1
|
Xu K, Zhu J, Zhai H, Yang Q, Zhou K, Song Q, Wu J, Liu D, Li Y, Xia Z. A single-nucleotide polymorphism in PvPW1 encoding β-1,3-glucanase 9 is associated with pod width in Phaseolus vulgaris L. J Genet Genomics 2024; 51:1413-1422. [PMID: 39389459 DOI: 10.1016/j.jgg.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Pod width influences pod size, shape, yield, and consumer preference in snap beans (Phaseolus vulgaris L.). In this study, we map PvPW1, a quantitative trait locus associated with pod width in snap beans, through genotyping and phenotyping of recombinant plants. We identify Phvul.006G072800, encoding the β-1,3-glucanase 9 protein, as the causal gene for PvPW1. The PvPW1G3555 allele is found to positively regulate pod width, as revealed by an association analysis between pod width phenotype and the PvPW1G3555C genotype across 17 bi-parental F2 populations. In total, 97.7% of the 133 wide pod accessions carry PvPW1G3555, while 82.1% of the 78 narrow pod accessions carry PvPW1C3555, indicating strong selection pressure on PvPW1 during common bean breeding. Re-sequencing data from 59 common bean cultivars identify an 8-bp deletion in the intron linked to PvPW1C3555, leading to the development of the InDel marker of PvM436. Genotyping 317 common bean accessions with PvM436 demonstrated that accessions with PvM436247 and PvM436227 alleles have wider pods compared to those with PvM436219 allele, establishing PvM436 as a reliable marker for molecular breeding in snap beans. These findings highlight PvPW1 as a critical gene regulating pod width and underscore the utility of PvM436 in marker-assisted selection for snap bean breeding.
Collapse
Affiliation(s)
- Kun Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Jinlong Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Hong Zhai
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Qiang Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Keqin Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Qijian Song
- USDA ARS, Soybean Genome & Improvement Lab, Beltsville 20705, USA
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Dajun Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, Heilongjiang 150000, China.
| | - Yanhua Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China.
| | - Zhengjun Xia
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
2
|
Fang S, Shang X, He Q, Li W, Song X, Zhang B, Guo W. A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition. PLANT PHYSIOLOGY 2023; 194:106-123. [PMID: 37427813 DOI: 10.1093/plphys/kiad407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
β-1,3-glucanase functions in plant physiological and developmental processes. However, how β-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a β-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of β-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze β-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.
Collapse
Affiliation(s)
- Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Yu Y, Wang S, Xu C, Xiang L, Huang W, Zhang X, Tian B, Mao C, Li T, Wang S. The β-1,3-Glucanase Degrades Callose at Plasmodesmata to Facilitate the Transport of the Ribonucleoprotein Complex in Pyrus betulaefolia. Int J Mol Sci 2023; 24:ijms24098051. [PMID: 37175758 PMCID: PMC10179145 DOI: 10.3390/ijms24098051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Grafting is widely used to improve the stress tolerance and the fruit yield of horticultural crops. Ribonucleoprotein complexes formed by mRNAs and proteins play critical roles in the communication between scions and stocks of grafted plants. In Pyrus betulaefolia, ankyrin was identified previously to promote the long-distance movement of the ribonucleoprotein complex(PbWoxT1-PbPTB3) by facilitating callose degradation at plasmodesmata. However, the mechanism of the ankyrin-mediated callose degradation remains elusive. In this study, we discovered a β-1,3-glucanase (EC 3.2.1.39, PbPDBG) using ankyrin as a bait from plasmodesmata by co-immunoprecipitation and mass spectrometry. Ankyrin was required for the plasmodesmata-localization of PbPDBG. The grafting and bombardment experiments indicated that overexpressing PbPDBG resulted in decreased callose content at plasmodesmata, and thereby promoting the long-distance transport of the ribonucleoprotein complex. Altogether, our findings revealed that PbPDBG was the key factor in ankyrin-mediated callose degradation at plasmodesmata.
Collapse
Affiliation(s)
- Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiao Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Baihui Tian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chong Mao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Tucker MR, Lou H, Aubert MK, Wilkinson LG, Little A, Houston K, Pinto SC, Shirley NJ. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E42. [PMID: 29857498 PMCID: PMC6028917 DOI: 10.3390/plants7020042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.
Collapse
Affiliation(s)
- Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Haoyu Lou
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Alan Little
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Sara C Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| |
Collapse
|
5
|
Jopcik M, Matusikova I, Moravcikova J, Durechova D, Libantova J. The expression profile of Arabidopsis thaliana β-1,3-glucanase promoter in tobacco. Mol Biol 2015. [DOI: 10.1134/s0026893315040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 2012; 34:1983-90. [PMID: 22850791 DOI: 10.1007/s10529-012-1012-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
β-1,3-Glucanases are abundant in plants and have been characterized from a wide range of species. They play key roles in cell division, trafficking of materials through plasmodesmata, in withstanding abiotic stresses and are involved in flower formation through to seed maturation. They also defend plants against fungal pathogens either alone or in association with chitinases and other antifungal proteins. They are grouped in the PR-2 family of pathogenesis-related (PR) proteins. Use of β-1,3-glucanase genes as transgenes in combination with other antifungal genes is a plausible strategy to develop durable resistance in crop plants against fungal pathogens. These genes, sourced from alfalfa, barley, soybean, tobacco, and wheat have been co-expressed along with other antifungal proteins, such as chitinases, peroxidases, thaumatin-like proteins and α-1-purothionin, in various crop plants with promising results that are discussed in this review.
Collapse
|
7
|
Zavaliev R, Ueki S, Epel BL, Citovsky V. Biology of callose (β-1,3-glucan) turnover at plasmodesmata. PROTOPLASMA 2011; 248:117-30. [PMID: 21116665 PMCID: PMC9473521 DOI: 10.1007/s00709-010-0247-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/17/2010] [Indexed: 05/19/2023]
Abstract
The turnover of callose (β-1,3-glucan) within cell walls is an essential process affecting many developmental, physiological and stress related processes in plants. The deposition and degradation of callose at the neck region of plasmodesmata (Pd) is one of the cellular control mechanisms regulating Pd permeability during both abiotic and biotic stresses. Callose accumulation at Pd is controlled by callose synthases (CalS; EC 2.4.1.34), endogenous enzymes mediating callose synthesis, and by β-1,3-glucanases (BG; EC 3.2.1.39), hydrolytic enzymes which specifically degrade callose. Transcriptional and posttranslational regulation of some CalSs and BGs are strongly controlled by stress signaling, such as that resulting from pathogen invasion. We review the role of Pd-associated callose in the regulation of intercellular communication during developmental, physiological, and stress response processes. Special emphasis is placed on the involvement of Pd-callose in viral pathogenicity. Callose accumulation at Pd restricts virus movement in both compatible and incompatible interactions, while its degradation promotes pathogen spread. Hence, studies on mechanisms of callose turnover at Pd during viral cell-to-cell spread are of importance for our understanding of host mechanisms exploited by viruses in order to successfully spread within the infected plant.
Collapse
Affiliation(s)
- Raul Zavaliev
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | | |
Collapse
|
8
|
Barral P, Suárez C, Batanero E, Alfonso C, Alché J, Rodríguez-García M, Villalba M, Rivas G, Rodríguez R. An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination. Biochem J 2005; 390:77-84. [PMID: 15882149 PMCID: PMC1188267 DOI: 10.1042/bj20050456] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CBMs (carbohydrate-binding modules) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. They have been frequently identified by amino acid sequence alignments, but only a few have been experimentally established to have a carbohydrate-binding activity. A small olive pollen protein, Ole e 10 (10 kDa), has been described as a major inducer of type I allergy in humans. In the present study, the ability of Ole e 10 to bind several polysaccharides has been analysed by affinity gel electrophoresis, which demonstrated that the protein bound 1,3-beta-glucans preferentially. Analytical ultracentrifugation studies confirmed binding to laminarin, at a protein/ligand ratio of 1:1. The interaction of Ole e 10 with laminarin induced a conformational change in the protein, as detected by CD and fluorescence analyses, and an increase of 3.6 degrees C in the thermal denaturation temperature of Ole e 10 in the presence of the glycan. These results, and the absence of alignment of the sequence of Ole e 10 with that of any classified CBM, indicate that this pollen protein defines a novel family of CBMs, which we propose to name CBM43. Immunolocalization of Ole e 10 in mature and germinating pollen by transmission electron microscopy and confocal laser scanning microscopy demonstrated the co-localization of Ole e 10 and callose (1,3-beta-glucan) in the growing pollen tube, suggesting a role for this protein in the metabolism of carbohydrates and in pollen tube wall re-formation during germination.
Collapse
Affiliation(s)
- Patricia Barral
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Cinthya Suárez
- †Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Eva Batanero
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Carlos Alfonso
- ‡Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan de Dios Alché
- †Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - María Isabel Rodríguez-García
- †Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Mayte Villalba
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Germán Rivas
- ‡Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Rosalía Rodríguez
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Jiang SY, Cai M, Ramachandran S. The Oryza sativa no pollen (Osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein. PLANT MOLECULAR BIOLOGY 2005; 57:835-53. [PMID: 15952069 DOI: 10.1007/s11103-005-2859-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 02/28/2005] [Indexed: 05/02/2023]
Abstract
Phenotype screens of Ds insertional lines identified a male sterile Orysa sativa no pollen (Osnop) mutant with a pollen-less phenotype at the flowering stage. The mutant phenotype showed linkage to Ds insertion into Osnop gene region. This mutant contained a deletion of 65 kb chromosomal region at the site of Ds insertion containing 14 predicted genes. Out of these deleted genes, Delegen 5-7, 9-10 were redundant, as two or three copies were present with 100% homology in other regions of rice genome. RT-PCR analysis showed that Delegen 5-7 were expressed not only in wild type plants but also in the mutant plants. In addition to this, Delegen 8-10 transcripts could not be detected under normal growth conditions, and Delegen 12 was expressed only in roots, thus deletion of these genes may not affect the pollen development. Our data and analysis also ruled out the possibility of delegen 1-4, 11, and 13 as candidates contributing to the pollen-less phenotype. Further investigation showed that the delegen 14 was expressed only in late stage of pollen development with the highest expression at the stage of pollen release and germination by RT-PCR, Northern blotting, in situ hybridization, and promoter-GUS transgenic plants. Thus, the delegen 14 gene is the best candidate for Osnop, corresponding to the pollen-less phenotype in the mutant. Our data suggest that delegen 14 may play an important role during late stage of pollen development and its germination. Since the delegen 14 gene has both C(2) and GRAM domains, it can be assumed that this gene cross-links both calcium and phosphoinositide signaling pathways. This is the first report to suggest possible functions for this gene in plant development.
Collapse
Affiliation(s)
- Shu Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | | | | |
Collapse
|
10
|
McNeil KJ, Smith AG. An anther-specific cysteine-rich protein of tomato localized to the tapetum and microspores. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:457-64. [PMID: 15900888 DOI: 10.1016/j.jplph.2004.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tapetum is a nutritive tissue of the stamen that is essential for normal microspore development. While numerous tapetal-specific genes have been identified, little information is available on the localization and function of the proteins produced by these genes. The tapetally produced protein 5B-CRP is cysteine-rich, has a secretory signal sequence and lacks an endoplasmic reticulum retention sequence. The 5B-CRP mRNA is expressed specifically within the tapetum and accumulates from premeiosis to tetrad release. Antibodies generated against an Escherichia coli fusion protein only recognized 5B-CRP in the reduced state. The 5B-CRP was detected as a 6 kDa protein in extracts of stamens from microspore meiosis through anthesis and was also observed in extracts from dehisced pollen. In situ, 5B-CRP was localized in stamens to the tapetum and the developing microspores, from the tetrad through early free microspore stages. Based on similarity to proteins with known functions, 5B-CRP may inhibit proteasome activity within the stamen locule.
Collapse
Affiliation(s)
- Kenneth J McNeil
- Department of Horticultural Science, University of Minnesota, 356 Alderman Hall, St. Paul, MN 55108, USA
| | | |
Collapse
|