1
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Gamez M, Elhegni HE, Fawaz S, Ho KH, Campbell NW, Copland DA, Onions KL, Butler MJ, Wasson EJ, Crompton M, Ramnath RD, Qiu Y, Yamaguchi Y, Arkill KP, Bates DO, Turnbull JE, Zubkova OV, Welsh GI, Atan D, Satchell SC, Foster RR. Heparanase inhibition as a systemic approach to protect the endothelial glycocalyx and prevent microvascular complications in diabetes. Cardiovasc Diabetol 2024; 23:50. [PMID: 38302978 PMCID: PMC10835837 DOI: 10.1186/s12933-024-02133-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.
Collapse
Affiliation(s)
- Monica Gamez
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| | - Hesham E Elhegni
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Sarah Fawaz
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Kwan Ho Ho
- Department of Computer Science, Merchant Venturers Building, University of Bristol, Woodland Road, Bristol, BS8 1UB, United Kingdom
| | - Neill W Campbell
- Department of Computer Science, Merchant Venturers Building, University of Bristol, Woodland Road, Bristol, BS8 1UB, United Kingdom
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Karen L Onions
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Elizabeth J Wasson
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Michael Crompton
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Raina D Ramnath
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kenton P Arkill
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - David O Bates
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Jeremy E Turnbull
- Centre for Glycoscience, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Olga V Zubkova
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5046, New Zealand
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Denize Atan
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Bristol Eye Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, BS1 2LX, United Kingdom
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| |
Collapse
|
3
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Díaz-Lezama N, Wu Z, Adán-Castro E, Arnold E, Vázquez-Membrillo M, Arredondo-Zamarripa D, Ledesma-Colunga MG, Moreno-Carranza B, Martinez de la Escalera G, Colosi P, Clapp C. Diabetes enhances the efficacy of AAV2 vectors in the retina: therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1. J Transl Med 2016; 96:283-95. [PMID: 26568297 DOI: 10.1038/labinvest.2015.135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Adeno-associated virus (AAV) vector-mediated delivery of inhibitors of blood-retinal barrier breakdown (BRBB) offers promise for the treatment of diabetic macular edema. Here, we demonstrated a reversal of blood-retinal barrier pathology mediated by AAV type 2 (AAV2) vectors encoding vasoinhibin or soluble VEGF receptor 1 (sFlt-1) when administered intravitreally to diabetic rats. Efficacy and safety of the AAV2 vasoinhibin vector were tested by monitoring its effect on diabetes-induced changes in the retinal vascular bed and thickness, and in the electroretinogram (ERG). Also, the transduction of AAV2 vectors and expression of AAV2 receptors and co-receptors were compared between the diabetic and the non-diabetic rat retinas. AAV2 vasoinhibin or AAV2 sFlt-1 vectors were injected intravitreally before or after enhanced BRBB due to diabetes induced by streptozotocin. The BRBB was examined by the Evans blue method, the vascular bed by fluorescein angiography, expression of the AAV2 EGFP reporter vector by confocal microscopy, and the AAV2 genome, expression of transgenes, receptors, and co-receptors by quantitative PCR. AAV2 vasoinhibin and sFlt-1 vectors inhibited the diabetes-mediated increase in BRBB when injected after, but not before, diabetes was induced. The AAV2 vasoinhibin vector decreased retinal microvascular abnormalities and the diabetes-induced reduction of the B-wave of the ERG, but it had no effect in non-diabetic controls. Also, retinal thickness was not altered by diabetes or by the AAV2 vasoinhibin vector. The AAV2 genome, vasoinhibin and sFlt-1 transgenes, and EGFP levels were higher in the retinas from diabetic rats and were associated with an elevated expression of AAV2 receptors (syndecan, glypican, and perlecan) and co-receptors (fibroblast growth factor receptor 1, αvβ5 integrin, and hepatocyte growth factor receptor). We conclude that retinal transduction and efficacy of AAV2 vectors are enhanced in diabetes, possibly due to their elevated cell entry. AAV2 vectors encoding vasoinhibin and sFlt-1 may be desirable gene therapeutics to target diabetic retinopathy and macular edema.
Collapse
Affiliation(s)
- Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, NIH, Bethesda, MD, USA
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | | | | | | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
5
|
Reinhard J, Joachim SC, Faissner A. Extracellular matrix remodeling during retinal development. Exp Eye Res 2015; 133:132-40. [DOI: 10.1016/j.exer.2014.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
6
|
Park PJ, Shukla D. Role of heparan sulfate in ocular diseases. Exp Eye Res 2013; 110:1-9. [PMID: 23410824 DOI: 10.1016/j.exer.2013.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Heparan sulfate (HS), a ubiquitous and structurally diverse cell surface polysaccharide and extracellular matrix component, is a factor common to several major eye pathologies. Its multitude of functions and variable distribution among the different ocular tissues makes it an important contributor to a variety of disease states. Although HS facilitates the pathogenesis of many disorders, its role in each varies. Unique functions of HS have been particularly noted in viral and bacterial keratitis and age-related macular degeneration. Combined, these pathologies comprise a large portion of conditions leading to visual impairment worldwide. Given this prevalence of diseases facilitated by HS, it is prudent to take an in-depth look at this compound in the context of these pathologic states. While the initial part of the review will discuss the pathogenic aspects of HS, it is also important to consider the wider implications of such roles for HS. The remainder of the article will specifically address one such implication, the possibility for future use of novel HS-based therapeutics to combat these eye pathologies.
Collapse
Affiliation(s)
- Paul J Park
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
7
|
Keenan TDL, Clark SJ, Unwin RD, Ridge LA, Day AJ, Bishop PN. Mapping the differential distribution of proteoglycan core proteins in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci 2012; 53:7528-38. [PMID: 23074202 DOI: 10.1167/iovs.12-10797] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To examine the presence and distribution of proteoglycan (PG) core proteins in the adult human retina, choroid, and sclera. METHODS Postmortem human eye tissue was dissected into Bruch's membrane/choroid complex, isolated Bruch's membrane, or neurosensory retina. PGs were extracted and partially purified by anion exchange chromatography. Trypsinized peptides were analyzed by tandem mass spectrometry and PG core proteins identified by database search. The distribution of PGs was examined by immunofluorescence microscopy on human macular tissue sections. RESULTS The basement membrane PGs perlecan, agrin, and collagen-XVIII were identified in the human retina, and were present in the internal limiting membrane, blood vessel walls, and Bruch's membrane. The hyalectans versican and aggrecan were also detected. Versican was identified in Bruch's membrane, while aggrecan was distributed throughout the retina, choroid, and sclera. The cartilage link protein HAPLN1 was abundant in the interphotoreceptor matrix and sclera, while HAPLN4 (brain link protein 2) was found throughout the retina and choroid. The small leucine-rich repeat PG (SLRP) family members biglycan, decorin, fibromodulin, lumican, mimecan, opticin, and prolargin were present, with different patterns of distribution in the retina, choroid, and sclera. CONCLUSIONS A combination of proteomics and immunohistochemistry approaches has provided for the first time a comprehensive analysis of the presence and distribution of PG core proteins throughout the human retina, choroid, and sclera. This complements our knowledge of glycosaminoglycan chain distribution in the human eye, and has important implications for understanding the structure and functional regulation of the eye in health and disease.
Collapse
Affiliation(s)
- Tiarnan D L Keenan
- Centre for Ophthalmology and Vision Research, Institute of Human Development, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Clark SJ, Keenan TDL, Fielder HL, Collinson LJ, Holley RJ, Merry CLR, van Kuppevelt TH, Day AJ, Bishop PN. Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci 2011; 52:6511-21. [PMID: 21746802 DOI: 10.1167/iovs.11-7909] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE. To map the distribution of different classes of glycosaminoglycans (GAGs) in the healthy human retina, choroid, and sclera. METHODS. Frozen tissue sections were made from adult human donor eyes. The GAG chains of proteoglycans (PGs) were detected with antibodies directed against various GAG structures (either directly or after pretreatment with GAG-degrading enzymes); hyaluronan (HA) was detected using biotinylated recombinant G1-domain of human versican. The primary detection reagents were identified with FITC-labeled probes and analyzed by fluorescence microscopy. RESULTS. Heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and HA were present throughout the retina and choroid, but keratan sulfate (KS) was detected only in the sclera. HS labeling was particularly strong in basement membrane-containing structures, the nerve fiber layer (NFL), and retinal pigment epithelium (RPE)-for example, intense staining was seen with an antibody that binds strongly to sequences containing 3-O-sulfation in the internal limiting membrane (ILM) and in the basement membrane of blood vessels. Unsulfated CS was seen throughout the retina, particularly in the ILM and interphotoreceptor matrix (IPM) with 6-O-sulfated CS also prominent in the IPM. There was labeling for DS throughout the retina and choroid, especially in the NFL, ganglion cell layer, and blood vessels. CONCLUSIONS. The detection of GAG chains with specific probes and fluorescence microscopy provides for the first time a detailed analysis of their compartmentalization in the human retina, by both GAG chain type and sulfation pattern. This reference map provides a basis for understanding the functional regulation of GAG-binding proteins in health and disease processes.
Collapse
|
9
|
Iozzo RV, Zoeller JJ, Nyström A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells 2009; 27:503-13. [PMID: 19466598 PMCID: PMC6712562 DOI: 10.1007/s10059-009-0069-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 04/25/2009] [Indexed: 01/13/2023] Open
Abstract
Proteoglycans located in basement membranes, the nanostructures underling epithelial and endothelial layers, are unique in several respects. They are usually large, elongated molecules with a collage of domains that share structural and functional homology with numerous extracellular matrix proteins, growth factors and surface receptors. They mainly carry heparan sulfate side chains and these contribute not only to storing and preserving the biological activity of various heparan sulfate-binding cytokines and growth factors, but also in presenting them in a more "active configuration" to their cognate receptors. Abnormal expression or deregulated function of these proteoglycans affect cancer and angiogenesis, and are critical for the evolution of the tumor microenvironment. This review will focus on the functional roles of the major heparan sulfate proteoglycans from basement membrane zones: perlecan, agrin and collagen XVIII, and on their roles in modulating cancer growth and angiogenesis.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
10
|
Baba T, Grebe R, Hasegawa T, Bhutto I, Merges C, McLeod DS, Lutty GA. Maturation of the fetal human choriocapillaris. Invest Ophthalmol Vis Sci 2009; 50:3503-11. [PMID: 19264887 DOI: 10.1167/iovs.08-2614] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to examine the structural and functional maturation of the choriocapillaris (CC) and to determine when fenestrations form, the capillaries are invested with pericytes, and the endothelial cells (ECs) became functional. METHODS Immunohistochemistry was performed on cryopreserved sections of embryonic/fetal human eyes from 7 to 22 weeks' gestation (WG), using antibodies against PAL-E, PV-1 (fenestrations), carbonic anhydrase IV (CA IV), eNOS, and alpha-smooth muscle actin (alphaSMA) and NG2 (two pericyte markers) and the EC marker (CD31). Alkaline phosphatase (APase) enzymatic activity was demonstrated by enzyme histochemistry. Transmission electron microscopy (TEM) was performed on eyes at 11, 14, 16, and 22 WG. Adult human eyes were used as the positive control. RESULTS All EC markers were present in the CC by 7 WG. PAL-E, CA IV, and eNOS immunoreactivities and APase activity were present in the CC by 7 to 9 WG. TEM analysis demonstrated how structurally immature this vasculature was, even at 11 WG: no basement membrane, absence of pericytes, and poorly formed lumens that were filled with filopodia. The few fenestrations that were observed were often present within the luminal space in the filopodia. Contiguous fenestrations and significant PV-1 were not observed until 21 to 22 WG. alphaSMA was prominent at 22 WG, and the maturation of pericytes was confirmed by TEM. CONCLUSIONS It appears that ECs and their precursors express enzymes present in adult CC well before they are structurally mature. Although ECs make tight junctions early in development, contiguous fenestrations and mature pericytes occur much later in development.
Collapse
Affiliation(s)
- Takayuki Baba
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland 21287-9115, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Cellular signaling and potential new treatment targets in diabetic retinopathy. EXPERIMENTAL DIABETES RESEARCH 2008; 2007:31867. [PMID: 18288248 PMCID: PMC2233770 DOI: 10.1155/2007/31867] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 05/02/2007] [Accepted: 09/13/2007] [Indexed: 12/16/2022]
Abstract
Dysfunction and death of microvascular cells and imbalance between the production and the degradation of extracellular matrix (ECM) proteins are a characteristic feature of diabetic retinopathy (DR). Glucose-induced biochemical alterations in the vascular endothelial cells may activate a cascade of signaling pathways leading to increased production of ECM proteins and cellular dysfunction/death. Chronic diabetes leads to the activation of a number of signaling proteins including protein kinase C, protein kinase B, and mitogen-activated protein kinases. These signaling cascades are activated in response to hyperglycemia-induced oxidative stress, polyol pathway, and advanced glycation end product formation among others. The aberrant signaling pathways ultimately lead to activation of transcription factors such as nuclear factor-κB and activating protein-1. The activity of these transcription factors is also regulated by epigenetic mechanisms through transcriptional coactivator p300. These complex signaling pathways may be involved in glucose-induced alterations of endothelial cell phenotype leading to the production of increased ECM proteins and vasoactive effector molecules causing functional and structural changes in the microvasculature. Understanding of such mechanistic pathways will help to develop future adjuvant therapies for diabetic retinopathy.
Collapse
|
12
|
Torffvit O, Eriksson JW, Henricsson M, Sundkvist G, Arnqvist HJ, Blohmé G, Bolinder J, Nyström L, Ostman J, Svensson M. Early changes in glomerular size selectivity in young adults with type 1 diabetes and retinopathy. Results from the Diabetes Incidence Study in Sweden. J Diabetes Complications 2007; 21:246-51. [PMID: 17616355 DOI: 10.1016/j.jdiacomp.2006.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the relationship between early-onset retinopathy and urinary markers of renal dysfunction. RESEARCH DESIGN AND METHODS The Diabetes Incidence Study in Sweden (DISS) aims to register all new cases of diabetes in young adults (15-34 years). In 1987-1988, 806 patients were reported and later invited to participate in a follow-up study focusing on microvascular complications after approximately 10 years of diabetes. In the present study, 149 patients with type 1 diabetes, completed eye examination, and urine sampling were included. RESULTS The patients with retinopathy (n=58, 39%) had higher HbA(1c) (P<.001) and urinary IgG2/creatinine (P<.05) and IgG2/IgG4 ratios (P<.05). Patients with maculopathy had the highest levels. No significant differences in urinary albumin/creatinine, glycosaminoglycans (GAGs)/creatinine, Tamm-Horsfall protein (THP)/creatinine, and IgG4/creatinine ratios were found. Women had higher urinary albumin/creatinine (P<.01) and urinary IgG2/creatinine ratios (P<.01) than men. CONCLUSIONS Young adults with type 1 diabetes and early-onset retinopathy had higher IgG2/creatinine and IgG2/IgG4 ratios than patients without retinopathy indicating that retinopathy is associated with a change in glomerular size selectivity. This was found in association with normal urinary albumin and THP excretion and may be suspected to reflect early general vascular changes.
Collapse
Affiliation(s)
- Ole Torffvit
- Department of Medicine, University Hospital of Lund, Lund University, S-221 85 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen CP, Chang SC, Vivian Yang WC. High glucose alters proteoglycan expression and the glycosaminoglycan composition in placentas of women with gestational diabetes mellitus and in cultured trophoblasts. Placenta 2006; 28:97-106. [PMID: 16630654 DOI: 10.1016/j.placenta.2006.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/07/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Impaired glucose metabolism with diabetes may alter the expressions of proteoglycans (PGs), which may impair the biological functions of placenta. In this study, we investigated the expression of PGs and their conjugated glycosaminoglycan (GAG) composition in the placentas of mothers with gestational diabetes mellitus (GDM) and trophoblasts cultured in a high-glucose condition. The PGs by guanidine/HCl extraction and DEAE Sepharose fractionation followed by GAG degradation enzyme digestion analyses showed that the expression of chondroitin sulfate and/or dermatan sulfate (CS/DS) PGs was increased whereas the heparan sulfate (HS) PG was decreased in GDM placentas compared to controls. Western blot analyses demonstrated that the increased CS/DS PGs in GDM placentas were predominantly the small leucine-rich proteoglycans (SLRPs), decorin and biglycan. Increased mRNA expression level was consistently shown by quantitative real-time PCR. Immunohistochemistry indicated intensive staining of decorin and biglycan in the diabetic placenta with different localizations. Additionally, the basement membrane HSPG, perlecan was found to contain both CS/DS and HS in GDM placentas and plain HS in controls. Similar findings of PG alterations induced by hyperglycemia were observed in cultured trophoblast in a high-glucose condition. This study demonstrated that hyperglycemia induced not only the gene expressions of PGs but also alterations in the carried GAG type and composition.
Collapse
Affiliation(s)
- C-P Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan; Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
Nicholas A. K, Jacques P. B. Genetically Mediated and Acquired Basement Membrane Disorders. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Menne J, Park JK, Boehne M, Elger M, Lindschau C, Kirsch T, Meier M, Gueler F, Fiebeler A, Bahlmann FH, Leitges M, Haller H. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice. Diabetes 2004; 53:2101-9. [PMID: 15277392 DOI: 10.2337/diabetes.53.8.2101] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Activation of protein kinase C (PKC) isoforms has been implicated in the pathogenesis of diabetic nephropathy. We showed earlier that PKC-alpha is activated in the kidneys of hyperglycemic animals. We now used PKC-alpha(-/-) mice to test the hypothesis that this PKC isoform mediates streptozotocin-induced diabetic nephropathy. We observed that renal and glomerular hypertrophy was similar in diabetic wild-type and PKC-alpha(-/-) mice. However, the development of albuminuria was almost absent in the diabetic PKC-alpha(-/-) mice. The hyperglycemia-induced downregulation of the negatively charged basement membrane heparan sulfate proteoglycan perlecan was completely prevented in the PKC-alpha(-/-) mice, compared with controls. We then asked whether transforming growth factor-beta1 (TGF-beta1) and/or vascular endothelial growth factor (VEGF) is implicated in the PKC-alpha-mediated changes in the basement membrane. The hyperglycemia-induced expression of VEGF165 and its receptor VEGF receptor II (flk-1) was ameliorated in PKC-alpha(-/-) mice, whereas expression of TGF-beta1 was not affected by the lack of PKC-alpha. Our findings indicate that two important features of diabetic nephropathy-glomerular hypertrophy and albuminuria-are differentially regulated. The glucose-induced albuminuria seems to be mediated by PKC-alpha via downregulation of proteoglycans in the basement membrane and regulation of VEGF expression. Therefore, PKC-alpha is a possible therapeutic target for the prevention of diabetic albuminuria.
Collapse
|
16
|
Abstract
This assay employs a biotinylated heparan sulfate glycosaminoglycan (HSGAG) substrate that is covalently linked to the surface of 96-well immunoassay plates. The ratio of biotin:HSGAG and the coating concentration of substrate bound to the wells have been optimized and allow removal of biotin HSGAG within 60 min of incubation at 37 degrees C in assay buffer with a standard dilution of bacterial heparitinase or platelet heparanase. Loss of biotin signal from the well surface is detected on incubation with peroxidase-streptavidin followed by color development using 3,3',5,5'-tetramethylbenzidine as the peroxidase substrate. The new assay allows specific detection of heparanase activity in multiple samples in a total time of 3 h including a 1-h substrate digestion step and is a significant improvement with regard to sensitivity, specificity, and ease of handling of multiple samples compared to other described assays. Heparanase specifically degrades the biotinylated HSGAG substrate, when used with an optimized assay buffer. A range of enzymes including collagenase, trypsin, plasmin, pepsin, chondroitinases, hyaluronidase, and neuraminidase show no effect on the substrate under optimized assay conditions. The covalent linkage of the substrate to the well prevents leaching of substrate and allows preparation and long-term storage of substrate-coated plates. The assay can be used to detect heparanase levels in clinical samples and cell culture supernatants and is ideal as a screening method for antagonists of enzyme activity.
Collapse
Affiliation(s)
- Farhad Behzad
- Department of Medicine, University of Manchester, M13 9WL Manchester, UK.
| | | |
Collapse
|
17
|
Koyama R, Nakanishi T, Ikeda T, Shimizu A. Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 792:5-21. [PMID: 12828993 DOI: 10.1016/s1570-0232(03)00133-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A catalogue of proteins in the human vitreous humor may contribute to elucidating the pathogenesis of various diseases in ophthalmology. To improve the recovery of proteins in vitreous, we applied one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D-PAGE). Proteins were extracted from unstained gel strips and digested in gel with trypsin and the peptides were analyzed by capillary-column reversed-phase high-performance liquid chromatography coupled with electrospray ionization-ion trap-mass spectrometry. From a patient with diabetic retinopathy, 84 different proteins were identified. Most of the proteins which we identified in vitreous previously using 2D-PAGE were also identified in the present study. In total, we identified 121 different proteins including five proteins seen at the genomic level only. Four angiogenic factors, insulin-like growth factor, vascular endothelial growth factor, fibroblast growth factor, and placental endothelial cell growth factor, and three anti-angiogenic factors, pigment epithelium-derived factor, endostatin, and thrombospondin, were found, and this may contribute to elucidating the pathological changes in the concentration and the modified structures of these proteins, in diseases of the retina, especially, diabetic retinopathy.
Collapse
Affiliation(s)
- Reiko Koyama
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigakucho, Takatsuki, Osaka 569-8686, Japan
| | | | | | | |
Collapse
|
18
|
Abstract
The alterations in the microvascular system of diabetes mellitus patients are responsible for the most devastating complications of this widespread disease. In the kidney, the microangiopathy leads to thickening of the glomerular capillary basement membrane but also to the expansion of the mesangial matrix and thickening of the tubular basement membrane. Several mechanisms are implicated in the pathogenesis of diabetic renal microangiopathy. These include increased synthesis of type IV collagen following hyperglycaemia-induced alteration of the pattern of podocyte-integrin expression, decreased expression of matrix metalloproteinases (MMP-2 and 3), and increased expression of tissue inhibitor of metalloproteinase (TIMP). An altered morphology of podocytes accompanies these basement membrane alterations. Other factors which may contribute to renal matrix accumulation include vascular endothelial growth factor (VEGF), since treatment with anti-VEGF antibodies attenuates glomerular basement membrane thickening, platelet-derived growth factor (PDGF) (B chain) and its receptor, which appear to be highly expressed in mesangial and visceral epithelial cells and might play a role in the development of diabetic nephropathy. Also oxygen radicals/oxidative stress may play a role in matrix accumulation in diabetic nephropathy as aminoguanidine, an inhibitor of the formation of advanced glycation end-products but with antioxidant properties, attenuates diabetic nephropathy. Retinal diabetic microangiopathy follows much the same principles, be it that microvascular proliferation is a distinctive element in the retina. Nephropathy and retinopathy occur frequently but not always together, indicating that in their multifactorial pathogenesis much remains to be clarified.
Collapse
Affiliation(s)
- Effie C Tsilibary
- Institute of Biology, NCSR Demokritos, Agia Paraskevi, 153 10 Greece.
| |
Collapse
|