1
|
Gökyar A, Şahin MH, Karadağ MK, Bahadır S, Zeynal M, Sipal SA, Aydin MD. Intimal Hemorrhage of Basilar Artery Induced by Severe Vasospasm Following Subarachnoid Hemorrhage: The Experimental Analysis. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 38382642 DOI: 10.1055/a-2273-5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Cerebral vasospasm, a serious complication of subarachnoid hemorrhage (SAH), has been extensively studied for its neurochemical and pathophysiologic mechanisms. However, the contribution of inner elastic membrane dissection and subintimal hemorrhage to basilar artery occlusion remains underexplored. This study investigates inner elastic membrane-related changes in the basilar artery after SAH. METHODS Twenty-four hybrid rabbits were divided into control, sham, and SAH groups, with SAH induced by autologous blood injection. After 2 weeks, basilar artery changes, vasospasm indexes (VSIs), and dissections were evaluated. RESULTS The SAH group showed significantly higher VSI, with vascular wall thickening, luminal narrowing, convoluted smooth muscle cells, intimal elastic membrane disruption, endothelial cell desquamation, and apoptosis. Some SAH animals exhibited subintimal hemorrhage, inner elastic membrane dissection, and ruptures. Basilar arteries with subintimal hemorrhage had notably higher VSI. CONCLUSIONS These findings highlight the role of subintimal hemorrhage and inner elastic membrane dissection in basilar artery occlusion post-SAH, offering valuable insights into vasospasm pathophysiology.
Collapse
Affiliation(s)
- Ahmet Gökyar
- Department of Neurosurgery, Amasya University Faculty of Medicine, Amasya, Turkey
| | - Mehmet Hakan Şahin
- Department of Neurosurgery, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | | | - Sinan Bahadır
- Department of Neurosurgery, Amasya University Faculty of Medicine, Amasya, Turkey
| | - Mete Zeynal
- Department of Neurosurgery, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Sare Altas Sipal
- Department of Pathology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Mehmet D Aydin
- Department of Neurosurgery, Ataturk University Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
2
|
Viderman D, Tapinova K, Abdildin YG. Mechanisms of cerebral vasospasm and cerebral ischaemia in subarachnoid haemorrhage. Clin Physiol Funct Imaging 2023; 43:1-9. [PMID: 36082805 DOI: 10.1111/cpf.12787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022]
Abstract
Subarachnoid haemorrhage (SAH) is a cerebrovascular emergency associated with significant morbidity and mortality. SAH is characterized by heterogeneity, interindividual variation and complexity of pathophysiological responses following extravasation of blood from cerebral circulation. The purpose of this review is to integrate previously established pre-existing factors, pathophysiological pathways and to develop a concept map of mechanisms of SAH-induced cerebral vasospasm and delayed cerebral ischaemia using a systematic approach. We conducted an extensive mapping of a hypothesized sequence of pathophysiological events. Documentation of supporting evidence was done alongside a concept map building. After finalizing the model, we conducted an analysis of the consequences and connections of pathophysiological events. We included the findings of experimental research, focusing on pathophysiological processes. We focused on SAH-induced cerebral vasospasm and delayed cerebral ischaemia as a component of cerebral injury and potential systemic consequences. SAH-induced brain injury occurs within 72 h following haemorrhage. Pathophysiology of cerebral vasospasm may include reduction in NO production, direct activation of calcium channels, upregulating genes involved with inflammation and extracellular matrix remodelling, triggering oxidative stress and free radical damage to smooth muscle and lipid peroxidation of cell membranes, cortical spreading depolarizations, sympathetic activation, finally resulting in the failure of cerebral autoregulation, microthrombosis and cerebral ischaemic injury. This cascade of events might explain why medical therapy often fails to reverse resistant cerebral vasospasm and to prevent cerebral ischaemia.
Collapse
Affiliation(s)
- Dmitriy Viderman
- Department of Biomedical Sciences, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Karina Tapinova
- Department of Biomedical Sciences, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Yerkin G Abdildin
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
3
|
Goursaud S, Martinez de Lizarrondo S, Grolleau F, Chagnot A, Agin V, Maubert E, Gauberti M, Vivien D, Ali C, Gakuba C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Is There a Relevant Experimental Model? A Systematic Review of Preclinical Literature. Front Cardiovasc Med 2021; 8:752769. [PMID: 34869659 PMCID: PMC8634441 DOI: 10.3389/fcvm.2021.752769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI had limited investigation and care in human until 2010, when a multidisciplinary research expert group proposed to define DCI as the occurrence of cerebral infarction (identified on imaging or histology) associated with clinical deterioration. We performed a systematic review to assess whether preclinical models of SAH meet this definition, focusing on the combination of noninvasive imaging and neurological deficits. To this aim, we searched in PUBMED database and included all rodent SAH models that considered cerebral ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications were included. Eight different methods were performed to induce SAH, with blood injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm was the most investigated SAH-related complication (n = 52, 67%) compared to cerebral ischemia (n = 30, 38%), which was never investigated with imaging. Neurological deficits were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between preclinical and clinical standards. In order to enhance research and favor translation to humans, pertinent SAH animal models reproducing DCI are urgently needed.
Collapse
Affiliation(s)
- Suzanne Goursaud
- CHU de Caen Normandie, Service de Réanimation Médicale, Caen, France.,Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - François Grolleau
- Centre d'Epidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France
| | - Audrey Chagnot
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Eric Maubert
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Gauberti
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, Caen, France
| | - Carine Ali
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Clément Gakuba
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU de Caen Normandie, Service d'Anesthésie-Réanimation Chirurgicale, Caen, France
| |
Collapse
|
4
|
Oka F, Chung DY, Suzuki M, Ayata C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Experimental-Clinical Disconnect and the Unmet Need. Neurocrit Care 2020; 32:238-251. [PMID: 30671784 PMCID: PMC7387950 DOI: 10.1007/s12028-018-0650-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Delayed cerebral ischemia (DCI) is among the most dreaded complications following aneurysmal subarachnoid hemorrhage (SAH). Despite advances in neurocritical care, DCI remains a significant cause of morbidity and mortality, prolonged intensive care unit and hospital stay, and high healthcare costs. Large artery vasospasm has classically been thought to lead to DCI. However, recent failure of clinical trials targeting vasospasm to improve outcomes has underscored the disconnect between large artery vasospasm and DCI. Therefore, interest has shifted onto other potential mechanisms such as microvascular dysfunction and spreading depolarizations. Animal models can be instrumental in dissecting pathophysiology, but clinical relevance can be difficult to establish. METHODS Here, we performed a systematic review of the literature on animal models of SAH, focusing specifically on DCI and neurological deficits. RESULTS We find that dog, rabbit and rodent models do not consistently lead to DCI, although some degree of delayed vascular dysfunction is common. Primate models reliably recapitulate delayed neurological deficits and ischemic brain injury; however, ethical issues and cost limit their translational utility. CONCLUSIONS To facilitate translation, clinically relevant animal models that reproduce the pathophysiology and cardinal features of DCI after SAH are urgently needed.
Collapse
Affiliation(s)
- Fumiaki Oka
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Cenk Ayata
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
5
|
Boyacı MG, Rakip U, Aslan A, Koca HB, Aslan E, Korkmaz S, Yıldızhan S. Effects of 2-Aminoethyl Diphenylborinate, a Modulator of Transient Receptor Potential and Orai Channels in Subarachnoid Hemorrhage: An Experimental Study. World Neurosurg 2019; 127:e376-e388. [PMID: 30905651 DOI: 10.1016/j.wneu.2019.03.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cerebral vasospasm remains a serious problem affecting morbidity and mortality in patients with subarachnoid hemorrhage (SAH) during neurosurgery. We aimed to demonstrate the role of the transient receptor potential channel and other channels for Ca2+ in the etiology of cerebral vasospasm using 2-aminoethyl diphenylborinate (2-APB) and the effective dose range of an unstudied pharmacological agent, which can limit vasospasm. METHODS We performed an experimental study using 32 Sprague-Dawley rats divided into 4 groups: sham group (n = 8), SAH group (n = 8), 2-APB group (SAH rats intraperitoneally administered with 0.5 mg/kg 2-APB; n = 8), and 2-APB-2 group (SAH rats intraperitoneally administered with 2 mg/kg 2-APB; n = 8). The rats were sacrificed after 24 hours, and superoxide dismutase, glutathione peroxidase, malondialdehyde, tumor necrosis factor-α, and interleukin-1β in the brain tissue and serum were measured. The histopathological investigation of brain tissue included measurement of the luminal diameter and wall thickness of the basilar artery (BA), and apoptotic cells in the hippocampus were counted after caspase staining. RESULTS Autologous arterial blood injection into the cisterna magna caused vasospasm in rats. 2-APB treatment increased the BA wall thickness and reduced the BA lumen diameter, inducing significant vascular changes. 2-APB also alleviated cell apoptosis at 24 hours after SAH. CONCLUSION In experimental SAH in rats, 2-APB treatment increased the BA wall thickness and reduced the BA lumen diameter, inducing significant vascular changes. 2-APB also alleviated cell apoptosis at 24 hours after SAH.
Collapse
Affiliation(s)
- Mehmet Gazi Boyacı
- Department of Neurosurgery, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey.
| | - Usame Rakip
- Department of Neurosurgery, TCSB Niğde Ömer Halisdemir University Hospital, Niğde, Turkey
| | - Adem Aslan
- Department of Neurosurgery, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| | - Halit Buğra Koca
- Department of Biochemistry, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology and Embryology, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| | - Serhat Korkmaz
- Department of Neurosurgery, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| | - Serhat Yıldızhan
- Department of Neurosurgery, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
7
|
van Lieshout JH, Dibué-Adjei M, Cornelius JF, Slotty PJ, Schneider T, Restin T, Boogaarts HD, Steiger HJ, Petridis AK, Kamp MA. An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2017; 41:917-930. [PMID: 28215029 DOI: 10.1007/s10143-017-0827-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Pathophysiological processes following subarachnoid hemorrhage (SAH) present survivors of the initial bleeding with a high risk of morbidity and mortality during the course of the disease. As angiographic vasospasm is strongly associated with delayed cerebral ischemia (DCI) and clinical outcome, clinical trials in the last few decades focused on prevention of these angiographic spasms. Despite all efforts, no new pharmacological agents have shown to improve patient outcome. As such, it has become clear that our understanding of the pathophysiology of SAH is incomplete and we need to reevaluate our concepts on the complex pathophysiological process following SAH. Angiographic vasospasm is probably important. However, a unifying theory for the pathophysiological changes following SAH has yet not been described. Some of these changes may be causally connected or present themselves as an epiphenomenon of an associated process. A causal connection between DCI and early brain injury (EBI) would mean that future therapies should address EBI more specifically. If the mechanisms following SAH display no causal pathophysiological connection but are rather evoked by the subarachnoid blood and its degradation production, multiple treatment strategies addressing the different pathophysiological mechanisms are required. The discrepancy between experimental and clinical SAH could be one reason for unsuccessful translational results.
Collapse
Affiliation(s)
- Jasper H van Lieshout
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Maxine Dibué-Adjei
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Philipp J Slotty
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Toni Schneider
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, 50931, Köln, Germany
| | - Tanja Restin
- Zurich Centre for Integrative Human Physiology, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Anesthesiology, Medical Faculty, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Hieronymus D Boogaarts
- Department of Neurosurgery, Medical Faculty, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Athanasios K Petridis
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
8
|
Kamp MA, Lieshout JHV, Dibué-Adjei M, Weber JK, Schneider T, Restin T, Fischer I, Steiger HJ. A Systematic and Meta-Analysis of Mortality in Experimental Mouse Models Analyzing Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Transl Stroke Res 2017; 8:206-219. [DOI: 10.1007/s12975-016-0513-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 01/18/2023]
|
9
|
van Lieshout JH, Bruland I, Fischer I, Cornelius JF, Kamp MA, Turowski B, Tortora A, Steiger HJ, Petridis AK. Increased mortality of patients with aneurysmatic subarachnoid hemorrhage caused by prolonged transport time to a high-volume neurosurgical unit. Am J Emerg Med 2017; 35:45-50. [DOI: 10.1016/j.ajem.2016.09.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 01/03/2023] Open
|
10
|
Zemke D, Farooq MU, Mohammed Yahia A, Majid A. Delayed ischemia after subarachnoid hemorrhage: result of vasospasm alone or a broader vasculopathy? Vasc Med 2016; 12:243-9. [PMID: 17848485 DOI: 10.1177/1358863x07081316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The term vasospasm is commonly used to describe constriction of cerebral blood vessels after subarachnoid hemorrhage which results in the restriction of blood flow and ischemia in affected portions of the brain. The pathophysiological changes that underlie vascular constriction after subarachnoid hemorrhage include changes within the vessel walls themselves, alteration of the levels of several vasoactive substances, and broader pathological conditions such as immune responses, inflammation, and oxidative damage. In this review, we summarize the current state of knowledge concerning the processes that occur in cerebral blood vessels after subarachnoid hemorrhage and how they may be involved in the development of vasospasm. We also propose that, rather than merely vasospasm, the multitude of vascular effects occurring after subarachnoid hemorrhage can be best described as a post-subarachnoid hemorrhage vasculopathy.
Collapse
Affiliation(s)
- Daniel Zemke
- Department of Neurology and Ophthalmology Michigan State Univ. East Lansing, MI 48824. USA
| | | | | | | |
Collapse
|
11
|
Sun Y, Shen Q, Watts LT, Muir ER, Huang S, Yang GY, Suarez JI, Duong TQ. Multimodal MRI characterization of experimental subarachnoid hemorrhage. Neuroscience 2016; 316:53-62. [PMID: 26708744 PMCID: PMC4724533 DOI: 10.1016/j.neuroscience.2015.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023]
Abstract
Subarachnoid hemorrhage (SAH) is associated with significant morbidity and mortality. We implemented an in-scanner rat model of mild SAH in which blood or vehicle was injected into the cistern magna, and applied multimodal MRI to study the brain prior to, immediately after (5min to 4h), and upto 7days after SAH. Vehicle injection did not change arterial lumen diameter, apparent diffusion coefficient (ADC), T2, venous signal, vascular reactivity to hypercapnia, or foot-fault scores, but mildly reduce cerebral blood flow (CBF) up to 4h, and open-field activity up to 7days post injection. By contrast, blood injection caused: (i) vasospasm 30min after SAH but not thereafter, (ii) venous abnormalities at 3h and 2days, delayed relative to vasospasm, (iii) reduced basal CBF and to hypercapnia 1-4h but not thereafter, (iv) reduced ADC immediately after SAH but no ADC and T2 changes on days 2 and 7, and (v) reduced open-field activities in both SAH and vehicle animals, but no significant differences in open-field activities and foot-fault tests between groups. Mild SAH exhibited transient and mild hemodynamic disturbances and diffusion changes, but did not show apparent ischemic brain injury nor functional deficits.
Collapse
Affiliation(s)
- Y Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Stereotactic and Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Q Shen
- Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - L T Watts
- Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Neurology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - E R Muir
- Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - S Huang
- Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - G-Y Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Stereotactic and Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - J I Suarez
- Division of Vascular Neurology and Neurocritical Care, Department of Neurology, Baylor College of Medicine, Baylor St Luke's Medical Center, Houston, TX 77027, USA
| | - T Q Duong
- Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Tateyama K, Kobayashi S, Murai Y, Teramoto A. Assessment of cerebral circulation in the acute phase of subarachnoid hemorrhage using perfusion computed tomography. J NIPPON MED SCH 2014; 80:110-8. [PMID: 23657064 DOI: 10.1272/jnms.80.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Primary brain damage, caused by acute ischemic changes during initial hemorrhage, is an important cause of death and disability following subarachnoid hemorrhage (SAH). However, the mechanism underlying the reduction in cerebral circulation in patients in the acute stage of SAH remains unclear. The goal of this study was to clarify this mechanism with the aid of perfusion computed tomography (CT). METHODS We prospectively evaluated 21 patients who had been undergone perfusion CT within 3 hours of SAH onset. Mean transit time (MTT) was estimated. Forty circular regions of interest 5 mm in diameter were delineated in the cortical region of the bilateral hemispheres on perfusion CT images. Neurological condition was graded with the Hunt and Hess scale, and initial CT findings were graded with the Fisher scale. We defined a good outcome as a modified Rankin scale (mRs) score of ≤2 at 3 months after SAH onset. RESULTS Global MTT was an independent predictor of outcome. The global MTT of patients with poor outcomes was longer than that of patients with good outcome. Furthermore, global MTT correlated significantly with Hunt & Hess grades, and disturbances in higher cerebral function. CONCLUSION Hemodynamic disturbances frequently occur after SAH. These abnormalities probably reflect the primary brain damage caused by initial hemorrhage. Perfusion CT is valuable for detecting hemodynamic changes in the acute stages of SAH.
Collapse
|
13
|
Titova E, Ostrowski RP, Zhang JH, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res 2013; 31:568-81. [DOI: 10.1179/174313209x382412] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Thomé C, Schubert GA, Schilling L. Hypothermia as a neuroprotective strategy in subarachnoid hemorrhage: a pathophysiological review focusing on the acute phase. Neurol Res 2013; 27:229-37. [PMID: 15845206 DOI: 10.1179/016164105x25252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a very prevalent challenge in neurosurgery associated with a high morbidity and mortality due to the lack of specific treatment modalities. The prognosis of SAH patients depends primarily on three factors: (i) the severity of the initial bleed, (ii) the endovascular or neurosurgical procedure to occlude the aneurysm and (iii) the occurrence of late sequelae, namely delayed ischemic neurological deficits due to cerebral vasospasm. While neurosurgeons and interventionalists have put significant efforts in minimizing periprocedural complications and a multitude of investigators have been devoted to the research on chronic vasospasm, the acute phase of SAH has not been studied in comparable detail. In various experimental studies during the past decade, hypothermia has been shown to reduce neuronal damage after ischemia, traumatic brain injury and other cerebrovascular diseases. Clinically, only some of these encouraging results could be reproduced. This review analyses results of studies on the effects of hypothermia on SAH with special respect to the acute phase in an experimental setting. Based on the available data, some considerations for the application of mild to moderate hypothermia in patients with subarachnoid hemorrhage are given.
Collapse
Affiliation(s)
- Claudius Thomé
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
15
|
Caner B, Hou J, Altay O, Fuj M, Zhang JH. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 2012; 123 Suppl 2:12-21. [DOI: 10.1111/j.1471-4159.2012.07939.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Basak Caner
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Jack Hou
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Orhan Altay
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Mutsumi Fuj
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | | |
Collapse
|
16
|
Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012; 97:14-37. [PMID: 22414893 PMCID: PMC3327829 DOI: 10.1016/j.pneurobio.2012.02.003] [Citation(s) in RCA: 473] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 12/11/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 h and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients' outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH.
Collapse
Affiliation(s)
- Fatima A Sehba
- The Departments of Neurosurgery and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
17
|
Laslo AM, Eastwood JD, Pakkiri P, Chen F, Lee TY. CT perfusion-derived mean transit time predicts early mortality and delayed vasospasm after experimental subarachnoid hemorrhage. AJNR Am J Neuroradiol 2007; 29:79-85. [PMID: 17965139 DOI: 10.3174/ajnr.a0747] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There are limited indicators available to predict cerebral vasospasm in patients with subarachnoid hemorrhage (SAH). The purpose of this study was to determine if CT perfusion-derived hemodynamic parameters are predictors of vasospasm severity and outcome after experimental SAH. MATERIALS AND METHODS SAH was induced in 25 New Zealand white rabbits. Cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) were measured with CT perfusion before SAH, within 1 hour after SAH, and on days 2, 4, 7, 9, and 16 after SAH. Basilar artery diameter, measured with CT angiography and neurologic scoring, was also obtained on the same days. Differences between animals with moderate-severe delayed vasospasm (>/=24% basilar artery narrowing) and mild delayed vasospasm (<24% basilar artery narrowing) were investigated with repeated measures analysis of variance. Multiple linear regression analysis was used to investigate the relationship between CT perfusion parameters (CBF, CBV, MTT), basilar artery diameter, and neurologic score. RESULTS MTT increase <1 hour after SAH independently predicted mortality within 48 hours of SAH (P < .05). MTT and neurologic deficits were significantly greater with moderate-severe than with mild vasospasm (P < .05). MTT on day 2, but not CBF or CBV, was a significant predictor of subsequent moderate-severe delayed vasospasm (P < .05). CONCLUSION In the rabbit model of experimental SAH, the CT-derived hemodynamic parameter MTT on day 0 predicted early mortality, and MTT on day 2 predicted development of moderate-severe delayed vasospasm. MTT was also significantly correlated with arterial diameter and neurologic score.
Collapse
Affiliation(s)
- A M Laslo
- Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
Türeyen K, Nazlioğlu HO, Alkan T, Kahveci N, Korfali E. Single or Multiple Small Subarachnoid Hemorrhages by Puncturing a Small Branch of the Rat Basilar Artery Causes Chronic Cerebral Vasospasm. Neurosurgery 2005; 56:382-90; discussion 382-90. [PMID: 15670386 DOI: 10.1227/01.neu.0000148004.61621.d2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 10/06/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study looked at the effects of single and multiple small subarachnoid hemorrhage (SAH) caused by puncturing a small branch of the basilar artery in rats. METHODS Rats were subjected to single SAH (n = 21), multiple SAH (n = 21), sham operation (n = 21), or no procedures (control group, n = 7). SAH was induced in rats by transclival puncture of a small branch of the basilar artery. In the multiple-SAH hemorrhage groups, three small hemorrhages were produced in the same artery at three different times (initial and 24 and 48 h). In the single-SAH groups, one small hemorrhage was produced. Measurements of local cerebral blood flow (LCBF) were made at the initial SAH procedure and at three different time points. Seven animals from each general grouping were killed on Days 4, 10, and 14 (after LCBF was measured). Three different levels of the basilar artery were examined in each animal. Luminal area and arterial wall thickness were measured, and the findings were compared with control and corresponding sham group findings. RESULTS LCBF dropped dramatically (by 40%) immediately after SAH and reached levels near baseline within 15 minutes (n = 42) (P < 0.001). LCBF continued to drop after initial SAH and reached the lowest level on Day 10 (P < 0.001) or Day 14 (P < 0.05). Significant luminal narrowing (P < 0.01) and thickening of the arterial wall (P < 0.01) were observed in both groups. CONCLUSION Single or multiple small SAHs produced by puncturing the basilar artery in the rat cause similar acute and chronic cerebral vasospasm.
Collapse
Affiliation(s)
- Kudret Türeyen
- Department of Neurosurgery, University of Süleyman Demirel, Isparta, Turkey, and Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | | | | | | | | |
Collapse
|
19
|
Alkan T, Korfali E, Kahveci N. Experimental subarachnoid haemorrhage models in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 83:61-9. [PMID: 12442623 DOI: 10.1007/978-3-7091-6743-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is no comprehensive and reliable model available in small animals that are suitable for the study of subarachnoid haemorrhage (SAH). In the study we reviewed the advantages and disadvantages of available SAH models in rats and presented our model. Experimental SAH was induced in a group of 350-450 g Sprague-Dawley rats. A 2 mm-diameter burr hole was drilled and, working under a microscope, haemorrhage was produced by transclival puncture of the basilar artery with a 20 microns thick piece of glass. The rats were assigned to either the experimental group (n: 7) or the control group (n: 7). Local cerebral blood flow (LCBF), intracranial pressure (ICP), and cerebral perfusion pressure (CPP) were measured for 60 min after SAH, after which the rats were decapitated. Microscopic examinations were done on three different segments of the basilar artery. There was a significant and sharp drop in LCBF just after SAH was induced (56.17 +/- 12.80 mlLD/min/100 g and 13.57 +/- 5.85 mlLD/min/100 g for baseline and post-SAH, respectively; p < 0.001), the flow slowly increased by the end of the experiment but never recovered to pre-SAH values (43.63 +/- 7.6 mlLD/min/100 g, p < 0.05). ICP (baseline 7.33 +/- 0.8 mmHg) increased acutely to 70.6 +/- 9.2 mmHg, and also returned to normal levels by 60 min after SAH. CPP (baseline 75.1 +/- 4.9 mmHg) dropped accordingly (to 21.0 +/- 6.3 mmHg) and then increased, reaching 70.1 +/- 4.9 mmHg at 60 min after SAH. Examinations of the arteries revealed decreased inner luminal diameter and distortion of the elastica layer. We present an inexpensive and reliable model of SAH in the rat that allows single and multiple haemorrhages and to study the early and late course of pathological changes.
Collapse
Affiliation(s)
- T Alkan
- Department of Physiology, Uludag University, School of Medicine, Bursa, Turkey
| | | | | |
Collapse
|