as RNAs, proteins and lipids. Numerous studies have indicated that exosomes play a critical role in many physiological and pathological activities by facilitating intercellular communication and modulating cells' responses to external environments. Particularly in the central nervous system, exosomes have been implicated to play a role in many neurological disorders such as abnormal neuronal development, neurodegenerative diseases, epilepsy, mental disorders, stroke, brain injury and brain cancer. Since exosomes recapitulate the characteristics of the parental cells and have the capacity to cross the blood-brain barrier, their cargo can serve as potential biomarkers for early diagnosis and clinical assessment of disease treatment. In this review, we describe the latest findings and current knowledge of the roles exosomes play in various neurological disorders and brain cancer, as well as their application as promising biomarkers. The potential use of exosomes to deliver therapeutic molecules to treat diseases of the central nervous system is also discussed.
Collapse
Affiliation(s)
| | | | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Mathew B, Mansuri MS, Williams KR, Nairn AC. Exosomes as Emerging Biomarker Tools in Neurodegenerative and Neuropsychiatric Disorders-A Proteomics Perspective. Brain Sci 2021; 11:258. [PMID: 33669482 PMCID: PMC7922222 DOI: 10.3390/brainsci11020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
Exosomes are synthesized and secreted by different cell types and contain proteins, lipids, metabolites and RNA species that reflect the physiological status of the cell of origin. As such, exosomes are increasingly being used as a novel reservoir for disease biomarker discovery. However, isolation of exosomes can be challenging due to their nonuniformity of shape and variable tissue of origin. Moreover, various analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein isolated from exosomes. Despite these challenges, techniques to improve proteomic yield and increase protein dynamic range continue to improve at a rapid rate. In this review, we highlight the importance of exosome proteomics in neurodegenerative and neuropsychiatric disorders and the associated technical difficulties. Furthermore, current progress and technological advancements in exosome proteomics research are discussed with an emphasis on disease-associated protein biomarkers.
Collapse
Affiliation(s)
- Boby Mathew
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - M. Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R. Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Angus C. Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
26
|
Yan M, Zheng T. Role of the endolysosomal pathway and exosome release in tau propagation. Neurochem Int 2021; 145:104988. [PMID: 33582164 DOI: 10.1016/j.neuint.2021.104988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
The progressive deposition of misfolded and aggregated forms of Tau protein in the brain is a pathological hallmark of tauopathies, such as Alzheimer's disease (AD) and frontotemporal degeneration (FTD). The misfolded Tau can be released into the extracellular space and internalized by neighboring cells, acting as seeds to trigger the robust conversion of soluble Tau into insoluble filamentous aggregates in a prion-like manner, ultimately contributing to the progression of the disease. However, molecular mechanisms accountable for the propagation of Tau pathology are poorly defined. We reviewed the Tau processing imbalance in endosomal, lysosomal, and exosomal pathways in AD. Increased exosome release counteracts the endosomal-lysosomal dysfunction of Tau processing but increases the number of aggregates and the propagation of Tau. This review summarizes our current understanding of the underlying tauopathy mechanisms with an emphasis on the emerging role of the endosomal-lysosomal-exosome pathways in this process. The components CHMP6, TSG101, and other components of the ESCRT complex, as well as Rab GTPase such as Rab35 and Rab7A, regulate vesicle cargoes routing from endosome to lysosome and affect Tau traffic, degradation, or secretion. Thus, the significant molecular pathways that should be potential therapeutic targets for treating tauopathies are determined.
Collapse
Affiliation(s)
- Minli Yan
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China.
| |
Collapse
|
27
|
Wang AYL. Human Induced Pluripotent Stem Cell-Derived Exosomes as a New Therapeutic Strategy for Various Diseases. Int J Mol Sci 2021; 22:1769. [PMID: 33578948 PMCID: PMC7916646 DOI: 10.3390/ijms22041769] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, an increasing number of studies have demonstrated that induced pluripotent stem cells (iPSCs) and iPSC-derived cells display therapeutic effects, mainly via the paracrine mechanism in addition to their transdifferentiation ability. Exosomes have emerged as an important paracrine factor for iPSCs to repair injured cells through the delivery of bioactive components. Animal reports of iPSC-derived exosomes on various disease models are increasing, such as in heart, limb, liver, skin, bone, eye and neurological disease and so forth. This review aims to summarize the therapeutic effects of iPSC-derived exosomes on various disease models and their properties, such as angiogenesis, cell proliferation and anti-apoptosis, with the hopes of improving their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, 5 Fu-hsing Street, Gueishan, Taoyuan 333, Taiwan
| |
Collapse
|
28
|
Arber C, Alatza A, Leckey CA, Paterson RW, Zetterberg H, Wray S. Mass spectrometry analysis of tau and amyloid-beta in iPSC-derived models of Alzheimer's disease and dementia. J Neurochem 2021; 159:305-317. [PMID: 33539581 PMCID: PMC8613538 DOI: 10.1111/jnc.15315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology enables the generation of human neurons in vitro, which contain the precise genome of the cell donor, therefore permitting the generation of disease models from individuals with a disease-associated genotype of interest. This approach has been extensively used to model inherited forms of Alzheimer's disease and frontotemporal dementia. The combination of iPSC-derived neuronal models with targeted mass spectrometry analysis has provided unprecedented insights into the regulation of specific proteins in human neuronal physiology and pathology. For example enabling investigations into tau and APP/Aβ, specifically: protein isoform expression, relative levels of cleavage fragments, aggregated species and functionally critical post-translational modifications. The use of mass spectrometry has enabled a determination of how closely iPSC-derived models recapitulate disease profiles observed in the human brain. This review will highlight the progress to date in studies using iPSCs and mass spectrometry to model Alzheimer's disease and dementia. We go on to convey our optimism, as studies in the near future will make use of this precedent, together with novel techniques such as genome editing and stable isotope labelling, to provide real progress towards an in depth understanding of early neurodegenerative processes and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claire A Leckey
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,Translational Mass Spectrometry Research Group, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Ross W Paterson
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
29
|
Marzano M, Bou-Dargham MJ, Cone AS, York S, Helsper S, Grant SC, Meckes DG, Sang QXA, Li Y. Biogenesis of Extracellular Vesicles Produced from Human-Stem-Cell-Derived Cortical Spheroids Exposed to Iron Oxides. ACS Biomater Sci Eng 2021; 7:1111-1122. [PMID: 33525864 DOI: 10.1021/acsbiomaterials.0c01286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stem-cell-derived extracellular vesicles (EVs) are promising tools for therapeutic delivery and imaging in the medical research fields. EVs that arise from endosomal compartments or plasma membrane budding consist of exosomes and microvesicles, which range between 30 and 200 nm and 100-1000 nm, respectively. Iron oxide nanoparticles can be used to label stem cells or possibly EVs for magnetic resonance imaging. This could be a novel way to visualize areas in the body that are affected by neurological disorders such as stroke. Human induced pluripotent stem cells (iPSK3 cells) were plated on low-attachment plates and treated with SB431542 and LDN193189 during the first week for the induction of cortical spheroid formation and grown with fibroblast growth factor 2 and cyclopamine during the second week for the neural progenitor cell (iNPC) differentiation. iNPCs were then grown on attachment plates and treated with iron oxide (Fe3O4) nanoparticles at different sizes (8, 15, and 30 nm in diameter) and concentrations (0.1, 10, and 100 μM). The spheroids and media collected from these cultures were used for iron oxide detection as well as EV isolation and characterizations, respectively. MTT assay demonstrated that the increased size and concentration of the iron oxide nanoparticles had little effect on the metabolic activity of iNPCs. In addition, the Live/Dead assay showed high viability in all the nanoparticle treated groups and the untreated control. The EVs isolated from these culture groups were analyzed and displayed similar or higher EV counts compared with control. The observed EV size averaged 200-250 nm, and electron microscopy revealed the expected exosome morphology for EVs from all groups. RT-PCR analysis of EV biogenesis markers (CD63, CD81, Alix, TSG101, Syntenin1, ADAM10, RAB27b, and Syndecan) showed differential expression between the iron-oxide-treated cultures and nontreated cultures, as well as between adherent and nonadherent 3D cultures. Iron oxide nanoparticles were detected inside the cortical spheroid cells but not EVs by MRI. The addition of iron oxide nanoparticles does not induce significant cytotoxic effects to cortical spheroids. In addition,, nanoparticles may stimulate the biogenesis of EVs when added to cortical spheroids in vitro.
Collapse
Affiliation(s)
- Mark Marzano
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32306, United States
| | - Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Allaura S Cone
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32304, United States
| | - Sara York
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32304, United States
| | - Shannon Helsper
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32306, United States.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Samuel C Grant
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32306, United States.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - David G Meckes
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32304, United States
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
30
|
Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights Into the Proteomic Profiling of Extracellular Vesicles for the Identification of Early Biomarkers of Neurodegeneration. Front Neurol 2020; 11:580030. [PMID: 33362690 PMCID: PMC7759525 DOI: 10.3389/fneur.2020.580030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are involved in the development and progression of neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Moreover, EVs have the capacity to modify the physiology of neuronal circuits by transferring proteins, RNA, lipids, and metabolites. The proteomic characterization of EVs (exosomes and microvesicles) from preclinical models and patient samples has the potential to reveal new proteins and molecular networks that affect the normal physiology prior to the appearance of traditional biomarkers of neurodegeneration. Noteworthy, many of the genetic risks associated to the development of Alzheimer's and Parkinson's disease affect the crosstalk between mitochondria, endosomes, and lysosomes. Recent research has focused on determining the role of endolysosomal trafficking in the onset of neurodegenerative diseases. Proteomic studies indicate an alteration of biogenesis and molecular content of EVs as a result of endolysosomal and autophagic dysfunction. In this review, we discuss the status of EV proteomic characterization and their usefulness in discovering new biomarkers for the differential diagnosis of neurodegenerative diseases. Despite the challenges related to the failure to follow a standard isolation protocol and their implementation for a clinical setting, the analysis of EV proteomes has revealed the presence of key proteins with post-translational modifications that can be measured in peripheral fluids.
Collapse
Affiliation(s)
- Ricardo Quiroz-Baez
- Departamento de Investigación Básica, Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México, Mexico
| | - Karina Hernández-Ortega
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| |
Collapse
|
31
|
Gomes AR, Sangani NB, Fernandes TG, Diogo MM, Curfs LMG, Reutelingsperger CP. Extracellular Vesicles in CNS Developmental Disorders. Int J Mol Sci 2020; 21:E9428. [PMID: 33322331 PMCID: PMC7763819 DOI: 10.3390/ijms21249428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) is the most complex structure in the body, consisting of multiple cell types with distinct morphology and function. Development of the neuronal circuit and its function rely on a continuous crosstalk between neurons and non-neural cells. It has been widely accepted that extracellular vesicles (EVs), mainly exosomes, are effective entities responsible for intercellular CNS communication. They contain membrane and cytoplasmic proteins, lipids, non-coding RNAs, microRNAs and mRNAs. Their cargo modulates gene and protein expression in recipient cells. Several lines of evidence indicate that EVs play a role in modifying signal transduction with subsequent physiological changes in neurogenesis, gliogenesis, synaptogenesis and network circuit formation and activity, as well as synaptic pruning and myelination. Several studies demonstrate that neural and non-neural EVs play an important role in physiological and pathological neurodevelopment. The present review discusses the role of EVs in various neurodevelopmental disorders and the prospects of using EVs as disease biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ana Rita Gomes
- Department of Bioengineering and IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (M.M.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands;
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
| | - Nasim Bahram Sangani
- Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands;
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
| | - Tiago G. Fernandes
- Department of Bioengineering and IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (M.M.D.)
| | - M. Margarida Diogo
- Department of Bioengineering and IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (M.M.D.)
| | - Leopold M. G. Curfs
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
| | - Chris P. Reutelingsperger
- Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands;
- GKC-Rett Expertise Centre, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|